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Abstract

We believe that by the time of the workshop Deep
Blue will have lost another match to Garry Kas-
parov, showing little improvement over the pre-
vious one. But even if it is indeed a “new kind
of intelligence”, it can be argued that this intel-
ligence is very basic. There is a long way to go
until Deep Blue could be considered a fully au-
tonomous agent, the type we are eagerly trying to
build in Al and that we believe we will eventually
be successful at.

We should not consider Deep Blue (or any soft-
ware agent) fully autonomous until it can manage
its own computational resources (memory and
time), minimize risk and cost of various decisions,
assess its errors and develop new representations
of (chess) knowledge, and be able to cooperate
and communicate with other computer and hu-
man chess players.

We feel indeed that Deep Blue falls somewhere
non-trivial on the scale of intelligence. But to
move further along that scale greater autonomy
will be required: Is Deep Blue now selecting its
own openings, deciding when and whether to play
for a draw, etc? Does it generalize from its past
experiences, annotate its own games etc.? Does it
know that is has played the agent “GKasparov”
before? That the match will last 6 games (like
last time) etc. Can it apply the information or
decision theoretic model on which it is choosing
its moves to other operations management and
control situations? Does Deep Blue know that
one mistake against the World Champion could
be fatal? Does it know that bishops can only
reach one color square? Does it contain a declar-
ative representation of the rules of chess?

The Next Generation of Chess
Computers

While we readily acknowledge that the brute force
approaches have clearly and significantly outshined
the more knowledge-oriented approaches, we feel that
down the road, advances will need to be made to inte-
grate chess computers with modern Al, and the coming
hi-tech information technologies. Although computer

chess has advanced significantly in recent years many
issues have barely been touched on:

e Current computer chess systems typically do not
manage their own computational resources (time
and space) well. Resources are either allocated and
coordinated by hand, or the problem is-largely ig-
nored.

e The economic aspects of computational resources
and information in terms of utility, risk, and cost
are not appreciated and hence have been under-
exploited.

¢ Potential synergy among multiple statistical mod-
ules needs to be considered. The potential of a com-
bination of both shared and adaptive chess analysis
and learning has not been adequately examined.

¢ Knowledge recoding and compression is not consid-
ered since it is not required to play a game of chess
itself - it is required, however, in order to operate
in the world of chess information, analysis and lit-
erature. Will Deep Blue ever write “My System
II”? Within any given chess program, even if some
learning is employed, progress beyond a particular
representation scheme is limited. Representational
rigidity prevents automated generalization from pre-
viously represented positions and games to new but
structurally related situations.

o The full expressive power of graphs, structural rela-
tions, and their use in analogical reasoning is not
employed (due to presumed intractability). This
cripples the mathematical power of an evolutionary
chess program.

Resource thriftiness, shared data analysis and learn-
ing, representation change, and maintenance of varying
expressivity are fundamental tasks required for creat-
ing fully autonomous and communicating chess agents.
A data analysis and representation learning process
will need to occur at progressively deeper levels of
structural relationship.

To allocate resources (features or subevaluations)
successfully, chess analysis methods should categorize
or approximate the worth and reliability as they are en-
countered. Not only must they learn the characteristics



of individual resources, but also what it is reliably pos-
sible to accomplish when using them in concert. They
should also examine and predict the combined efficacy
of the resources at their disposal, and choose an anal-
ysis strategy based on this prediction and the accept-
able level of risk. Externally provided or internally de-
veloped analysis tools should be selectively employed
according to their demonstrated effectiveness in rec-
ognized contexts, and supplied with appropriate levels
of computational resources. This is superior to using
any single tool alone, using all tools, or using the right
tool but using too much or too little of the available
resources to meet the desired level of accuracy.

Meta-reasoning may be described literally as “rea-
soning about reasoning” (Russell & Wefald 1991).
When meta-reasoning is applied to an underlying
analytical procedure, the behavior of the procedure
may be modified according to outcome of the meta-
reasoning process. The objective when performing
meta-reasoning is typically to improve the efficiency
with which the underlying analytical procedure makes
use of computational resources to achieve a set goal.
Ideally, the additional resources invested in meta-
reasoning will be outweighed by the resources that are
saved in execution of the underlying procedure. If the
same goal is achieved at a lower cost (or a better goal
achieved at the same cost), the meta-reasoning may be
called successful. Meta reasoning may even occur re-
cursively, when reasoning occurs about whether or not
to perform meta-reasoning.

