
Using Decision Tree Confidence Factors for Multiagent Control

Peter Stone and Manuela Veloso
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

{pstone,veloso}@cs.cmu.edu
http://www.cs.cmu.edu/{ ~pstone,-mmv}

Keywords: multiagent systems, machine learning, decision trees

Abstract

Although Decision Trees are widely used for classifica-
tion tasks, they are typically not used for agent con-
trol. This paper presents a novel technique for agent
control in a complex multiagent domain based on the
confidence factors provided by the C4.5 Decision Tree
algorithm. Using Robotic Soccer as an example of
such a domain, this paper incorporates a previously-
trained Decision Tree into a full multiagent behavior
that is capable of controlling agents throughout an en-
tire game. Along with using Decision Trees for control,
this behavior also makes use of the ability to reason
about action-execution time to eliminate options that
would not have adequate time to be executed success-
fully. The newly created behavior is tested empirically
in game situations.

Introduction

Multiagent Systems is the subfield of AI that aims
to provide both principles for construction of complex
systems involving multiple agents and mechanisms for
coordination of independent agents’ behaviors. As of
yet, there has been little work with Multiagent Sys-
tems that require real-time control in noisy, adversarial
environments. Because of the inherent complexity of
this type of Multiagent System, Machine Learning is
an interesting and promising area to merge with Mul-
tiagent Systems. Machine learning has the potential to
provide robust mechanisms that leverage upon experi-
ence to equip agents with a large spectrum of behav-
iors, ranging from effective individual performance in
a team, to collaborative achievement of independently
and jointly set high-level goals. Especially in domains
that include independently designed agents with con-
flicting goals (adversaries), learning may allow agents
to adapt to unforeseen behaviors on the parts of other
agents.

Layered Learning is an approach to complex mul-
tiagent domains that involves incorporating low-level
learned behaviors into higher-level behaviors (Stone
and Veloso 1997a). Using simulated Robotic Soccer
(see Section) as an example of such a domain, a Neu-
ral Network (NN) was used to learn a low-level individ-
ual behavior (ball-interception), which was then incor-

porated into a basic collaborative behavior (passing).
The collaborative behavior was learned via a Decision
Tree (DT) (Stone and Veloso 1997a).

This paper extends these basic learned behaviors
into a full multiagent behavior that is capable of con-
trolling agents throughout an entire game. This be-
havior makes control decisions based on the confidence
factors associated with DT classifications--a novel ap-
proach. It also makes use of the ability to reason about
action-execution time to eliminate options that would
not have adequate time to be executed successfully.
The newly created behavior is tested empirically in
game situations.

The rest of the paper is organized as follows. Sec-
tion gives an overview of foundational work in the
Robotic Soccer domain. The new behavior, along with
explanations of how the DT is used for control and
how the agents reason about action-execution time, is
presented in Section. Extensive empirical results are
reported in Section, and Section concludes.

Foundational Work

This section presents brief overviews of Robotic Soc-
cer research and of Layered Learning. Further details
with regards to both topics can be found in (Stone and
Veloso 1997a).

Robotic Soccer

As described in (Kitano et al. 1997), Robotic Soc-
cer is an exciting AI domain for many reasons. The
fast-paced nature of the domain necessitates real-time
sensing coupled with quick behaving and decision mak-
ing. Furthermore, the behaviors and decision-making
processes can range from the most simple reactive be-
haviors, such as moving directly towards the ball, to
arbitrarily complex reasoning procedures that take into
account the actions and perceived strategies of team-
mates and opponents. Opportunities, and indeed de-
mands, for innovative and novel techniques abound.

Robotic Soccer systems have been recently devel-
oped both in simulation (Matsubara et al. 1996;
Sahota 1996; Stone and Veloso 1996; 1997b) and with
real robots (Asada et al. 1994; Kim 1996; Sahota

65

From: AAAI Technical Report WS-97-03. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

et al. 1995; Sargent et al. 1997; Stone and Veloso
1997a). While robotic systems are difficult, expensive,
and time-consuming to use, they provide a certain de-
gree of realism that is never possible in simulation.
On the other hand, simulators allow researchers to iso-
late key issues, implement complex behaviors, and run
many trials in a short amount of time. While much of
the past research has used Machine Learning in con-
strained situations, nobody has yet developed a full be-
havior based on learning techniques that can be used
successfully in a game situation.

