From: AAAI Technical Report WS-97-03. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

Agents Learning about Agents: A Framework and Analysis

José M. Vidal and Edmund H. Durfee
Artificial Intelligence Laboratory, University of Michigan
1101 Beal Avenue, Ann Arbor, MI 48109-2110
jmvidal@umich.edu

Abstract

We provide a framework for the study of learning in
certain types of multi-agent systems (MAS), that di-
vides an agent’s knowledge about others into different
“types”. We use concepts from computational learn-
ing theory to calculate the relative sample complexi-
ties of learning the different types of knowledge, given
either a supervised or a reinforcement learning algo-
rithm. These results apply only for the learning of a
fixed target function, which would probably not exist
if the other agents are also learning. We then show
how a changing target function affects the learning
behaviors of the: agents, and how to determine the
advantages of having lower sample complexity. Our
results can be used by a designer of a learning agent
in a MAS to determine which knowledge he should put
into the agent and which knowledge should be learned
by the agent.

Introduction

A designer of a learning agent in a multi-agent sys-
tem (MAS) must decide how much his agent will know
about other agents. He can choose to either imple-
ment this knowledge directly into the agent, or to let
the agent learn this knowledge. For example, he might
decide to start the agent with no knowledge and let it
learn which actions to take based on it’s experience, or
he might give it knowledge about what to do given the
actions of other agents and then have it learn which ac-
tions the others’ take, or he might give it deeper knowl-
edge about the others (if available), etc. It is not clear
which one of the many options is better, especially if
the other agents are also learning. In this paper we
provide a framework for describing the MAS and the
different types of knowledge in the agent. We charac-
terize the knowledge as nested agent models and ana-
lyze the complexity of learning these models. We then
study how the fact that other agents are also learning,
and thereby changing their behavior, affects the effec-
tiveness of learning the different agent models. Our
framework and analysis can be used by the agent de-
signer to help predict how well his agent will perform
within a given MAS.

71

An example the reader can keep in mind is a mar-
ket economy where agents are buying and selling from
each other. Some agents might choose to simply re-
member the value they got when they bought good z
for y dollars, or how profit they made when offering
price z (remember, no sale equals zero profit). Others
might choose to remember who they bought/sold from
and the value/profit they received. Still others might
choose to model how the other agents think about ev-
eryone else, and so on. It is clear that increased nested
models require more computation, what is not so clear
is how and when these deeper models will benefit the
agent.

Different research communities have run across the
problem of agents learning in a society of learn-
ing agents. The work of (Shoham & Tennenholtz
1992) focuses on very simple but numerous agents
and emphasizes their emergent behavior. The work
on agent-based modeling (Hiibler & Pines 1994; Ax-
elrod 1996) of complex systems studies slightly more
complex agents that are meant as stand-ins for real
world agents (e.g. insects, communities, corpora-
tions, people). Finally within the MAS community
some work (Sen 1996; Tambe & Rosenbloom 1996;
Vidal & Durfee 1996) has focused on how artificial
Al-based learning agents would fare in communities of
similar agents. We believe that our research will bring
to the foreground some of the common observations
seen in these research areas.

The world and its agents

We assume that the agents inhabit a discrete world
with a finite number of states, denoted by the set W.
The agents have common knowledge of the fact that
every agent can see the state of the world and the ac-
tions taken by any other agent. There are n agents,
numbered {1...n} = N. If we let ¢(i,j) = “agent
i can see the action taken by agent j”, and p(i,j) =
“agent ¢ and j both see the same world”, then the no-
tation in (Fagin et al. 1995) lets us express these ideas
more succinctly in terms of common knowledge among
the agents in IV, using the two following statements:

CNV jend(i,j) and CnV; jenp(i, 5).

We group the set of all actions taken by all agents
in O = {A1,4;,...,A,}, where A; is the set of ac-
tions that can be taken by agent ¢ and a; € A; is
one particular action. We will sometimes assume that
Vien|Ai| = |A]. All agents take actions at discrete time
intervals and these actions are considered simultaneous
and seen by all.

Looking down on a such a system, we see that there
is an oracle mapping M;(w) for each agent ¢, which
returns the best action that agent ¢ can take in state
w. However, as we shall see, this function might be
constantly changing, making the agents’ learning task
that much more difficult. We will also refer to a simi-
lar function M;(w,d_;), which returns the best action
in state w, if all other agents take the actions spec-
ified by @_;. It is assumed that the function M is
“myopic”, that is, it does not take into account the
possibility of future encounters, it simply returns the
action that maximizes the immediate payoff given the
current situation. Some of the limitations imposed by
this assumption are relaxed by the fact that agents
learn from past experience.

