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Abstract

In this paper we argue that the recent Garry
Kasparov vs. Deep Blue matches are significant
for the field of artificial intelligence in several
ways, including providing an example of valuable
baseline benchmarl~s for more complex alterna-
tives to contrast and justify themselves. We will
also briefly summarize some of the latest develop-
ments on computer chess research and highlight
how our own work on a program called Chester
tries to build on those developments to provide
such justifications.

Introduction

Since "falling from grace" (DSg0) by the late 1980’s,
computer chess has recently received considerable at-
tention in the popular media due to the 1996 match
between IBM’s Deep Blue chess machine and Garry
Kasparov, the reigning World Champion. Further-
more, researchers of artificial intelligence seem to be
increasingly willing to cite Deep Blue as an example
of success (e.g. (SBD+96)). The topic of computer
chess, and game-playing in general, has also enjoyed a
considerable resurgence of significant and creative re-
search, particularly in the areas of search and machine
learning (as we shall discuss later).

In our view this reemergence of computer chess was
somewhat simply a matter of time -- requiring both
maturity of technologies and better appreciation by
AI researchers of the importance of empirical evalu-
ation of comparative performance on problems with
well-defined success criteria.

In this paper, we will argue that the Garry Kasparov
versus Deep Blue match ("GK vs DB") has great sig-
nificance to AI in several ways. We will directly avoid
philosophical questions such as whether DB is a "think-
ing machine" or how we might test such a proposition.
However, we will argue that the development of Deep
Blue represents a legitimate, and in some ways even a
role model, example of the future of AI research. We
will also summarize some recent developments in rele-
vant AI research areas, including our own.

Significance for AI

Appreciating the significance of GK vs DB for AI re-
quires assessing the significance of four distinct items:

1. the task of computer chess,

2. the solution instance represented by Deep Blue,

3. the matches between GK vs DB per se,

4. the closed-nature of Deep Blue development.

We explore these issues in turn below.

Significance of Computer Chess

Criticisms of computer chess that lead to its fall from
grace partly arose from growing pressure to fund and
conduct research that directly addressed "real world"
problems. Much early work was particularly vunera-
ble to such attack, due to the predominance of manual
crafting and tuning of search and evaluation functions
that seemed required for competitive performance. Re-
cent advances in software engineering, search, and ma-
chine learning technology promise to make these issues
less germane in the future.

More fundamental has been the failure to address
the issue of scaling-up. As Schank forcably argued in
(Schgl) a key distinction between AI and engineering
is that AI strives foremost for representations and al-
gorithms that scale-up gracefully with task complex-
ity. Recent success of predominately brute-force ap-
proaches such as Deep Blue seriously bring into ques-
tion whether chess is complex enough to require more
general AI techniques which scale-up. Indeed, many re-
searchers on game-playing have shifted to games such
as Go, whose sheer complexity seems certain to protect
it from brute-force ’approaches. Others have argued
for artificial generalizations, such as META-GAME
(Pe194), which would better justify the use of learn-
ing and sophisticated search.

Some argue that chess is simply not a rich and im-
portant enough problem to warrant significant atten-
tion. However, the visibility and attention of the GK
vs DB match demonstrates that chess performance re-
mains a valued and easy-to-grasp metric. Furthermore,
recent work on "rational search" (Bau92) highlights
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the fact that even though chess is a deterministic game,
the importance of reasoning with uncertainty, which
dominates many real-world tasks, arises even in chess.

Significance of Deep Blue

To evaluate the extent to which Deep Blue and other
computer chess work is "Ar’, it is useful to recall
that AI has several components, most notably: knowl-
edge representation schemes, search, and learning. The
best performing computer chess projects have often re-
quired significant manual knowledge encoding/tuning
per se, causing some doubt of thei.r being AI.

In contrast, the brute-force approach of Deep Blue
dearly focusses on the issue of search over knowledge.
However, Deep Blue’s contributions to our understand-
ing of this issue are debatable. For example, recent
work has shown that there appear to be significant di-
minishing returns in chess around ply 10 (JSB+), much
as that occuring at shallower plys for simpler games
such as checkers. Thus, it may be the case that con-
tinued work along Deep Blue’s brute force lines will of-
fer very little additional insight. Indeed, the designers
of Deep Blue have publically stated that for the up-
coming May 1997 rematch, the enhancements to Deep
Blue have focussed more on improved knowledge than
search per se. Whether such knowledge engineering
will be of the unscalable and chess-specific sorts that
made early chess work easier to dismiss or not remains
to be seen.