The Soccer Server (Noda and Matsubara 1996),
which serves as the substrate system for the research
reported in this paper, captures enough real-world
complexities to be a very challenging domain. This
simulator is realistic in many ways: (i) the players’
vision is limited; (ii) the players can communicate
posting to a blackboard that is visible (but not nec-
essarily intelligible) to all players; (iii) each player
controlled by a separate process; (iv) each team has
11 members; (v) players have limited stamina; (vi)
actuators and sensors are noisy; (vii) dynamics and
kinematics are modelled; and (viii) play occurs in real
time: the agents must react to their sensory inputs
at roughly the same speed as human or robotic soccer
players. The simulator, acting as a server, provides
a domain and supports users who wish to build their
own agents (clients).

Layered Learning

Layered Learning is a Multiagent Learning paradigm
designed to allow agents to learn to work together in
a real-time, noisy environment in the presence of both
teammates and adversaries. Layered Learning allows
for a bottom-up definition of agent capabilities at dif-
ferent levels in a complete multiagent domain. Ma-
chine Learning opportunities are identified when hand-
coding solutions are too complex to generate. Indi-
vidual and collaborative behaviors in the presence of
adversaries are organized, learned, and combined in a
layered fashion.

To date, two levels of learned behaviors have been
implemented (Stone and Veloso 1997a). First, Soccer
Server clients used a Neural Network (NN) to learn
a low-level individual skill: how to intercept a mov-
ing ball. Then, using this learned skill, they learned
a higher-level, more "social," skill: one that involves
multiple players. The second skill, the ability to esti-
mate the likelihood that a pass to a particular team-
mate will succeed, was learned using a Decision Tree
(DT). The DT was trained using C4.5 (Quinlan 1993)
under the assumption that the player receiving the
ball uses the trained NN when trying to receive the
pass. This technique of incorporating one learned be-
havior as part of another is an important component
of Layered Learning. As a further example, the out-
put of the decision tree could be used as the input to a
higher-level learning module, for instance a reinforce-

ment learning module, to learn whether or not to pass,
and to whom.

The successful combination of the learned NN and
DT demonstrated the feasibility of the Layered Learn-
ing technique. However, the combined behavior was
trained and tested in a limited, artificial situation
which does not reflect the full range of game situations.
In particular, a passer in a fixed position was trained to
identify whether a particular teammate could success-
fully receive a pass. Both the teammate and several
opponents were randomly placed within a restricted
range. They then used the trained NN to try to re-
ceive the pass.

Although the trained DT was empirically success-
ful in the limited situation, it was unclear whether it
would generalize to the broader class of game situa-
tions. The work reported in this paper incorporates
the same trained DT into a complete behavior using
which players decide when to chase the ball, and after
reaching the ball, what to do with it.

First, a player moves to the ball-using the NN-when
it does not perceive any teammates who are likely to
reach it more quickly. Then, using a simple commu-
nication protocol, the player probes its teammates for
possible pass receivers (collaborators). When a player
is going to use the DT to estimate the likelihood of a
pass succeeding, it alerts the teammate that the pass
is coming, and the teammate, in turn, sends some data
reflecting its view of the world back to the passer. The
DT algorithm used is C4.5 (Quinlan 1993), which au-
tomatically returns confidence factors along with clas-
sifications. These confidence factors are useful when
incorporating the DT into a higher level behavior ca-
pable of controlling a client in game situations.

Using the learned behaviors
As described in Section , ML techniques have been
studied in the Soccer Server in isolated situations.
However, the resulting behaviors have not yet been
tested in full game situations. In this paper, we ex-
amine the effectiveness in game situations of the DT
learned in (Stone and Veloso 1997a).

To our knowledge, this paper reports the first use
of DTs for agent control. In particular, the confidence
factors that are returned along with classifications can
be used to differentiate precisely among several op-
tions.

Receiver Choice Functions

Recall that the DT estimates the likelihood that a pass
to a specific player will succeed. Thus, for a client to
use the DT in a game, several additional aspects of its
behavior must be defined. First, the DT must be in-
corporated into a full Receiver Choice Function (RCF).
We define the RCF to be the function that determines
what the client should do when it has possession of the
ball: when the ball is within kicking distance (2m). The

66

input of an RCF is the client’s perception of the cur-
rent state of the world. The output is an action from
among the options dribble, kick, or pass, and a direc-
tion, either in terms of a player (i.e. towards teammate
number 4) or in terms of a part of the field (i.e. towards
the goal). Consequently, before using the DT, the RCF
must choose a set of candidate receivers. Then, using
the output of the DT for each of these receivers, the
RCF can choose its receiver or else decide to dribble or
kick the ball. Table 1 defines three RCFs, one of which
uses the DT, and the others defined for the purposes
of comparison.

