
Evolving Cooperative Groups: Preliminary Results

Maria Gordin, Sandip Sen, and Narendra Puppala
Department of Mathematical & C, ornputer Sciences

The University of qSalsa
600 South College Avenue,

Tulsa, OK 74104-3189
e-mail:[gordin,sandip,puppala](@euler.mcs.utulsa.edu

Abstract

Multi-agent systenls require coordination of sources
with distinct expertise to perform complex tasks ef-
fectively. In this paper, we use a co-evolutionary ap-
proach of using genetic algorithms (GAs) to evolve
multiple individuals who call effectively cooperate to
solve a colnlnon problenl. We concurrently run a GA
for each individual in the group. We experiment with
a room painting domain which requires cooperation of
two agents. We have used two mechanisnls for eval-
uating an individual in one population: (a) pair
randomly with members fl’onl the other population,
(b) pair it with members of the other population
a shared memory containing the best pairs found so
far. Both the approaches m’e successflal ill generating
optimal behavior patterns. However, our preliminary
results exhibit a slight edge for the shared memory
approach.

Introduction

Our goal is to generate behavior strategies for cooper-
ative agents that have distinct capabilities. A coordi-
nated group effort is necessary to successfully complete
the task. Performance of an agent depends on its per-
formance in a group. Ability of agents to adapt to each
other and cooperate becomes critical in this context.
We have been investigating co-evolutionary methods to
find such strategies in an agent group consisting of two
agents. We use simultaneous evolution of two geneti-
cally distinct populations. Each population consists of
rules (behavioral strategies) for one of the agents. The
fitness of an individual in either of the populations de-
pends on its ability to perform the task in a group
with an individual from another population. We use a
shared memory to store the n best couples found so far.
The shared memory is also used to evaluate individuals
from each of the co-evolving populations.

Simultaneous evolution approaches have been suc-
cessfully used in both cooperative and competitive en-
viromnents (Haynes & Sen 1997; Haynes et al. 1995;
lto & Yano 1995). Rosin and Belew (Rosin & Belew

31

1995) successfully used co-evolution for developing effi-
cient strategies for two players games like Tic-Tac-Toe,
Nim, and Go. Authors have used the SAMUEL system
to co-evolve robots searching for food (Grefenstette
~z Daley 1996; Potter, Jong, & Grefenstette 1995).
One of the approaches investigated in this work was
to evolve strategies by using evaluation of individuals
from one of the populations against random members
of the set of previous champions from another popula-
tion. Our approach of storing and using the best agent,
groups can be seen as a novel approach to co-evolution.
Grefenstette’s approach is more suited to competitive
domains, whereas our approach is particularly tailored
for cooperative problems.

Shared Memory in GAs

Though our shared memory approach can be used with
larger groups, in this paper we use a domain with two
cooperative agents. Both agents need to contribute
to complete a shared task. Each of the agents has
unique capabilities necessary to complete the job. We
use a GA to find behavioral rules for each agent which
will allow them to complete the task most efficiently.
Performance of agents as a group depends not, only on
the ability of each agent to perform its share of the
task, but also on the ability of the agents to adapt to
each other and cooperate effectively. This means that
evaluation of an agent’s performance needs to be done
in the context of a group.

In our initial experiments, we ran two different GA
populations (one for each agent) concurrently. To eval-
uate an individual from the first population, we paired
it with an individual from the second population. One
way of doing it was to randomly pick an individual
from the other population to construct a pair. How-
ever, in this approach, we did not have a way of remem-
bering the successful pairs, as only the best individuals
from each population were available, and the best in-
dividuals paired may not produce the best pair. We
tried to overcome this problem with a shared memory

From: AAAI Technical Report WS-97-03. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

approach, the shared memory being a collection of the
most successful pairs observed so far.

Another approach to evaluating individuals would
be to pair it with one or more good individuals from
the other population. Others have suggested using
a random collection of the best individuals from the
other population over all generations for this purpose
(Grefenstette &; Daley 1996). A variation of this ap-
proach would be to select a collection of best partners
from the other generation. Rather than storing the
best individuals separately, we chose to store the best
pairs observed so far in a shared memory.

Population I

[~uluro,,~ut I I

[ru,efor,geu, 1 [

rule for,~gentl [-

Irde f°r’~nt ;] sd¢~ rule

J [rule for a~nt 2

J [rub for agent 2

Shared Memory

Population 2

[rule f°r agent 2 I

I
[rule for agfflt2 I

I

It
..................................... "1 i

f~.ess w, hu
.................... ¢~NNN~:N!N::~!~i~iN!ii~

rule for trent I " "" "~ ~., ~.~-.....-.~,w.-...-..~ .~..v..~...w......x.~.,.~.....-......~ tul~ for ag~at 2
Evaluation Function

Figure 1: Using shared memory with two GA popula-
tions. The figure illustrates the process of evaluating
an individual from Population 1.