The MAS model we have just described is general
enough to encompass a wide variety of domains. Its
two main restrictions are its discreteness, and the need
for the world and the agents’ actions to be completely
observable by all agents. It does not, however, say any-
thing about the agents and their structure. We propose
to describe the possible agents at the knowledge level
and characterize them as 0,1,2...-level modelers. The
modeling levels refer to the types of knowledge that
these agents keep.

A 0O-level agent is not capable of recognizing the
fact that there are other agents in the world. The only
way it “knows” about the actions of others is if their
actions lead to changes in the world w, or in the reward
it gets. At the knowledge level, we can say that a 0-
level agent i knows a mapping from states w to actions
a;. This fact is denoted by K;(fi(w)), where f;(w) —
a;. We will later refer to this mapping as the function
gi(w). The goal of the agent is to have g;(w) = M;(w).
The knowledge can either be known by the agent (i.e.
pre-programmed), or it can be learned. We will talk
about the complexity of learning in a later Section.

The reader will note that 0-level agents only look
at the current world state w when deciding which ac-
tion to take. It is possible that this information is
not enough for making a correct decision. In these
cases the O-level agents are handicapped because of
their simple modeling capabilities.

A 1-level agent i recognizes the fact that there
are other agents in the world and that they take ac-
tions, but it does not know anything more about them.
Given these facts, the 1-level agent’s strategy is to pre-
dict the other agents’ actions based on their past be-
havior and any other knowledge it has, and use these
predictions when trying to determine its best action.
Essentially, it assumes that the other agents pick their

72

Level || Type of Knowledge
O-Tevel Ki(fi(w)) |

1-level Ki(fi(w,a_;))

KiK;(fij(w))

2-Tevel K;(fi(w,a-;))

K.K;(fij(w,a_;))

KiK; Ki(fijr(w))

Table 1: The type of knowledge the different agent levels
are trying to acquire. They can acquire this knowledge
using any learning technique.

actions by using a mapping from w to a. At the knowl-
edge level, we say that it knows K;(fi(w,d—~;)) where
fi(w,@_;) — a;, and K;K;(fi;(w)) for all other agents
Jj, where fij(w) — a;. Again, we can say that the
agent’s actions are given by the function g;(w).

A 2-level agent ¢ also recognizes the other agents
in the world, but has some information about their de-
cision processes and previous observations. That is,
a 2-level agent has insight into the other agents’ in-
ternal procedures used for picking an action. This
intentional model of others allows the agent to dis-
miss “useless” information when picking its next ac-
tion. At the knowledge level, we say that a 2-level
agent knows K;(fi(w,d-;)), K;Kj(f.-,-(w,&‘_j)), and
K:K;Ki(fije(w)). A simple way a 1-level agent can
become 2-level is by assuming that “others are like
him”, and modeling others using the same learning al-
gorithms and observations the agent, itself, was using
when it was a 1-level agent.

We can keep defining n-level agents with
deeper models in a similar way. An n-level agent i
would have knowledge of the type K;(fi(w,a-;)),
KKi(fi(w,8-0)), .., KioKy(fy(w,d_y)),
K;- - K.(f:(w)). The number of K’sis n + 1.

Convergence

If we direct our attention to the impact that agent ac-
tions have on others, we notice that if an agent’s choice
of best action is not impacted by the other agents’ ac-
tions then its learning task reduces to that of learning
to match the fized function M;(w) — a;. That is,
M; will be fixed if agent ¢’s choice of action depends
solely on the world state w. There are many learning
algorithms available that allow an agent to learn such
a function. We assume the agent uses one such algo-
rithm. From this reasoning it follows that: If agent
i’s actions are not impacted by other agents and it is
capable of learning a fixed function, then it will even-
tually learn g;(w) = M;(w) and will stay fixed after
that.

If, on the other hand, the agent’s choice of action
is impacted by the other agents’ actions and the other
agents are changing their behavior, then we find that
there is no constant M;(w) function to learn. The MAS

becomes a complex adaptive system. However, even
in this case, it is still possible that all agents will all
eventually settle on a fixed set of g;(w) = M;(w). If
this happens then eventually (and concurrently), the
agents will all learn the set of best actions to take in
each world state, and these will not change much, if
at all. At this point, we say that the system has con-

verged.