°.I° ~o

RAND

1. Each player has a set of receivers that it considers,
as indicated in Figure 1. The set of candidates is
determined by the player’s actual location on the
field, rather than its assigned position.

2. Any potential receiver that is too close or too far
away (arbitrarily chosen--but constant--bounds)
eliminated from consideration.

3. Any player that is out of position (because it was
chasing the ball) is eliminated from consideration.

4. IF there is an opponent nearby (arbitrarily chosen--
but constant--bound) THEN any potential receiver
that cannot be passed to immediately (the passer
would have to circle around the ball first) is elimi-
nated from consideration.

5. IF one or more potential receivers remain THEN
pass to the receiver as determined by the Receiver
Choice Function (RCF):

PRW (Prefer Right Wing): Use a fixed ordering on the
options. Players in the center prefer passing to
the right wing over the left.
(Random): Choose randomly among the options.

DT (Decision Tree): Pass to the receiver to which
the trained decision tree (see Section) assigns the
highest success confidence. If no confidence is
high enough, kick or dribble as indicated below.

6. ELSE (No potential receivers remain)

® IF there is an opponent nearby, THEN kick the
ball forward;

¯ ELSE dribble the ball forward.

Table 1: Specification of the RCFs.

As indicated in Table 1, the set of candidate receivers
is determined by the players’ positions. Each player is
assigned a particular position on the field, or an area
to which it goes by default. The approximate locations
of these positions are indicated by the locations of the
players on the black team in Figure 1. The formation
used by all of the tested functions includes--from the
back (left)--a goalie, a sweeper, three defenders, three
midfielders, and three forwards. When a player is near
its default position, it periodically announces its posi-

Figure 1: Player positions used by the behaviors in this
paper. The black team, moving from left to right, has a
goalie, a sweeper, and one defender, midfielder, and for-
ward on the left, center, and right of the field. The arrows
emanating from the players indicate the positions to which
each player considers passing when using the RCFs. The
players on the left of the field (top of the diagram) consider
symmetrical options to their counterparts on the right of
the field. The goalie has the same options as the sweeper.
The white team has the same positions as the black, except
that it has no players on its left side of the field, but rather
two in each position on its right.

tion to teammates; when a player leaves its position to
chase the ball, it announces this fact and is no longer
considered "in position" (see Table 1, Step 3). The ar-
rows emanating from the players in Figure 1 indicate
the positions to which each player considers passing.
The clients determine which players are in which posi-
tions by listening to their teammates’ announcements.

The RCFs defined and used by this paper are laid
out in Table 1. As suggested by its name, the DT--
Decision Tree--RCF uses the DT described in Section
to choose from among the candidate receivers. In par-
ticular, as long as one of the receivers’ success con-
fidences is positive, the DT RCF indicates that the
passer should pass to the receiver with the highest suc-
cess confidence, breaking ties randomly. If no receiver
has a positive success confidence, the player with the
ball should dribble or kick the ball forwards (towards
the opponent goal or towards one of the forward cor-
ners). This use of the DT confidence factor is, to our
knowledge, a novel approach to agent control. The
RAND--Random--RCF is the same as the DT RCF
except that it chooses randomly from among the can-
didate receivers.

The PRW--Prefer Right Wing--RCF uses a fixed
ordering on the candidate receivers for each of the po-
sitions on the field. In general, defenders prefer to pass
to the wings rather than forward, midfielders prefer to
pass forward rather than sideways, and forwards tend
to shoot. As indicated by the name, all players in the
center of the field prefer passing to the right rather

67

than passing to the left. The RCF simply returns the
most preferable candidate receiver according to this
fixed ordering. Again, if no receivers are eligible, the
RCF returns "dribble" or "kick." This RCF was the
initial hand-coded behavior for use in games.

Reasoning about action execution time

An important thing to notice in the RCF definition
(Table 1) is that the clients can reason about how long
they predict they have to act. In particular, if there is
an opponent nearby, there is a danger of losing the ball
before being able to pass or shoot it. In this situation,
it is to the passer’s advantage to get rid of the ball as
quickly as possible.