If a pair performs better than any other pair, it
could be because one of them performed really well,
even if the other was not that effective. To improve
the performance of such a pair, only one of the play-
ers needs to be replaced. It means that we need to
pair the successflfl individual from one of the popu-
lations, with different individuals from another pop-
ulation, hoping to improve the result of the group.
This can be achieved with a shared memory contain-
ing effective agent groups. In a competitive setting,
the evaluation of an individual should be some kind
of an average over its evaluation when pitted against
a sampling of individuals from the other population
(Grefenstette & Daley 1996; Rosin & Belew 1995;
Haynes & Sen 1996). This is because we want to evolve
robust individuals. In a cooperative setting, however

the highest evaluation an individual receives from all
pairings with others appear to be the best choice for
the evaluation of that individual. This is because we
are interested in finding a pair that performs the best.
So, an individual need not be robust, it just has to
effectively co-adapt with another individual.

Shared memory consists of a collection of pairs of
individuals that have demonstrated the best perfor-
rnance so far (see Figure 1). Figure 1 also illustrates
the process of evaluation of an individual fi’om Popula-
tion 1 by pairing it with an individual from Population
2 stored in shared memory. In our experiments, we
evaluated an individual from population 1 by pairing
it with each of the individuals from Population 2 stored
in shared memory. The maximum evaluation from all
such pairs is used as the evaluation of the individual
from population 1. The shared memory gets updated
if we encounter a fitness value higher than at least one
of the fitness values of the pairs that have been stored
in shared memory previously. In such a case, the pair
with the minimum value gets replaced with the new
pair.

Room Painting Domain

For evaluating our proposed cooperative co-evolution
mechanism, we have defined a problem of room paint-
ing. A room with a boundary is divided into many
empty squares which needs to be painted. Two agents
are required to do the job: whitewasher and painter.
A square can be painted only after it has been white-
washed. If the square is not painted within a particulat
time interval after it has been whitewashed, the square
turns back empty (three time ticks in our experiments).
Both agents perform their tasks as they move. They
can move in four directions: north, south, east and,
west or, hold (stay where they are). The whitewasher
moves twice as fast as the painter. To complete the
job in a reasonable time, the painter needs to learn to
follow the whitewasher and the whitewasher needs to
learn to wait for the painter if it gets too far ahead.

We now explain the working of the simulation used
for executing agent behaviors. We use the following
alphabet to represent states of a square: 0=empty,
l=painted or whitewashed, 2=anything, 3=white-
washed, 4=empty or painted.

Diroetion to movo North South East West I’)istane~

State ofenvirolm~nt N S E W N S E W N S E W N S E W

Whit~wa/dmr ~le 0 2 2 2 1 0 2 2 1 I 0 2 I I I 0 O3

Painter ntl~ 3 2 2 2 4 3 2 2 4 4 3 2 4 4 4 3

Figure 2: Rule representation.

The rule structure is illustrated in Figure 2. The

32

last two digits of the whitewasher’s rule represents the
maximnm distance allowed between the agents. The
whitewasher holds its position if the actual distance be-
tween the painter and itself exceeds that number. The
structure of the rules for the whitewasher and painter
are the same otherwise.

The sensor function of an agent returns a pattern of
four digits that represent tile state of the surrounding
environment, the four digits correspond to the direc-
tions North, South, East and West. If the pattern
returned by the sensor functions matches the pattern
represented by the first four digits of the agent’s rule,
the agent moves North; if it matches the second four
digits, the agent moves South, etc. For example, con-
sider the movement of the whitewasher when the sensor
finds that the square to the North is whitewashed, the
square to tile South is empty, the square to the West is
painted and the square to the East is empty. The first
part of the whitewasher’s rule in Figure 2, 0 2 2 2 is
matched first. This part states that if the square to the
North is eml)ty (the squares at the South, West and
East can be anything), the whitewasher moves North.
The square to the North is whitewashed, and there-
fore, this rule does not match the state of environment.
Next part of whitewasher’s rule is 1 0 2 2. It says that
if the square to the North is painted or whitewashed,
and the square to the South is empty (the squares to
the West and to the East can be anything), the white-
washer moves South. This rule matches the state of the
environrnent, as the sensor has found that the square to
the North is whitewashed and the square to the South
is einpty. The last two parts of the rules are ignored in
this case. If none of the four digit patterns matches the
pattern returned by the sensor function, the rule inter-
preter switches to a "global" rnode. In the "global"
mode, the sensor looks at every square in a specified
direction tl l) to the boundary of the room. For exam-
pie, the first part of the rule in "global" mode implies
that if there is an empty square anywhere directly to
the North, move North.

