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Abstract
Embedding microscopic sensors, computers and actuators
into materials allows physical systems to actively moni-
tor and respond to their environments. This leads to the
possibility of creating smart matter, i.e., materials whose
properties can be changed under program control to suit
varying constraints. A key difficulty in realizing the po-
tential of smart matter is developing the appropriate con-
¯ ol programs. One approach to this problem is a multi-
agent control system, which can provide robust and rapid
response to environmental changes. To improve the per-
formance of such systems, we describe how the agents’
organization can adapted through simple learning mecha-
nisms. As a specific example, we consider maintaining a
physical system near an unstable configuration, a particu-
larly challenging application for smart matter. This shows
how the system’s organization can adapt to the local phys-
ical structure to improve performance.
keywords: distributed control, learning organiza-

tional structure, smart matter

Introduction
Embedding microscopic sensors, computers and actuators
into materials allows physical systems to actively monitor
and respond to their environments in precisely controlled
ways. This is particularly so for microelectromechanical
systems (MEMS) [2, 3, 5] where the devices are fabricated
together in single silicon wafers. Applications include en-
vironmental monitors, drag reduction in fluid flow, com-
pact data storage and improved material properties.

In many such applications the relevant mechanical pro-
cesses are slow compared to sensor, computation and com-
munication speeds. This gives a smart matter regime,
where control programs execute many steps within the
time available for responding to mechanical changes. A
key difficulty in realizing smart matter’s potential is de-
veloping the control programs. This is due to the need to
robustly coordinate a physically distributed real-time re-
sponse with many elements in the face of failures, delays,
an unpredictable environment and a limited ability to ac-
curately model the system’s behavior. This is especially
true in the mass production of smart materials where man-
ufacturing tolerances and occasional defects will cause the
physical system to differ somewhat from its nominal spec-

ification. These characteristics limit the effectiveness of
conventional control algorithms, which rely on a single
global processor with rapid access to the full state of the
system and detailed knowledge of its behavior.

A more robust approach for such systems uses a collec-
tion of autonomous agents, that each deal with a limited
part of the overall control problem. Individual agents can
be associated with each sensor or actuator in the material,
or with various aggregations of these devices, to provide a
mapping between agents and physical location. This leads
to a community of computational agents which, in their
interactions, strategies, and competition for resources, re-
semble natural ecosystems [10]. Distributed controls al-
low the system as a whole to adapt to changes in the en-
vironment or disturbances to individual components [8].

Multiagent systems have been extensively studied in
the context of distributed problem solving [4, 6, 11].
They have also been applied to problems involved in
acting in the physical world, such as distributed traf-
fic control [12], flexible manufacturing [16], the de-
sign of robotic systems [13, 17], and self-assembly of
structures [15]. However, the use of multiagent systems
for controlling smart matter is a challenging new appli-
cation due to the very tight coupling between the com-
putational agents and their embedding in physical space.
Specifically, in addition to computational interactions be-
tween agents from the exchange of information, there are
mechanical interactions whose strength decreases with the
physical distance between them.

In this paper we examine how a simple learning mecha-
nism can improve a multiagent control strategy for unsta-
ble dynamical systems. This is a particularly challenging
problem, for in the absence of controls, the physics of an
unstable system will drive it rapidly away from the desired
configuration. This is the case, for example, for a struc-
tural beam whose load is large enough to cause it to buckle
and break [1]. In such cases, weak control forces, if ap-
plied properly, can counter departures from the unstable
configuration while they are still small. Successful control
leads to a virtual strengthening and stiffening of the mate-
rial. Because the detailed characteristics of the system can
vary due to failures and environmental changes, any ini-
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tial organization for the agents may not remain appropriate
for long. Hence, the addition of a learning mechanism can
also help the agents respond and adapt to these changes
by altering their organizational structure.

Dynamics of Unstable Smart Matter
The devices embedded in smart matter are associated with
computational agents that use the sensor information to
determine appropriate actuator forces. The overall sys-
tem dynamics is a combination of the behavior at the
location of these agents and the behavior of the mate-
rial between the agent locations. In mechanical systems,
displacements associated with short length scales involve
relatively large restoring forces, high frequency oscilla-
tions and rapid damping. Hence, they are not important
for the overall stability [9]. Instead, stability is primarily
determined by the lowest frequency modes. We assume
that there are enough agents so that their typical spacing is
much smaller than the wavelengths associated with these
lowest modes. Hence, the lower frequency dynamics is
sufficiently characterized by the displacements at the lo-
cations of the agents only. The high-frequency dynamics
of the physical substrate between agents serves only to
couple the agents’ displacements.