This priority is manifested in the RCFs in two ways:
(i) in Step 4 of Table 1, teammates to whom the client
cannot pass immediately are eliminated from consider-
ation; and (ii) in Step 6, the client kicks the ball away
(or shoots) rather than dribbling. When a player is be-
tween the ball and the teammate to which it wants to
pass, it must move out of the bali’s path before pass-
ing. Since this action takes time, an opponent often
has the opportunity to get to the ball before it can be
successfully released. Thus, in Step 4, when there is
an opponent nearby the RCFs only consider passing to
players to whom the client can pass immediately. The
concept of nearby could be the learned class of positions
from which the opponent could steal the ball. For the
purposes of this paper, "within 10m" is an empirically
acceptable approximation.

Similarly, the point of dribbling the ball (kicking the
ball a small amount in a certain direction and staying
with it) is to keep the ball for a little longer until a good
pass becomes available or until the player is in a good
position to shoot. However, if there is an opponent
nearby, dribbling often allows the opponent time to
get to the ball. In this situation, as indicated in Step 6
of Table 1, the player should kick the ball forward (or
shoot) rather than dribbling.

The ability to reason about how much time is avail-
able for action is an important component of the RCFs
and contributes significantly to their success in game
situations (see Section).

Incorporating the RCF in a behavior

In Section, the method of using a DT as a part of an
RCF is described in detail. However, the RCF is itself
not a complete client behavior: it only applies when
the ball is within kicking distance. This section sit-
uates the RCFs within a complete behavior that can
then be used throughout the course of a game. The
player’s first priority is always to find the bail’s loca-
tion (only objects in front of the player are seen).
it doesn’t know where the ball is, it turns until the
ball is in view. When turning away from the ball, it
remembers the ball’s location for a short amount of
time; however after about three seconds, if it hasn’t

1. IF the client doesn’t know where the ball is, THEN
turn until finding it.

2. IF the ball is more than 10m away AND a team-
mate is closer to the ball than the client is, THEN:

¯ IF the ball is coming towards the client, THEN
watch the ball;

¯ ELSE Move randomly near client position.

3. ELSE: (client is the closest to the ball, or the ball is
within lore)

¯ IF The ball is too far away to kick (> 2m), THEN
move to the ball, using the trained Neural Network
when appropriate;

¯ ELSE Pass, Dribble, or Kick the ball as indicated
by the Receiver Choice Function (RCF).

Table 2: The complete behavior used by the clients in
game situations.

seen the ball, it assumes that it no longer knows where
the ball is (Bowling et al. 1996).

Once the ball has been located, the client can exe-
cute its behavior. As described in Section, each player
is assigned a particular position on the field. Unless
chasing the ball, the client goes to its position, moving
around randomly within a small range of the position.
The player represents its position as x,y coordinates
on the field.

The client chases the ball whenever it thinks that
it is the closest team-member to the ball. Notice that
it may not actually be the closest player to the ball
if some of its teammates are too far away to see, and
if they have not announced their positions recently.
However, if a player mistakenly thinks that it is the
closest player, it will get part of the way to the ball,
notice that another teammate is closer, and then turn
back to its position. When the ball is within a certain
small range (arbitrarily 10m), the client always goes
towards the ball. When the ball is moving towards the
client or when a teammate has indicated an intention
to pass in its direction, the client watches the ball to
see if either of the two above conditions is met. As
required for use of the DT, every player is equipped
with the trained Neural Network (see Section) which
can be used to help intercept the ball.

Finally, every team member uses the same RCF.
Whenever the ball is within kicking distance, the client
calls its RCF to decide whether to dribble, kick, or
pass, and to where. The behavior incorporating the
RCFs is laid out in Table 2.

Experiments
In this section we present the results of empirically
testing how the complete behavior performs when us-
ing the different RCF options. Since the behaviors
differ only in their RCFs, we refer below to, for ex-

68

ample, "the complete behavior with the DT RCF"
simply as "the DT RCF." Also presented are empir-
ical results verifying the advantage of reasoning about
action-execution time.