A set of optimal rules (rules with which the two
agents can paint all squares starting from the North-
West corner) for this domain are the following:

Whitewasher:
022210221102111003
Painter:
3222432244324443

Figure 3 shows the movement of the agents using
rules in Figure 2. Painter follows the Whitewasher and
the maximum distance between the agents is 3. In the
figure shown, the whitewasher moves first. The second
part of the rule matches the output of the sensor fimc-
tion, which finds all empty square at the south. This

Figure 3: Example of room painting using rules in Fig-
ure 2.

results in the whitewasher moving south. The painter
moves next. The sensor function finds a whitewashed
square at the south. It matches the second part of the
painter’s rule. The painter moves south following the
whitewasher.

Evaluation function. To get a fitness value for a
pair, we run the simulator using a rule for the white-
washer and a rule for the painter. The simulator calcu-
lates the fitness value based on how much of the room
is painted after a given number of ticks. Our objective
is to maximize the nmnber of squares painted. At the
same time, we want to minimize the number of squares
washed but not painted, because washed squares turn
back empty if they are not painted within a specific
time period, and it is a waste of effort to wash too
many squares as the painter would not be able to catch
up. We used the following evaluation formula in our
experiments: p-(w-p) = 2p-w, where p is the num-
ber of squares painted and w is the number of squares
washed. (w - p) is the number of squares washed but
not painted. The maximum fitness value for a 8 x 8
room is 128 corresponding to all squares being painted.

Preliminary results and Future work

To evaluate the shared memory approach for this do-
GAs: for evolving white-main we ran two separate ’ - one

washer rules and another for evolving painter rules. We
store pairs that performed best in shared memory. To
get a fitness value for a whitewasher rule, we paired it
with each of the painter rules stored in shared memory
and ran the simulator on each of the pairs.

120

i00

80

6o

4o

2o

0

......... -- //

Figure 4: Shared Memory Vs Random pairing.

Figure 4 shows the online average (average of the

33

best individuals) of the populations over runs with dif-
ferent random seeds and using the following parame-
ters: population size: 50, crossover rate: 0.9, muta-
tion rate: 0.01, shared memory Size: 5, generations:
200. We ran two sets of 10 experiments each: one with
random pairings and one with shared memory. We
did not allow duplicate pairs in the shared memory.
Results obtained from these preliminary experiments
have been promising, with optimM rule pairs being
consistently discovered by both approaches. The ex-
periments showed that, while both the shared memory
and the random technique generated close to optimal
rule pairs, tile former approach generates better rule
pairs more consistently later in the runs.

N

w÷
s

E

Figure 5: An example trace of the whitewasher and
painter using a set of optimM rules generated by GA:
1102 1011 2221 2220 02 for whitewasher and 3223 4244
2434 2223 for painter.

All traces of solutions that demonstrate optimal or
close to optimal performance are similar to the one in
Figure 5. There are two reasons for that: (i) our rules
have fixed order of preferences: North, South, West,
Eazt; (ii) we place both agents at position (0, 0) at the
begilming of every simulation.

120

I00

80

~0

40

20

0
5 100 150 200

NumL-etnf Gelmlations

Figure 6: Performance curve using rules with the di-
rection bits embedded.

movement of the agents. To be more specific, consid-
ering the rule representation used earlier, the agents
always try to see if they can move north first. If the
current world state does not favor this movement, the
agents try to move towards the south, and so on. To
remove this restriction placed on the agents, we de-
cided to include direction genes as part of the agent
rule. The direction genes represent the order in which
the four directions are considered for possible move-
merit. There are 4!=24 such orders and hence 3 ternary
genes are used to represent the direction order used
by an agent. We use a mapping frorn the 27 possible
values represented by the 3 ternary numbers and the
24 possible orderings of the four directions. Consider
the rules given in Figure 7. The direction genes in the
whitewasher rule signifies that the agent always tries to
move to the square which is to the west of the current
position, fMling which the agent tries to move to the
east, followed by north and finally south. The painter
rules signifies that this agent will try to move to the
east initially, failing which the directions west, south
and, north are considered in that order.

The experiments with the new rule representation
were run using the following parameters: Population
size: 50, Crossover rate: 0.9, Mutation rate: 0.05,
Shared Memory Size: 5, Generations: 200. Given
in Figure 6 are the performance curves obtained from
these experiments. The curves represent the average
fitness taken over 10 runs. Figure 7 also gives the trace
of movements of the agents with the given rules. As
shown in the figure, the last three genes in the rule de-
termine the direction of movement of an agent. This
arrangement allows the direction genes to be a part
of the evolution process. This allows interesting co-
adapted behavior to evolve which was not previously
possible. We observed a variety of different movements
resulting in a completely painted room. The move-
rnents depicted in Figure 7 was a very noticeable vail-
ation from that depicted in Figure 5 (that case was
also observed in one of the runs in this second set of
experiments).