We believe that is possible that a new generation
of chess tools will be developed that operate syner-
gistically with other tools to provide cost-efficient and
reliable analysis for chess and have the capabilities to
in addition support real-world decision making. As
such systems develop, the research community should
obtain an even better understanding of the effective-
ness of Meta-Reasoning, coupled with analogical and
structural representation, as an organizing principle for
already powerful statistical methods.

In short, if formulated properly, the same decision-
theoretic, information-theoretic and economic consid-
erations that lead to strong computer chess, can be ap-
plied to other domains as well, provided that these con-
siderations are raised to a level in which they are made
explicit (and modifiable) in a program’s design rather
than buried tmplicitly in a chess evaluation function
and a search strategy. Given the increasing speed of
computers this additional meta-level of interpretation
should become feasible.

Characteristics of an Ideal Agent

We find it useful to define the goal of Al research to be
to build in software (mainly) the “best” complex adap-
tive system(Gell-Mann 1994) possible from a systems-
theoretic perspective. Here we go over 10 characteris-
tics of complex systems as outlined by Kauffmann and
determine what it might mean for a chess computer

while playing chess and a more general Al agent to
have these characteristics. Each of these characteris-
tics brings the system closer to the goal of autonomy ,
perhaps the key characteristic of intelligence.

Self-Stabilizing
Complex systems can keep themselves stable i.e. not
break, or have performance diminish in a wide variety
of circumstances. Deep Blue may have these charac-
teristics with respect to chess positions (although there
are probably some artificial endgame composition type
positions in which it may not have a clue how to pro-
ceed) but as it is currently confined to playing chess
and has limited sensory apparatus it would be at a
loss in almost any other setting. Even playing a vari-
ant of chess without reprogramming, may be enough
to induce weak performance.

Future Al systems will require detailed pattern
recognition and sophisticated input systems to main-
tain stability in a wide range of environments.

Goal-seeking

The actions of complex systems appear purposeful.
Certainly, in the chess arena Deep Blue exhibits pur-
poseful behavior probably to a greater degree than any
other chess computer, thus leading Garry Kasparov to
call it a new kind of “intelligence”. But can it play
variants of chess with other objectives? Can it explain
its activities in terms of subgoals? For example, “I am
doing this to stabilize the king side, before I try to
open lines on the queen side”. More importantly, can
it determine for itself its own goals and work towards
them? Probably not. In fact, it is likely that Deep Blue
did not select its own opening moves for the match or
even whether to play for a win or a draw.

Program-Following

Complex systems can follow a sequence of instructions,
even those involving branching based on conditionals.
If Deep Blue’s deep combinatorial search can not be
construed as program following, we do not know what
could have this property! On the other hand, Deep
Blue currently does not have the ability to execute
(without thinking) specific chess sequences such as the
Bxh7 sacrifice, followed by Ngb, Qh5 etc. such compi-
lation and execution of plans (higher order sequences
of moves) are necessary for efliciency in calculations.
For example, a human master can directly plan a path
(and visualize it taken) for its king in the endgame and
ignore countless other possibilities. Also, as Deep Blue
probably uses only a few different evaluation functions
and search strategies for an entire game of chess it may
be missing opportunities to adapt to (i.e branch) spe-
cific themes on the board.

Self-Reprogramming

“A mouse may go down a lot of blind alleys while
searching for cheese in a maze; after several trials, how-



ever, it will modify its search program and go directly
for the cheese with few wrong turns” (Draper L. Kauff-
man 1980). Perhaps, the biggest disappointment of
current chess computers is that they generally do not
learn from their experiences. Some forms of rote learn-
ing now are being used (Scherzer, Scherzer, & Tjaden
1990), but on the whole, hundreds and thousands of
hours of computation are being wasted by chess com-
puters not caching and memoizing the results of their
searches for future games. Every strong player knows
a certain set of tactical motifs and combinations that
recur frequently on the chess board. Unfortunately,
chess computers are faced with discovering these mo-
tifs fresh when they sit down to each move.

During the match it is likely that whatever improve-
ment or learning Deep Blue showed during the match
was due to reprogramming or parameter changing in-
stigated by the programmers rather than the machine
itself. Since the team’s understanding of chess is cer-
tainly weaker than the World Champion’s we doubt
such adjustments did much good, if at all. However,
the machine, due to its computational power and ac-
curacy, has the potential to achieve a level of chess
understanding far exceeding that of humans, provided
it 18 given a mechanism for compiling, summarizing
and reusing lessons gained from experience.