Significance of GK vs DB

In our view, the largest significance of Deep Blue is in
fact in the GK vs DB matches per se. The role and
utility of "competitions" in driving and evaluating AI
research seems to be getting increased acceptance in
recent years, in part due to the easier disemination of
data sets and domain knowledge via the advent of the
World Wide Web. For example, the Sante-Fe Institute
recently organized a successful competition to compare
techniques on blind time-series prediction tasks over
several data sets (WG94).

Of course, the history of computer chess is full of
competitions, most notably the ACM tournaments.
However, competition among relatively weak computer
programs, as should be expected, tends to overly-
reward short-term competitive advantages, such as
cooking opening books. Such tricks are of little use
against a flexible opponent such as Kasparov, particu-
larly given that he is well-versed in the weaknesses and
tendencies of existing computer chess programs.

It was thus of considerable interest when Kasparov
proclaimed in his TIME article after the 1996 match
that "I could feel -- I could smell -- a new kind of
intelligence across the table" (Kas96). His surprising
initial loss in Game 1, due to under-appreciating the ef-
fectiveness of Deep Blue’s search, and his final crushing
victory due to vastly superior positional play in Game

6 were dramatic contrasts in the current strengths and
weaknesses of human and computer approaches.

We believe that similar evaluations will play an in-
creasingly common role in future development of AI.
First, because it is a natural human curiousity to want
to compare machine and human approaches to achiev-
ing intelligent behavior. Second, because such com-
parisons can in fact provide useful scientific feedback.
Similar feedback during the development of medical
expert systems, for example, seems to have been a sig-
nificant influence in the development of approaches to
reasoning under uncertainty, such as Bayesian belief
networks, that are now popular and promising in AI
research.

Also, the importance of visibility can perhaps not be
underestimated. Indeed, much of the public before the
1996 GK vs DB match seemed to have believed that
computers had already "solved chess", or at least were
better than all humans. Anyone who wants assurance
that AI is still no match for human intelligence and
flexibility need look no further than Game 6.

In short, we view the current significance of Deep
Blue to be largely in providing some highly visible data
points to better understand how far largely brute-force
search can go in one historically-significant and com-
plex domain. We believe it extremely important that
such work continue to parallel that of more fundamen-
tM AI research. At the very core of the notion of intel-
ligence is the notion of speed of computation. Indeed,
typical IQ tests do not allow one to bring the test home
and work it out in leisure over the course of a year. In
this sense, better case studies into when specific styles
of search and shortcuts are sufficient for a domain at
hand are critically important.

Closed-Nature of Deep Blue Work

One criticism of Deep Blue has been that the specific
techniques and knowledge used have not been widely
reported, making it difficult to adequately assess what
is really being demonstrated during these matches. In
fact, to many, Deep Blue simply seems synonomous
with "the brute-force approach". Much of our knowl-
edge comes from early work on the predecessor, Deep
Thought (HACN90) (ACH90).

Furthermore, the number of published games of
Deep Blue is relatively very small. All such exam-
ples of under-reporting seem to be motivated at least
in part by the desire to keep a competitive edge over
Kasparov. It would be scientifically far more pleas-
ing for the Deep Blue team, for example, to have the
match-ready version of Deep Blue generate hundreds
or even thousands of games -- perhaps both from self-
play and against their chess consultant Grand Master
Joel Benjamin -- for Kasparov to have in preparation
before rematches. Similarly, Deep Blue could prepare
(with suitable machine learning) from the huge his-
toric database of Kasparov’s games. Presumably, Kas-
parov’s evaluation function and search techniques will
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not change as rapidly as Deep Blue’s might.
Perhaps if Deep Blue wins an entire match against

Kasparov, it might become more acceptable to allow
such preparations, leading to more significant evalu-
ation of in what ways the human mind may still be
superior in the domain of chess. Thus, we argue that
once (or if) a computer beats the world champion in 
match, perhaps the real science will begin in earnest,
although presumably with significantly less public in-
terest and drama.

Summary of Chess-Playing

Technologies

In light of the diminishing returns of brute-force search
in chess noted above, we have considerable doubts on
whether the brute-force style epitomized by Deep Blue
will actually suffice to prevail against Kasparov. In this
section we highlight a variety of other AI techniques
that offer great promise in the longer run.