Definition 1 Once all agents have a fized action func-
tion gi(w), we say that the system has converged.

Convergence is a general phenomena that goes by
many names. For example, if the system is an instance
of the Pursuit Problem, we might say that the agents
had agreed on a set of conventions for dealing with all
situations, while in a market system, we would say that
the system had reached a competitive equslibrium.

Unfortunately, we do not have any general rules for
predicting which systems will converge, and which will
not. These predictions can only be made by examin-
ing the particular system (e.g. under certain circum-
stances we can predict that a market system will reach
a price equilibrium). Still, we can say that:

Theorem 1 After a MAS system has converged, then
all deeper models (i.e. more than 0-level) become use-
less. That is, an agent with deeper models can collapse
them, keep only 0-level models, and still take the same
actions, as long as the system maintains a fized M (w).

Proof If M is fixed then, eventually, the knowledge
of type K; - -- K;jK(f;...j& (w)) will become fixed, and
so will the K;; - - - K;(f;...;(w,a—;)) such that the agent
will actually just have a (very complicated) function of
w. Therefore, all the knowledge can be collapsed into
knowledge of the form K;(f;(w)) without losing any
information. |

If, on the other hand, the system has not converged*
then we find that deeper models are sometimes better
than shallow ones, depending on exactly what knowl-
edge the agents are trying to learn, how they are doing
it and certain aspects of the structure of this knowl-
edge, as we shall see in the next section.

Sample Learning Complexity

Lets say that a O-level agent does not have perfect
knowledge (i.e. its K;(fi(w)) does not match the ora-
cle M (w) function), then we know that some or all of
it’s w — a; mappings must be wrong and need to be
learned. If the agent is using some form of supervised
learning (i.e. where a teacher tells it which action to
take each time), then it is trying to learn one of | 4;|/W!
possible O-level models. If instead it is using some form
of reinforcement learning, where it gets a reward (pos-
itive or negative) after every action, then it is trying

LIf the system contains unstable states, then it will never
converge. An unstable state is one where there is no set of
actions for all agents that constitutes a Nash equilibrium.

73

to learn one of |R||W!'14il possible models, where R is
the set of rewards it gets (|R| > 2). This means that,
if the agent is being taught which actions are better,
then it just needs to learn the mapping from state w
to action a. While, if it gets a reward for each action
in each state, then it needs to learn the mapping from
state-action (w,a) pairs to their rewards in order to
determine which actions lead to the highest reward.

If, on the other hand, a 1-level agent is wrong, then
the problem could be either in its K;(fi(w,&—;)), or
in its K;K;(fij(w)). An interesting case is where we
assume that the former knowledge is already known
by the agent. This can happen in MASs where
the designer knows what the agent should do given
what all the other agents will do. So, assuming that
K;(fi(w,d—;)) is always correct, we have K; K;(fij(w))
as the only source of the discrepancy. Since agents can
observe each other’s actions in all states, we can as-
sume that they learn this knowledge using some form
of supervised learning (i.e. the observed agent is the
teacher because it “tells” others what it does in each
w). Therefore, in learning this knowledge an agent will
be picking from a set of |4;]"! possible models.

It should be intuitive (assuming Vien|A:| = |A|)
that the learning problem that the 1l-level agent has
is the same magnitude as the one the O-level agent
using supervised learning has, but smaller than the re-
inforcement 0-level agent’s problem. However, we can
make this a bit more formal by noticing that we can
use the size of the hypothesis (or concept) space to de-
termine the sample complexity of the learning problem.
This give us a rough idea of the number of examples
that a PAC-learning algorithm would have to see be-
fore reaching an acceptable hypothesis (i.e. model).

We first define the error, at any given time, of agent
i’s action function g;(w), as:

error(g;) = P(g:(w) # M(w)|w drawn from D) < ¢
1)
where D is the distribution from which world states
w are drawn, and g;(w) returns the action that agent ¢
will take in state w, given its current knowledge (i.e. all
the K;(-) models). We also let -y be the upper bound we
wish to set on the probability that ¢ has a bad model,
i.e. one with error(g;) > e¢. The sample complexity is
bounded from above by m, whose standard definition
from computational learning theory is:

1, |H]
> —-(ln— 2
m2 L(n 1) @
where |H| is the size of the hypothesis (i.e. model)
space. Given these equations, we can plug in values
for one particularly interesting case, and we get an
interesting result.