The system we studied, illustrated in Fig. la, consists
of n mass points connected to their neighbors by springs.
In addition a destabilizing force proportional to the dis-
placement acts on each mass point. This force models the
behavior of unstable fixed points: the force is zero exactly
at the fixed point, but acts to amplify any small deviations
away from the fixed point. This system can be construed
as a linear approximation to the behavior of a variety of
dynamical systems near an unstable fixed point, such as
the inverted pendulums shown in the Fig. lb. In the ab-
sence of control, any small initial displacement away from
the vertical position rapidly leads to all the masses falling
over. In this case, the lowest mode consists of all the pen-
dulae falling over in the same direction and is the most
rapidly unstable mode of behavior for this system. By
contrast, higher modes, operating at shorter length scales,
consist of the masses falling in different directions so that
springs between them act to reduce the rate of falling.

The system’s physical behavior is described by

1. the number of mass points n
2. the spring constant k of the springs
3. a destabilizing force coefficient f
4. a damping force coefficient g

We also suppose the mass of each point is equal to one.
The resulting dynamics of the unstable chain is given byI

IWe used a standard ordinary-differential-equation solver [14] to deter-
mine the controlled system’s behaviors.

displacement
a

........................................................ d/

q

Fig. 1. An unstable dynamical system, a) The unstable chain
with the mass points displaced from the unstable fixed point
which is indicated by the horizontal dashed line. The masses
are coupled to their neighbors with springs, and those at the
end of the chain are connected to a rigid wall. b) A chain of
upward-pointing pendulums connected by springs as an example
of an unstable spatially extended system.

the following equations of motion [7]:

d*

~__!, -_ ~(~_~_~) + ~(~+~_~) + f~ _ g~ 
(1)

where ~i is the displacement of mass point i, vi is the cor-
responding velocity, and ~o = ~,,+1 -- 0 is the boundary
condition. The Hi term in EcI. (1) is the additional control
force produced by the actuator attached to mass point i.

For these systems, the long time response to any initial
condition is determined by the eigenvalues of the matrix
corresponding to the right hand side of Eq. (1). Specifi-
cally, if the control force makes all eigenvalues have nega-
tive real parts, the system is stable [9]. The corresponding
eigenvectors are the system’s modes. Thus to evaluate sta-
bility for all inidal conditions, we can use any single ini-
tial condition that includes contributions from all modes.
If there are any unstable modes, the displacements will
then grow. We used this technique to evaluate stability in
the experiments described below.

A Multiagent Control System
The control problem is how hard to push on the various
mass points to maintain them at the unstable fixed point.
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Local Structure

Fig. 2. Purely local organizational structure where every agent
considers only his own displacement information.

This problem can involve various goals, such as maintain-
ing stability in spite of perturbations typically delivered by
the system’s environment, using only weak control forces
so the actuators are easy and cheap to fabricate, continuing
to operate even with sensor noise and actuator failures, and
being simple to program, e.g., by not requiring a detailed
physical model of the system.

To focus on the multiagent learning aspects of this
problem, we consider a simple control program where each
agent exerts a control force against a linear combination
of the displacements of the individual agents. Specifically,
Hi = -Xi where

Xi = ~ aii~j (2)
j=l

is a linear combination of the displacements of all mass
points that provides information about the chain’s state.
The values of the aij’s determine which displacements
individual agents pay attention to in determining their re-
sponse. These values can be viewed as defining the or-
ganization of this multiagent system with ai:/ giving the
influence of information at location j on the agent at lo-
cation i. We assume the existence of a communication
network that allows any agent i to access sensor informa-
tion at any position j within the system.