Anticipation

“If you ring a bell one minute before each time you feed
your dog, the dog will learn to associate the two. Soon,
it will start to salivate—, that is, its mouth will literally
start to water - whenever it hears the bell, even if there
is no food around.” (Draper L. Kauffman 1980). Deep
Blue’s “salivation ability” is currently only as good as
the depth of its search, and the evaluation function
and patterns that its programmers have presupplied
it with. Without the ability to generalize and exploit
patterns across positions, the machine’s anticipation
capabilities will never be stronger than they are right
now (i.e. unless the programmers change the software
or hardware).

This lack of accurate anticipation in certain circum-
stances is clearly Deep Blue’s biggest weakness when
compared to humans. Murray Campbell, one of DB’s
programmers, states: “ Computers do not become
tired or distracted. There is no psychology at work.
If Deep Blue makes an error at all, it will only become
clear later on in the game. This statement should be
probably be modified to “it will only become clear to
it later on the game” - a professional grandmaster can
often recognize moves that create lasting weaknesses
as they occur.

Environment Modifying

Deep Blue does not “modify its environment” — ex-
cepting of course for its position on a chess board. The
day is probably still in the future where we will let ma-
chines have total responsibility for modifying their own

physical environments. But steps can be taken in that
direction. By using Metareasoning and learning from
its past experience a machine should be able to allocate
and request or trade for the resources it requires to do
a given computation. How much control does Deep
Blue currently have of the time it is using on its chess
clock or on the size of its various caches or the depths
of its search? Whatever assumptions have been made
in implementing such changes should be made explicit.
The economical and utility-based theory that a system
is using to manage its own resources should be readily
available. Currently too many AI agents have these
most important details buried deeply in their code.

Perhaps Deep Blue should be given more responsibil-
ity for determining the utility of those people working
on it and the training strategies adopted. Again these
decisions are possible given the proper implementation
of meta-reasoning.

Self-Replicating

Ideally, one would like AI agents and software of any
kind to have the ability to create copies of themselves
with improvements occurring in future generations,
much as evolution makes use of biological systems.
Ways in which software can be improved, while doing
exactly the same thing (or better) include:

e Compilation in faster code.
o Compression into less code.
e Compilation into more explainable/modifiable code.

As much of Deep Blue is fixed, being built out of
domain-specific hardware, it is difficult to imagine how -
such recompilations may be possible. But by making
the decision-theoretic and information assaumptions be-
hind Deep Blue declarative they then become available
for improvement through direct compilation into future
versions. Indeed , Deep Blue should be able to simul-
taneously simulate various versions of itself and then
evolve in the direction that appears most promising.
This is probably done to a certain extent as an evalu-
ation function is being tuned, but is not taking place
on a large scale in which we can say a “new strategic
entity has emerged...”.

Self-Maintaining and Repairing

Certainly, the Deep Blue team only wishes that the ma-
chine was self-maintaining and repairing! However, the
reality is that the machine does not contain a model of
itself, and, sadly, probably is unaware (in the sense that
it would make a difference) that it is playing “chess.”
There may be some redundancy built into Deep Blue,
but it is unlikely that, on its own, it will be able to
recover from a “bug” in its software - because it has
no notion of what it is to be accomplishing.

In the past, computer chess programmers have ex-
cused losses as due to one bug or another introduced
into the program. However, in the next generation as
we move to building more robust and reliable complex



Al agents such “excuses” should be (ahem) inexcus-
able.

On a much more concrete level, Deep Blue almost
certainly does not have a notion of redundancy applied
to chess positions - as in the value of overprotection
explained by Nimzowitch, and also probably does not
have a notion of “repairing” any given aspect of a chess
position.

Self-Reorganizing

As Al agents develop they will need to be able to make
increasingly effective use of the resources available to
them - including those they are already using. Part of
an Al agent’s responsibilities should include the envi-
sioning of new uses and connections involving its ex-
isting mechanisms. “Most of us have had the experi-
ence , for example, of having bits of information that
we’ve known for a while suddenly fit together to cre-
ate a new picture of a situation. ... as we get older
we are constantly rearranging our memories in more
efficient patterns and even reorganizing our own per-
sonality system” (Draper L. Kauffman 1980).