In order to test the different RCFs, we created a
team formation that emphasizes the advantage of pass-
ing to some teammates over others. When both teams
use the standard formation (that of the black team in
Figure 1), every player is covered by one opponent.
However, this situation is an artificial artifact of hav-
ing the same person program both teams. Ideally, the
players would have the ability to move to open posi-
tions on the field. However at this point, such function-
ality represents future work (see Section). Instead,
order to reflect the fact that some players are typically
more open than others, we tested the RCFs against
the OPR--Only Play Right--formation which is illus-
trated by the white team in Figure 1. We also used
the symmetrical OPL-Only Play Left--formation for
testing. These behaviors are specified in Table 3.

® The opponent behaviors are exactly the same as the
RAND behavior except that the players are assigned
to different positions:

OPR (Only Play Right): As illustrated by the white
team in Figure 1, two players are at each position
on the right side of the field, with no players on
the left side of the field.

OPL (Only Play Left): Same as above, except all
the players are on the left side of the field.

Table 3: OPR and OPL behavior specification.

During testing, each run consists of 34 five-minute
games between a pair of teams. We tabulate the cu-
mulative score both in total goals and in games won
(ties are not broken) as in Table 4. Graphs record the
difference in cumulative goals scored (Figure 2) and
games won (Figure 3) as the run progresses.

RCF (vs. OPR) Games (W - L) Overall Score
DT 19 - 9 135 - 97

PRW 11 - 14 104 - 105
PRW (vs. OPL) 8- 16 114 - 128

RAND 14- 12 115 - 111

Table 4: Results are cumulative over 34 five-minute
games: ties are not broken. Unless otherwise indicated,
the opponent--whose score always appears second--uses
the OPR formation.

In order to test the effectiveness of the DT RCF,
we compared its performance against the performance
of the PRW and RAND RCFs when facing the same
opponent: OPR. While the DT and RAND RCFs are
symmetrical in their decision making, the PRW RCF
gives preference to one side of the field and therefore
has an advantage against the OPR strategy. Thus we

69

50
Running Goal Difference vs. Game Number

40- PRW (vs. OPR)DT

¯ PRW (vs. OPL) ~/30

RAN~/~
2O

lo

o
"%" "" "%"-" "’"’X~10

X.,.

-20 ’ ’ ’ ’ ’ ,
0 5 10 15 20 25 30 35

Game Number

Figure 2: The differences in cumulative goals as the runs
progress.

Running Victory Difference vs. Game Number
15

DT--
PRW (vs. OPR) ^ ^

10 ’ PRW (vs. OPL) ~ v ~ ~ "~

5 RAN D/~-"~__~

0

............... \::----% // ~//~,

-5

-10 ’
0 5 10 15 20 25 30 35

Game Number

Figure 3: The differences in cumulative games won as the
runs progress.

also include the results of the PRW RCF when it faces
the symmetrical opponent: OPL. From the table and
the graphs, it is apparent that the DT RCF is an ef-
fective method of decision making in this domain.

In order to test the effectiveness of the reasoning
about action-execution time, we compared the perfor-
mance of the standard DT RCF against that of the
same RCF with the assumption that there is never an
opponent nearby: even if there is, the RCF ignores
it. This assumption affects Steps 4 and 6 of the RCF
specification in Table 1. Both RCFs are played against
the OPR behavior. As apparent from Table 5, the rea-
soning about action-execution time makes a significant
difference.

We expect that the DT RCF, including the reason-
ing about action-execution time, will perform favor-
ably against teams that cover our players unevenly so
that the DT can find an open player to whom to pass.
Indeed, it is able to defeat a hard-wired multiagent
behavior coded by Sekine (Sekine 1996).

RCF (vs. OPR) Games (W - L) Overall Score
Standard DT 19 - 9 135 - 97
No-rush DT 13 - 16 91 - 108

Table 5: No-rush DT is the same RCF as the standard DT
except that there is no reasoning about action-execution
time. The Standard DT RCF performs significantly better.

Discussion and Conclusion

The experiments reported Section indicate that the
confidence factors provided by standard DT software
can be used for effective agent control. Combined with
some basic reasoning about the action-execution times
of different options--necessitated by the real-time na-
ture of this domain, the DT-based control function out-
performed both random and hand-coded alternatives.
Even though the DT was trained in a limited artificial
situation, it was useful for agent control in a broader
scenario.

Throughout this paper, the multiagent behaviors are
tested against an opponent that leaves one side of the
field free, while covering the other side heavily. This
opponent simulates a situation in which the players
without the ball make an effort to move to an open po-
sition on the field. Such collaborative reasoning has not
yet been implemented in the Soccer Server. However,
the fact that the DT is able to exploit open players
indicates that reasoning about field positioning when
a teammate has the ball would be a useful next step
in the development of learned collaborative behaviors.