As a measure of the control effort employed by the
agents, we consider the power Pi used to produce the
control force Hi which we take to be simply given by

Pi = I Hil (3)

For example, a purely local organization (Fig. 2) has
ai.i : 1 when i =- j and is 0 otherwise. In this case,
agent i considers only its own displacement ~i. While

this organization is very simple to implement, it has the
drawback of making the agents respond equally to high
and low frequency disturbances. For the unstable chain,
generally only the low frequency modes are actually un-
stable: control force acting against high frequency modes
is unnecessary, thus forcing the agents to unnecessarily
expend power and exert strong forces. By contrast, if the
values of the system parameters are accurately known, a
global model of the system can determine the shape of the
modes and arrange for the agents to act only against the
unstable ones [9]. Unfortunately, in practice, this amount
of detailed information will seldom be available, and can
change due to environmental contamination of parts of
the structure or damage to some of the actuators. Hence
it is desirable to arrange a learning mechanism that can
automatically adjust the aij’s to continually improve per-
formance in the face of these changes, and without the
requirement of a global analysis of the system’s modes.
In this context, the agents might start with a simple struc-
ture based on estimated or nominal system parameters.
They could then learn to improve performance by adjust-
ing their interactions to better fit the particular environ-
ment they are in.

Learning Method
In this section, we describe a simple, specific learning
mechanism the agents can use to adjust their organizational
structure. Specifically, we start with a local structure
(Fig. 2) and simulate the control process for a given period
of time. Changing some of the aij’s in the interaction
matrix will result in a different controlling performance.
By comparing the overall power usage of the given and
the changed structure we apply a hill-climbing algorithm
and take the structure that performs better for the next
learning iteration step.

For the decision which aij’s to change and how
strongly, we apply a method that uses a randomly chosen
center aij within the interaction matrix. We change the
magnitude of this interaction by a fixed amount 6, with
the sign of the change chosen randomly. We also change
its neighborhood in the matrix using a linearly decreas-
ing function with distance, which we measure using the
1-norm, or "taxicab" metric. Specifically, the magnitude
of the change applied at location kl is

(4)

provided this is positive (so the changes in the neighbor-
hood of the center all have the same sign). After each
change we normalize the interaction matrix to ensure that
the sum of all elements aij stays constant during the learn-
ing process.

Every learning iteration results in a comparison of two
different structures. Which structure will be taken is
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Learned Structure
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Fig. 3. Final structure, learned by the system after 1500 iteration
steps.

simply based on the amount of overall power used to
control the system, i.e., )-~i Pi. The improvement in
performance depends on the parameters 6 and e. Too little
changes or the change of only one a~j at a time require
a lot of iteration steps. Too many changes on the other
hand may represent a new structure where several actions
compensate each other and therefore the learning will be
inefficient.

Because of the physical coupling within smart matter

systems, the method of changing several ao"s around a
given center at one time provides a reasonable compromise
between having a fast convergence in performance and a
small enough scale for changes to prevent compensating

effects. Neighboring a~3’s in the interaction structure
correspond to neighbors in physical space. Since physical
interactions generally decrease with distance, this choice
for updating the agent interactions exploits the locality of
interactions in physical space. It thus represents a learning
mechanism that is particularly well suited for multiagent
systems tightly embedded in physical space.

Results
In this section we present an example of the learning
method. Fig. 3 shows the final structure that the system
learned after 1500 iteration steps, starting with a local
structure (Fig. 2) with amplitudes

aii: 0.025 (5)

as an initial condition and parameter values

f = 0.01, g = 0.1, k = 0.05 (6)

and
6 : 0.0015, e : 0.6 (7)

Global Structure
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Fig. 4. Global structure that includes a model to push against
the unstable first mode of the example system..
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Fig. 5. Decrease in power usage as the system learns to better
use its resources.

We found that these values of 6 and e led to a significant
performance improvement. The power consumption of
the overall system is shown in Fig. 5. In every iteration
step we integrated Eq. (1) over 25 time units. The final
structure has a power usage of 0.16 which is less than
one third of the power consumption of the initial local
structure. For comparison we also calculated the power
usage of a global structure (Fig. 4) that uses a global
model where the agents push only against the unstable
first mode [9]. This value is about 0.38 and also more
than twice as large as the final structure’s performance
value.

Discussion
In this paper we presented a simple learning mechanism
for a multiagent system controlling unstable dynamical
systems. This learning mechanism, which takes advantage
of the physical locality of agent interactions, improves the
performance of simple control strategies. This may be
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particularly useful for more complex instances of smart
matter where conventional global controllers become in-
feasible due to the difficulties of modeling the system.