Search

Perhaps due to the success of Deep Blue, many seem
to believe or to assume that parallel algorithms are the
prime future technology for computer chess. However,
in fact, within the last decade there have been a wide
variety of advances in research on game-tree search.

It is important to keep in mind that, due to the de-
sign requirements that the Deep Blue hardware places
on its search algorithms, it is not clear which of these
techniques could be easily incorporated into the Deep
Blue approach.

Some elegant advances, though relatively modest
performance-wise, have arisen from recent work by
Platt et al. Their MTD(f) procedure (pSPdB95)
(PSPdB96a) (Pla) essentially reformulates the 
plex best-first method of SSS* (Sto79) into an elegant
combination of zero-window alpha-beta searches and
extensive use of transposition (hash) tables. This work
has led to modest yet surprising speed improvements
for chess (15%) as well as significant clarity about
alpha-beta and SSS* variants in general.

Their work on Enhanced Transposition Cutoffs
(ETC) (PSPdB96b) takes advantage of the fact 
game "trees" are actually graphs. For example, they
explore heuristics to maximize reuse of transposition
table results, such as checking moves with transposi-
tion table entries first under certain conditions, since
those might lead to immediate cutoffs. They report
that these heuristics lead to searches with 25% fewer
nodes.

Less clear at this point, but potentially much more
powerful, are methods for selective tree growth. Re-
cent results (BM96) on approximate probabilistic vari-
ants of Berliner’s well-known B* algorithm, for exam-
ple, appear promising. B* involves search using in-
tervals to represent position values, instead of points.
Search continues until enough information is gathered

and propagated up the tree such that the low estimate
on the value of one move becomes higher than the high
estimate of all alternatives.

Since position evaluators generally only provide "re-
alistic" point estimates, B* uses null moves (GC90)
(and other heuristics) to generate optimistic and pes-
simistic values. To avoid the complexity of managing
full probabilistic distributions across these intervals,
they explored the use of probability distributions that
decay linearly from the realistic value to the optimistic
value. To handle instability of position evaluations,
they use alpha-beta to conduct shallow probe searches
(e.g. full 3-ply, plus tactical extensions).

Recently "rational search" methods have been pro-
posed for selective expansion based on Bayesian meth-
ods. This approach has been championed by Eric
Baum (Bau92) (Bau93) (BS96). These methods 
tempt to identify at each iteration some small set of
nodes whose expansion would be most informative,
based on detailed probabilistic distributions of the
evaluations of the current leaf nodes. Though gen-
eral and theoretically sound, use of these techniques is
incompatible with alpha-beta cutoffs. This approach
has not yet been demonstrated to be competitive with
alpha-beta variants in the domain of chess, but cer-
tainly some reasonable approximations may prove use-
ful in the future.

Korf and Chickering has proposed an alternative
selective search method called "best-first minimax
search" (KC94). Essentially, it always expands the leaf
of the current principal variation m i.e. the node which
determines the minmax value of the root. They argue
that it will not generally suffer from excessive explo-
ration of a single path because of the well-known os-
cillation of values that occurs during minimax search.

Best-first minimax search is relatively simple yet
beats fixed-depth alpha-beta search in the game of
Othello for comparable-sized trees, for medium depth
alpha-beta trees. However, deep fixed-depth alpha-
beta search beats it for comparable-sized trees. This
suggests that its best use might be as a relatively shal-
low probe search for method such as B*, although Korf
and Chickering did not discuss nor explore that option.

Another promising area is that of generalizing the
notion of a transposition table so that each entry con-
tains an equivalence class of positions instead of just
one. Ginsberg’s work on partition search (Gin96) has
developed this idea into the basis of a world-class
bridge program. Although he has not developed repre-
sentations for chess, he notes that this might provide
a more formal approach to the specialized though in-
triguing "method of analogies" (AVAD75).

Knowledge

Knowledge-engineering has long played a role in com-
petitive computer chess, particularly in the areas of
endgame table precompilation and manually crafted
opening books. Considerable effort typically goes into
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selecting features and weights for the evaluation func-
tion. The requirement of such initial overhead to de-
velop a competitive chess program has perhaps gone
a long way towards discouraging most AI researchers
from even attempting, and towards computer chess’s
fall from grace. With the advent of mature search and
machine learning techniques, it seems likely that this
will change in the near future -- particularly if the
Deep Blue approach falls short.