Theorem 2 In a MAS where an agent can determine
which move it should take, given that it knows what all
other agents will do, V;|A;| = |A|, and 0-level agents
use some form of reinforcement learning, we find that

the sample compleziay of the 1-level agents’ learning
problem is O(In(|A|"1)), while for the 0-level agents’
its O(In(|R|!A11W1)). The 0-level agent’s complezity is
bigger than the 1-level agent’s complezity.

Proof We saw before that |H| = |A|'W! for the 1-
level agent, and |H| = |R|4IWI for the 0-level with
reinforcement-based learning. Using Equation 2 we
can determine that the 1-level agent’s sample complex-
ity will be less than the O-level reinforcement agent as
long as |R| > |A|*/|Al, which is always true because
|R| 22 and [4] > 0. |

This theorem tells us that, in these cases, the 1-level
will have better models, on average, than the 0-level
agent. In fact, we can calculate the size of the hypoth-
esis space | H| for all the different types of knowledge, as
seen in Table 2. This table, along with Equation 2, can
be used to determine the sample complexity of learn-
ing the different types of knowledge for any agent that
uses any form of supervised or reinforcement learning.
In this way, we can compare two agents to determine
which one will have the more accurate models, on av-
erage. Please note that some of these complexities are
independent of the number of agents (n). We can do
this because we assume that all actions are seen by
all agents so an agent can build w — a models of all
other agents in parallel, and assume everyone else can
do the same. However, the actual computational costs
will increase linearly with each agent, since the agent
will need to maintain a separate model for each other
agent. The sample complexities rely on the assump-
tion that, between each action, there is enough time
for the agent to update its models.

A designer of an agent for a MAS can consult Ta-
ble 2 to determine how long his agent will take to learn
accurate models, given different combinations of imple-
mented versus learned knowledge, and supervised ver-
sus reinforcement learning algorithms. However, we
can further refine this table by noticing that if a de-
signer has, for example, K;(f:(w,@-;)) knowledge he
can actually apply this knowledge when building a 0-
level agent. The use of this knowledge will result in
a reduction in the size of the hypothesis space for the
0-level agent. ‘

The reduction can be accomplished by looking at
the K;(f:(w,d—-;)) knowledge and determining which
w — a; pairings are impossible and eliminating these
from the hypothesis space of the 0-level modeler. That
is, for all w € W and a; € A;, eliminate from the table
of all possible mappings all the w — a; mappings for
which:

1. There does not exist an @—; € X_.- such that
Ki(fi(w,@-;)) and fi(w,d-;) — a;, i.e. the action
a; is never taken in state w, regardless of what the
others do.

2. For all @_; € A_; it is true that K(fi(w,d_-;)) and
fi(w,8_;) — as, i.e. the agent takes the same action
a; in w no matter what the others do.

74

After their application, we are left with a new table
T; : W; — A; with |W;] < |W|, and each w € W; has
a set A} associated with it. We can then determine
that, if the new 0-level modeler uses supervised learn-
ing, the size of its hypothesis space will be [T, ¢, 147[-
While, if it uses reinforcement learning, its hypoth-
esis size will be |R;]'Tl. Table 3(a) summarizes the
size of the hypothesis spaces for learning the differ-
ent types of knowledge given that the designer uses
the K;(f:(w,@_;)) knowledge to reduce the hypothesis
spaces of other types of knowledge.

Similarly, if the designer also has the knowledge
KiK;(fij(w,d_;)), he creates a reduced table T; for
all other agents. The new hypothesis spaces will then
be given by Table 3(b).

For example, a designer for our example market
economy MAS can quickly realize that he knows what
price his agent should bid given the bids of all others
and the probabilities that the buyer will pick each bid.
That is, the designer has K;(f;(w,d@_;)) knowledge. He
also can determine that in a market economy he can
not implement a 0-level supervised learning agent be-
cause, even after the fact, it is impossible for a 0-level
to determine what it should have bid. Therefore, us-
ing Theorem 2, the designer will choose to implement a
1-level supervised learning agent and not a 0-level rein-
forcement learning agent. More complicated situations
would be dealt with in a similar way using Table 3.

Learning a moving target

The sample complexities we have been talking about
give us an idea of the time it would take for the learning
algorithm to learn a fized function. However, in a lot of
MASSs the function that the agents are trying to learn
is constantly changing, mostly because other agents
are also learning and changing their behaviors. Qur
results still apply because an agent that takes longer
to learn a fixed function will also take longer to learn a
changing function, since this problem is broken down
to the problem of learning different fixed functions over
time. Still, we wish to know more about the relative
effectiveness of learning algorithms with different sam-
ple complexities, when learning target functions that
change at different rates.