There are a variety of ways this work could be extended.
First, one appeal of a multiagent approach to controlling
smart matter is the ability of such systems to deal with
failures. For instance, a relatively good organization for
a fully functional system may no longer be appropriate
when some actuators break. Thus an interesting experi-
ment in this context would be to see whether the learning
mechanism could improve the performance in spite of the
failures. More generally, it would be useful to understand
the limits of this learning mechanism, e.g., types of smart
matter control tasks for which convergence to better orga-
nizations becomes very slow.

Although we have chosen a particular performance mea-
sure for the learning, there are many other possibilities,
such as faster recovery from sudden changes and mini-
miring the number of active actuators.

The power of multiagent approaches to control lies
in the fact that relatively little knowledge of the system
to be controlled is needed. This is in stark contrast to
traditional AI approaches, which use symbolic reasoning
with extremely detailed models of the physical system.
However, while providing a very robust and simple design
methodology, the distributed nature of the agent-based
system suffers from the lack of a high level explanation
for its global behavior. An interesting open issue is to
combine this approach with the more traditional AI one.

References
[1] A.A. Berlin. Towards Intelligent Structures: Active Control

of Buckling. PhD thesis, M1T, Dept. of Electrical Engineer-
ing and Computer Science, 1994.

[2] A. A. Berlin, H. Abelson, N. Cohen, L. Fogel, C. M.
Ho, M. Horowitz, J. How, T. F. Knight, R. Newton,
and K. Pister. Distributed information systems for MEMS.
Technical report, Information Systems and Technology
(ISAT) Study, 1995.

[3] Janusz Bryzek, Kurt Petersen, and WendeLl McCulley.
Micromaehines on the march. IEEE Spectrum, pages 20-
31, May 1994.

[4] E. H. Durfee. Special section on distributed artificial
inteLligence. In IEEE Transactions on Systems, Man and
Cybernetics, volume 21. IEEE, 1991.

[5] K.J. Gabriel. Microelectromechanical systems (MEMS).
A World Wide Web Page with URL http://eto.sys-
plan.com/ETO/MEMS/index.html, 1996.

[6] Les Gasser and Michael N. Huhns, editors. Distributed
Artificial Intelligence, volume 2. Morgan Kaufmann, Menlo
Park, CA, 1989.

[7] Herbert Goldstein. Classical Mechanics. Addison-Wesley,
Reading, MA, 2nd edition, 1980.

[8] Tad Hogg and Bemardo A. Huberman. Controlling chaos
in distributed systems. IEEE Trans. on Systems, Man and
Cybernetics, 21(6): 1325-1332, November/December 1991.

[9] Tad Hogg and Bemardo A. Huberman. ControLling smart
matter. Technical report, Xerox PARC, 1996. preprint
http://xxx.lanl.gov/abs/cond-mat/9611024.

[10] Bemardo A. Huberman and Tad Hogg. The behavior of
computational ecologies. In B. A. Huberman, editor, The
Ecology of Computation, pages 77-115. North-Holland,
Amsterdam, 1988.

[11] Victor Lesser, editor. Proc. of the 1st International Confer-
ence on Multiagent Systems (ICMAS95), Menlo Park. CA,
1995. AAAI Press.

[12] Kai Nagel. Life times of simulated traffic jams. Intl. J. of
Modern Physics C, 5(4):567-580, 1994.

[13] A. C. Sanderson and G. Perry. Sensor-based robotic as-
sembly systems: Research and applications in electronic
manufacturing. Proc. oflEEE, 71:856--871, 1983.

[14] L. F. Shampine and M. K. Gordon. Computer Solution of
Ordinary Differential Equations: The Initial Value Problem.
W. H. Freeman, San Francisco, 1975.

[15] Elisaheth Smela, OUe Inganas, and Ingemar Lundstrom.
ControLled folding of micrometer-size structures. Science,
268:1735-1738, 1995.

[16] David M. Upton. A flexible structure for computer con-
troLled manufacturing systems. Manufacturing Review,
5(1):58-74, 1992.

[17] Brian C. Williams and P. Pandurang Nayak. Immobile
robots. AI Magazine, 17(3): 17-35, 1996.

40