The ability to recode, compress and reformulate its
chess knowledge and experience would make Deep Blue
a feared agent indeed. It is possible that through math-
ematical analysis by a machine, as versed in num-
ber theory and combinatorial games as the best hu-
mans, that new insights into the actual structure of
the game itself could be discovered, exploited, and then
explained by the machine. This is the direction of ma-
chine expertise we must pursue.

Self-Programming

Does Deep Blue know C? Imagine the power of a deep
searching engine such as Deep Blue coupled with the
constructs of a programming language such as C. With
the ability to create and test myriads of subroutines
and possibly put them to its own use in creating further
ones there is no end to the creations of such an entity.
Given the right principles and sound metareasoning
framework in the original design I believe that such
evolution is not only possible but will one day lead to
a new label on computer processes, “DESIGNED BY
COMPUTER”.

A Simple Design of a Complex
Adaptive Al System

In this section we outline the design of a complex
adaptive system for chess-playing and other activi-
ties based on a decision-tree (hierarchy) of complex
adaptive agents that employ meta-reasoning to man-
age their resources.

There are well known algorithms (Langley 1996)
for converting from tabular representations (e.g. K-
Nearest Neighbor tables (Omohundro 1987)) to hierar-
chical representations. Decision Trees are graph struc-
tures which branch from a distinct root node. From

a starting node, such as the root, child nodes are con-
nected. All nodes of the structure may have only one
parent node, but may have many child nodes. No node
(with the possible exception of the root itself) is the
parent of the root node. This is what makes the root
distinct.

A decision tree is employed by beginning at the root
node and evaluating some logical functions. The out-
comes of these functions determines the child node to
which attention travels. As long as there are child
nodes to the current node, more predicates are eval-
uated, and attention branches to the designated child
node. Upon arriving at a “leaf” node from which there
are no further branches, a decision is returned.

The relatively compact structure and rapid access
time of decision trees make them an attractive format
for re-representing learned utility data. Also, useful
features and relationships may be easier to recognize in
tree format, assisting the learning agent in generating
more powerful representations.

There are variations on decision trees, such as regres-
sion trees that return continuous-valued results, rather
than discrete decisions. Another variation, which we
will employ here, is the interruptible or ” any-time” de-
cision tree, which maintains a default value at each
node rather than just having values at the leaves. Such
a tree may be traversed safely by an agent that has lim-
ited resources with which to perform the computation
of predicates at each node. At any time, should enough
resources not be available for the agent to perform the
computations, the default value at the current mode
will be returned. We regard the task of having each
node optimize the choice of its default value under re-
source constraints, to be non-trivial and an excellent
testbed for the design of advanced learning agents.

Structural Overview of a Functional
System of Agents

A hypothetical design begins by considering a “base
domain”, an analytical problem domain meeting a
small set of constraints, such as presenting finite lists
of action-options over a sequence of discrete turns,
and occasionally providing a continuous valued “per-
formance measure”. The domain may be simple or
as complex as chess. Consider any relatively simple
learning system, which employs raw, tabular forms of
data storage as well as a straightforward algorithm for
analysis. For our purposes, we will assume the use
of KNN lookup tables. This system is designated the
“base learner”. A “boundedly rational base learner”
follows the same design, but must complete calcula-
tions without consuming too much of restricted quan-
tities of computational resources. Several extensions to
this basic design are possible, We suggest examination
of a hierarchically structured system of reinforcement
learners. The speculative discussion below should pro-
vides the reader with a high-level overview of how we
see such a system operating.



The boundedly rational base learner may also in-
clude any-time decision trees as additional knowl-
edge sources. Both the trees and the tables are pro-
vided with limited computational resources for exe-
cuting their evaluations. The knowledge sources that
demonstrate themselves most able to provide statisti-
cally more predictive results and/or consume smaller
amounts of computational resources will be provided
with more resources for their development. This multi-
source learner’s performance in the base domain will be
improved by good performance in the “meta-domain”
of optimizing the resource allocation patterns of its
knowledge sources.

Because of the fairly loose restrictions on our choice
of base domain, it is possible to apply the same type of
multi-source learning system to the domain defined by
the resource usage optimization “micro-domain” Since
the agents which maintain the tree node values them-
selves use tables and trees, a second meta-domain may
be derived.

Based on the high level of generality of this sys-
tem, we expect to observation analogical mappings be-
tween successful patterns and structures developed in
the first meta-domain (derived from the management
of knowledge sources in some base-domain) and those
developed in the second meta-domain (derived from
the management of knowledge sources in the micro-
domain). The statistical detection (under resource
constraints) of such analogical regularities describes a
“macro-domain”. Once again, the domain fits the loose
requirements, allowing application of the same learn-
ing system, and the derivation of a third meta-domain.
Again, we expect to observe structures and patterns
that can be analogically related to those in the other
meta-domains.