The first thing we need to do is to characterize the
rate at which the learning algorithm learns, and the
rate at which the target function changes. We do this
using a differential equation that tells us what the error
(as defined in Equation 1) of the model will be at time
t + 1 given the error at time ¢.

The learning algorithm is trying to learn the function
f, where f € H is merely one of the possible models
that the agent can have. If this function has an error
of 1 it means that none of its mappings is correct (i.e.
it takes the wrong action in every state). An agent
with such a function at time ¢, will observe the next
action and will definitely learn something since all its
mappings are incorrect. Its error at time ¢ + 1 will

Level | Knowledge Supervised | Reinforcement
_ Learning Learning
0-level | K;(f;(w)) AW R[&TTWT |
1-level | K;(fi(w,d-;)) [A [T TAi AT AT [An W R; [T TATTWT
KK (fij(w)) |4, |R; |45
2-level | K;(fi(w,d—;)) [A AT TA T AT A W R, AT ATV
KK(fi(w,d_j)) | |4;]141114i=1ll 45011 AnlIWE | R |lArl-1AalIW]
KiK; Ki(fiji(w)) |4 ™! |Ry | A=W

Table 2: Size of the hypothesis spaces | H| for learning the different sets of knowledge, depending on whether the agent uses
supervised or reinforcement learning. A; is the set of actions and R; is the set of rewards for agent i, n is the number of

agents, and W the set of possible world states.

Lvl T Knowledge (a) Supervised | (a) Reinforcement || (b) Superv. | (b) Reinf.
Learning Learning | Learning Learning

0 [Ki(fu(w)) oew: 147 |RT T Taew: 1471 | R:|™
1 K;(fi(w,a_:)) Known Known Known Known
K.K;(fi;(w)) |4;|"1 |R;|1AWH T T ew: 147 |R;|!T!

2 Ki(fi(w,a_;)) Known Known Known Known
K.'Kj(fij(w,a—j)) |Aj|'Al|"‘|A.i—1”AJ‘+1|"'|An”W| le [A1]--|4a|IW] Known ° Known
KiK; K (fijr(w)) | A" |RiflAslIWI |AL|™1 | |Ry|!A=lIWI

Table 3: Size of the hypothesis spaces | H| for learning the different types of knowledge. The (a) columns assume the designer
already has K;:(fi(w,@—:)) knowledge, while in (b) he also has K; K;(f:j(w)). If knowledge is known then |[H| = 0.

drop accordingly. But, as it learns more and more, the
probability that the next action it observes is not one
that it already knows keeps decreasing and, therefore,
its error at time ¢+ 1 keeps getting closer and closer to
its error at time t. We model this behavior by assuming
that the error e; of a learning algorithm ! at time ¢+ 1
is given by

e(t+1)=X-elft) 3)

where 0 <)\ < 1 is the slope of the learning curve.
) can be determined from the sample complexity and
the learning algorithm used. In general, it is safe to
say that bigger sample complexities will lead to bigger
X values. If A = 1 then the algorithm never learns
anything, if A = 0 it learns everything from just one
example. We have plotted such a function in Figure 1
for? X = .6.

In a similar way, the moving target will introduce an
error to the current model at each time. If the current
error is 1 then no amount of moving will make it bigger
(by definition). While, as the error gets closer to 0, the
moving target function is expected to introduce larger
errors. We can characterize the error function e,, for
the moving target M with the differential equation:

em(t+1)=v+ (1 —v)en(t) 4)

2In reality, we expect A to be much closer to 1. The
smaller number simply makes the picture more readable.

75

v is where the line intersects the x-axis and the slope
is (1 — v). We have also shown this curve in Figure 1,
for v = .1. It is easy to see that if v = 0 then the target
function is always fixed, while if v = 1 it is moving in
the worst possible way. We use v as a measure of the
velocity at which the target function moves away from
the learned model.