Start

T I, i WhitewasherIIII
Illl I I !0112 2022 2101 1210 O0 2t..~22
IIII I I
III t. I

DirectionII I I Pah~ter I II’i 3242 2344 2434 4443 344I I
I I

The results described above were obtained by run-
ning GA’s on agent rules without any direction genes.
The order of considering the directions for moving were
predefined (NSEW, in our experiments). This pre-
defining of the direction placed a restriction on the

Figure 7: Trace obtained by using rules with direction
bits.

It can be observed from Figure 6 that both the
shared memory approach and the random approach

34

produce good pairs (though not as well as in the runs
without directional genes; though the optimum result
was found in a number of runs, a few bad runs sig-
nificantly lowered the average). However, on an aver-
age, the shared memory approach gives better results.
This performance enhancement using shared memory
can be directly related to the fact that we use the best
pairs from the previous generations to produce more
individuals of high fitness in the generations to follow.
On the contrary, in the random pairing approach, we
simply rely on the performance of individuals in the
current generation. Although pairs with good perfor-
mance are produced, the number of pairs with high
performance would be fewer than that obtained with
the shared memory approach.

In addition to the experiments conducted using this
new rule representation, we also conducted experi-
ments to observe the behavior of the agents when
their (whitewasher and painter) rules are combined
into a single genome, i.e., a single population is used to
evolve whitewasher-painter pairs. An example of such
a genome is as follows:

0222 1020 2200 1120 01 001 I 4444 2322 4424 4443 432
In the above given genome, the first 21 genes corre-

spond to the whitewasher rule, while the next 19 genes
correspond to the painter rule. As mentioned earlier,
the last three genes of each of the agent rules repre-
sent the direction. From Figure 6 it can be clearly seen
that when the agents rules are combined into a single
population, the performance is quite poor. This low
performance may be caused because an agent does not
have the option of pairing with a number of other in-
dividuals to obtain its fitness. Instead the agent must
evolve along with same individual trying to improve
their combined fitness.

Observations
From our experiments with directional genes, an in-
teresting observation was the ability of the agents to
co-adapt. It is to be noted from the example rule in
Figure 7 that the direction genes for the whitewasher
and the painter are distinct, signifying that they do not
necessarily consider the directions in the same order.
However, this does not affect their ability to adapt to
each other and produce high fitness pairs. Another in-
teresting observation was the trace (direction of move-
ment) of the agents in painting the room. The use
of direction genes in the agent rules resulted in many
different traces, some of them rather surprising and in-
teresting from our point of view. Figure 7 shows one
such interesting trace of the agents.

We plan to expand our experiments to larger do-
mains, and/or with more agents. We are currently

conducting experiments by varying the shared mem-
ory size to study the effect of shared memory size on
effective coevolution. We also plan to conduct experi-
ments using the fitness proportionate scheme to select
individuals from the other population to pair with (in
place of the random pairing as described in this paper).

Acknowledgments:

This work has been supported, in part, by an NSF
grant IRI-9410180.

References
Grefenstette, J. J., and Daley, R. 1996. Methods for
competitive and cooperative co-evolution. In AAAI-
96 Spring Symposium on Adaptation, Co-evolution
and Learning in Multiagent Systems, 45-50.

Haynes, T., and Sen, S. 1996. Evolving behavioral
strategies in predators and prey. In Weiss, G., and
Sen, S., eds., Lecture Notes in Artificial Intelligence.
chapter Adaptation and Learning in Multiagent Sys-
tems.

Haynes, T., and Sen, S. 1997. Crossover operators for
evolving a team. to appear in the Proceedings of Ge-
netic Programming 1997: Proceedings of the Second
Annual Conference, 1997.

Haynes, T.; Sen, S.; Schoenefeld, D.; and Wainwright,
R. 1995. Evolving a team. In AAAI Fall Symposium
on Genetic Programming.

Ito, A., and Yano, H. 1995. The emergence of coop-
eration in a society of autonomous agents - the pris-
oner’s dilemma game under the disclosure of contract
histories. In First International Conference on Multi-
Agent Systems, 201-208.

Potter, M. A.; Jong, K. A. D.; and Grefenstette, J. J.
1995. A coevolutionary approach to learning sequen-
tial decision rules. In Sixth International Conference
on Genetic Algorithms, 366-372.

Rosin, C. D., and Belew, R. K. 1995. Methods for
competitive co-evolution: Finding opponents worth
beating. In Sixth International (7onference on Genetic
Algorithms, 373-380.

35