Along with more variable field positioning, there is
still a great deal of future work to be done in this do-
main. First, one could build additional learned lay-
ers on top of the NN and DT layers described in Sec-
tion . The behavior used in this paper uses the DT
as a part of a hand-coded high-level multiagent be-
havior. However, several parameters are arbitrarily
chosen. A behavior that learns how to map the clas-
sifications and confidence factors of the DT to pass-
ing/dribbling/shooting decisions may perform better.
Second, on-line adversarial learning methods that can
adapt to opponent behaviors during the course of a
game may be more successful against a broad range of
opponents than current methods.

Nevertheless, the incorporation of low-level learning
modules into a full multiagent behavior that can be
used in game situations is a significant advance towards
intelligent multiagent behaviors in a complex real-time
domain. Furthermore, the ability to reason about the
amount of time available to act is essential in domains
with continuously changing state. Finally, as DT confi-
dence factors are effective tools in this domain, they are
a new potentially useful tool for agent control in gen-
eral. These contributions promise an exciting future
for learning-based methods in real-time, adversarial,
multiagent domains.

References
M. Asada, E. Uchibe, S. Noda, S. Tawaratsumida, and
K. Hosoda. Coordination of multiple behaviors ac-
quired by vision-based reinforcement learning. In Proc.
of IEEE/RSJ/GI International Conference on Intelligent
Robots and Systems 1995 (IROS ’9~), pages 917-924,
1994.
Mike Bowling, Peter Stone, and Manuela Veloso. Predic-
tive memory for an inaccessible environment. In Proceed-
ings of the IROS-96 Workshop on RoboCup, November
1996.
Jong-Hwan Kim, editor. Proceedings of the Micro-Robot
World Cup Soccer Tournament, Taejon, Korea, November
1996.
Hiroaki Kitano, Yasuo Kuniyoshi, Itsuki Noda, Minoru
Asada, Hitoshi Matsubara, and Ei-Ichi Osawa. Robocup:
A challenge problem for ai. AI Magazine, 18(1):73-85,
Spring 1997.
Hitoshi Matsubara, Itsuki Noda, and Kazuo Hiraki.
Learning of cooperative actions in multi-agent systems:
a case study of pass play in soccer. In Adaptation, Coevo-
lution and Learning in Multiagent Systems: Papers from
the 1996 AAAI Spring Symposium, pages 63-67, Menlo
Park,CA, March 1996. AAAI Press. AAAI Technical Re-
port SS-96-01.
Itsuki Noda and Hitoshi Matsubara. Soccer server and
researches on multi-agent systems. In Proceedings of the
IROS-96 Workshop on RoboCup, November 1996.
J. Ross Quinlan. C~.5: Programs for Machine Learning.
Morgan Kaufmann, San Mateo, CA, 1993.

Michael K. Sahota, Alan K. Mackworth, Rod A. Bar-
man, and Stewart J. Kingdom Real-time control of
soccer-playing robots using off-board vision: the dynamite
testbed. In IEEE International Conference on Systems,
Man, and Cybernetics, pages 3690-3663, 1995.
Michael Sahota. Dynasim user guide. Available at
http://www.cs.ubc.ca/nest/lci/soccer, January 1996.
Randy Sargent, Bill Bailey, Carl Witty, and Anne Wright.
Dynamic object capture using fast vision tracking. AI
Magazine, 18(1):65-72, Spring 1997.
Yoshikazu Sekine, 1996. Soccer Server client available at
http://ci.etl.go.jp/noda/soccer/client.html.
Peter Stone and Manuela Veloso. Beating a defender in
robotic soccer: Memory-based learning of a continuous
function. In David S. Touretzky, Michael C. Mozer, and
Michael E. Hasselmo, editors, Advances in Neural Infor-
mation Processing Systems 8, pages 896-902, Cambridge,
MA, 1996. MIT press.
Peter Stone and Manuela Veloso. A layered approach to
learning client behaviors in the robocup soccer server. To
appear in Applied Artificial Intelligence (AAI) Journal,
1997.
Peter Stone and Manuela M. Veloso. Towards collabo-
rative and adversarial learning: A case study in robotic
soccer. To appear in International Journal of Human-
Computer Systems (IJHCS), 1997.

7O