In all three meta-domains described, learners must
cope with bounded rationality, which makes informa-
tion a commodity. We have shown above that the
ability to meta-reason about the relative supplies of
computation resources to the various sources can lead

to several abstract domains, which might at first ap- -

pear to lead to intractability or inefficiency. However,
the prospect that the successful strategies learned in
different meta-domains might be mapped analogically
from domain to domain offers hope for progress. Solv-
ing problems in one domain may solve problems in all
domains. Making advances in any part of the learn-
ing system may be translatable into improvement at
all levels of functioning.

Summary and Conclusions

It can be argued that problems in any of the meta-
domains cannot be solved without solving the problems
in all the domains at once. Here we outline how the
proposed design addresses six critical (and open) issues
in developing autonomous adaptive systems.

Resource Coordination: Self-management of
computational resources is the central theme in each

of the meta-domains. Success in any of the meta-
domains will improve accuracy and/or resource con-
sumption in the underlying domain

Economic Valuation: Underexploitation of de-
cision theoretic considerations is avoided by using
concepts such as the “gain ratio” (Russell & Norvig
1995) of a computation: the reduction in the entropy
of the return value function divided by a measure of
the resources expended. The generality of such infor-
mation theoretic heuristics allow them to be applied
at any level of a system.

Module Sharing: The development of the knowl-
edge sources, in any of the domains, need not be
performed with all sources in isolation. Interactions
between the sources may be both competitive and
cooperative within a single domain. The develop-
ment of functional interaction schemes improves the
efficiency of meta-reasoning in all domains.

Knowledge Compression: Representational
change must be built in from the lowest levels to
allow for efficient adaptation to novel domains. The
detection of predictive features in domain states and
the recoding of the domain representation to in-
clude these features improves the efficiency of all
further computations. When information and com-
putation become economic commodities, represen-
tational change is a capital investment upon which
economic growth depends.

Representational Flexibility: Just as represen-
tational features must be readily transmutable, en-
tire structures of representation must be open to re-
coding into alternative representations. Detection of
commonly occuring domain structure features makes
analogical mappings between the different domains
possible. It is for this reason that we view represen-
tational changes as fundamental processes underly-
ing advanced learning systems. Without it, informa-
tion products cannot be imported/exported between
domains.

Structural Reasoning: Logical relations can be
represented as sets of boolean functions. Boolean
functions can be represented as decision trees. Deci-
sion trees are graph structures. In turn, graph struc-
tures can be represented as logical relations specify-
ing the connections between nodes. Transformations
around this representational orbit can bring differ-
ent structures into common forms, allowing the de-
tection of regular structures.

Improvements in any of the meta-domains described
above should produce improvements in the perfor-
mance in each of the underlying domains. If the un-
derlying domain is the original (practical) base domain,
the improvement in performance will be direct. If the
underlying domain is the micro-domain of setting de-
fault values, the improvement will be in performance of
the any-time decision trees. If the underlying domain



is the macro-domain of detecting successful regularities
in the two other meta domains, the improvement will
be in the meta-reasoning process itself. All improve-
ments should eventually lead to improved performance
in the practical domain. In summary, excellent chess
play (the base domain) will, hopefully, arise out of a
deeper understanding of the economics and decision-
theoretic management of resources (including at vari-
ous meta-levels, rooks or kings in chess, learning data
structures, computational time and computer memory,
and other agents or subagents) and this knowledge will
be in a declarative form for future modification.

Ongoing work

Our research group is exploring a variety of projects
and themes that we hope point in the direction of
the next chess computers and advanced Al. Our rel-
evant papers on Computer Chess, meta-reasoning and
games (Levinson & Wilkinson 1997; Allen, Hamil-
ton, & Levinson 1996; Levinson 1996; 1992; Epstein
& Levinson 1993; Levinson 1989; Levinson & Snyder
1991; Levinson 1993; Levinson et al. 1991a; 1991b;
1992) are included in the list of references that foliows.

Final remark

Some readers may take this paper as negative criticism
of the Deep Blue project. This would be a mistake. We
have great respect for the wonderful engineering and
effort and resources that has created such a powerful
entity, and are grateful to IBM for carrying out the
project, but, in addition, we are also deeply aware of
how far Al can still go.
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