In Figure 1 we trace the successive errors for a model
given the two curves, assuming that the curves have
been defined using the same time scales. We see that
the error will converge to some point or, rather, a pair
of points. These points can be determined by combin-
ing Equation 3 and 4 into one error function.

e(t+1) = v+ A(1 —v)e(t) (5)
The solution such that e(t + 1) = e(t) is
Av
€min & m (6)
v
€max =V + emin(l - ‘U) = T-——_—A(T—T) (7)

Equation 6 gives us the minimum error that we ex-
pect given e; and e,,. It corresponds to the error right
after the agent has tried to learn the target function.
Equation 7 gives the error right after the target moves.
We now have the necessary math to examine the dif-
ferences in the learning and the moving target error
functions. Lets say we have two agents with different
sample complexities and, therefore, different learning

1
Learning - y
Nloving Target - /."',.
0.8 i
T
-
- ",/
¥ oo =
) T
B ~1
: ,,-’/ A=.8
¢ 0.4 cal
: A
£ -
) =.L
0.2 ¥ =2
. o
0 s N 2
0 0.2 0.4 0.6 0.8 1

error at time ¢

Figure 1: Plot of the errors for the Learning function e
and the Moving Target function e, for A = .6, and v = .1.

0.6 v
Al =.1 _—
E
=3 -
0.5 AX= .4 —
AX =15 -

Ae

Figure 2: Difference in the error of an agent with high
sample complexity (A + A)) minus one with low sample
complexity ()), as given by Equation 8, plotted as a func-
tion of v.

rates A and A+ A\. Using Equation 7 we can calculate
the difference in their expected maximum errors.

. v v
Ae=Tnrani-9 1-xi-u O

This is a rather complicated equation so we have
plotted it in Figure 2 for different values of AX and A =
4. We notice that, for small values of v, Ae increases
linearly as a function of v, but it quickly reaches a
maximum and starts to decrease. This means that the
difference in the maximum expected error between the
agent with the lower sample complexity (i.e. smaller
A), and the one with higher sample complexity, will
increase as a function of v for small values of v, and
will decrease for bigger values. Still, we notice that Ae
is always a positive value, and is only 0 for v = 0 and
v = 1, an unlikely situation.

Theorem 38 The advantages of agents” with lower
sample complezities will be more evident in moderately

76

dynamic/changing systems.

Proof Equation 8 shows that Ae > 0 for all legal
values of A), given our assumptions about the learning
and moving target error functions. Note that, even
thought the lower sample complexities always lead to
smaller errors, only for the smaller values of v do we
find a correlation between increased v and increased
difference in error Ae. |

This theorem leads us to look for metrics (e.g. price
volatility in a market system) that can be used to de-
termine how fast the system changes (i.e. the v) and,
in turn, how much better the models of the agents
with smaller sample complexity will be. For exam-
ple, the designer of a 1-level agent in a market system
might, after some time has passed, notice that the price
volatility in the system is close to zero. He should then,
using Theorem 3, consider making his agent a 0-level
modeler.

Discussion

We presented a framework for structuring the knowl-
edge of an agent learning about agents, and then deter-
mined the complexities of learning the different types
of knowledge, and the advantages of having lower com-
plexity in a MAS where the other agents are also learn-
ing. These results can be used by a designer of such
an agent to help decide which knowledge should be
put into the agent and which one learned. Our analy-
sis also takes a first step into trying to elucidate some
of the emergent phenomena we might expect in these
types of MAS, e.g. the results predicted by Theorem 3
were previously observed in a MAS implementation by
(Vidal & Durfee 1996), and are reminiscent of similar
results in (Hiibler & Pines 1994).

References

Axelrod, R. 1996. The evolution of strategies in the iter-
ated prisoner’s dilemma. Cambridge University Press.
Fagin, R.; Halpern, J. Y.; Moses, Y.; and Vardi, M. Y.
1995. Reasoning About Knowledge. MIT Press.

Hiibler, A., and Pines, D. 1994. Complezity: Methaphors,
Models and Reality. Addison Wesley. chapter Predic-
tion and Adaptation in an Evolving Chaotic Environment,
343-379.

Sen, S., ed. 1996. Working Notes for the AAAI Sympo-
stum on Adaptation, Co-evolution and Learning in Multi-
agent Systems.

Shoham, Y., and Tennenholtz, M. 1992. Emergent con-
ventions in multi-agent systems. In Proceedings of Knowl-
edge Representation.

Tambe, M., and Rosenbloom, P. S. 1996. Agent tracking
in real-time dynamic environments. In Intelligent Agents
Volume I1.

Vidal, J. M., and Durfee, E. H. 1996. The impact of nested
agent models in an information economy. In Proceedings
of the Second International Conference on Multi-Agent
Systems. http://ai.eecs.umich.edu/people/jmvidal/
papers/amumdl/. :