Learning

Recent advances in machine learning offer perhaps the
best hope for significant near-term advances in com-
puter chess. Recent surveys such as (Fur96) and Jay
Scott’s active web site at (Sco97) are good summaries
of a variety of approaches that have been proposed to
date. Unfortunately, most of these approaches have
not been within the context of tuning a competitive-
level chess program, making their immediate impact
difficult to assess.

For example, there has been a fair amount of work
on learning chess evaluation functions, with the Neu-
roChess work (Thr95) being perhaps one of the most
interesting.

Fktrthermore, there has been some work in learning
search control heuristics for game-playing, although
the more successful ones seem particularly well-suited
for games with simplier features, such as Othello
(MM94).

It seems fair to say that machine learning to date
has not had nearly the impact on computer chess that
it could. It seems logical to expect that this situation
will change as the impact of diminishing returns in
chess search is better understood -- particularly when
research chess programs mature to the level that such
walls are routinely hit.

Summary of Our Chester Program

In this section we briefly summarize our own research
on computer chess. Our search engine uses a variant
of B* to conduct high-level selective search, MTD(f)
to conduct the relatively shallow low-level probes, and
extremely fast move generation and transposition ta-
ble routines, so as to reach a competitive level re-
quired for meaningful evaluation. We call this program
Chester (Chess Terminator), which reflects our serious
but perhaps naive ambitions. The main novelty of our
approach is our means of attempting to learn good
interval-valued evaluation functions, suitable for B*,
as opposed .to relying on heuristics such as null-moves
to generate the bounds.

The emphasis of our research is on using chess as
a domain to help test the generality of our machine
learning techniques being developed for real world
tasks such as monitoring the NASA Space Shuttle.
(DeC97a) In reality, though, the causality of this line
of research is not straightforward, since our ideas for

learning functions suitable for monitoring tasks were
in fact inspired by ideas from B* search.

We believe and hope that such tight synergy between
chess and "real world" domains might make serious re-
search on chess more easily justifiable and even encour-
aged. In the spirit of this workshop, we wish to stress
that one of the significances of the GK vs DB matches
is the simple fact that there is renewed interested in
computer chess and thus it could become a useful fo-
rum through which to educate the public about what
AI is about as a whole. This gives added urgency to de-
velop more learning-intensive alternatives to the Deep
Blue approach, so that we are better able compare and
contrast over spectra of approaches, rather than just
the human against machine theme per se.

Detailed discussion of our techniques are beyond the
scope of this paper. However, we wish to outline our
basic ideas here. In our monitoring work, we have
developed an approach called Envelope Learning and
Monitoring using Error Relaxation (ELMER), which
essentially learns high and low limit functions for each
sensor, based on historic spacecraft data (DEC96).

Our techniques involve regression using asymmetric
cost functions (DeC97b), similarly to the 0-1 loss func-
tions common in classification tasks. However, the key
difference is that our cost function is parametric and
we search over those parameters and select the settings
which give the best fit on cross-validation data.

In this way, we are able to learn envelopes which
do not necessarily suffer from classic problems such
as variance underestimation (BQ97). In fact, our ap-
proach is specifically designed to address cases which
are not handled well by the typical approach of learning
confidence intervals by first estimating means and then
estimating input-conditional variances (e.g. (NW95),
(Bis95)). Thus, we can offer better assurance that 
bound estimates are not too tight, as required both for
B* position evaluations and for spacecraft sensor limits
for automated monitoring with few false alarms.

A simple example which illustrates the usefulness
of our approach is the task of learning high and
low bounds on the complexity of example run times
of an algorithm such as quicksort, given as input
only the size N of each data set that was sorted.
Consider that we wish to use linear regression (for
speed and for understandable results) and use the fol-
lowing reasonable set of features for all such tasks:
IgN, N, NlgN, N2, N3, 2N. With the high and low
bounds of quicksort actually being (O(N2) and O(N lg
N) respectively, it turns out to be difficult to capture
these bounds using standard mean plus/minus stan-
dard deviation approaches. Essentially, the problem
is that there are critical missing inputs (namely, the
"sortedness" of each data set to be sorted).

We believe that such an approach is likely to prove
useful for learning high and low bounds for chess posi-
tion evaluation functions suitable for B* style selective
search. However, we stress that we have not yet had
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time to try to develop convincing results to support
this conjecture. Furthermore, we suspect that good
context-sensitive evaluators are likely to require good
feature construction techniques, such as the greedy in-
troduction of products that we are currently experi-
menting with in our spacecraft domains (SSM92).
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