
Modularity Assumptions in Situated Agency

Amol Dattatraya Mali
Dept. of computer science and engg.

Arizona state university
Tempe, AZ 85287-5406

e-marl: mali@tahoma.eas.asu.edu

Amitabha Mukerjee
Center for Robotics,

I.I.T. Kanpur, India 208016,
e-maih amit@iitk.ernet.in

Abstract

This research focuses on a specific class of agents called
"situated agents", which use minimal communication
and rely mostly on changes in the environment as their
cue for action. Some early successes of this model,
especially in robotics, have led to an intense debate
over this class of models as a whole. One of the is-
sues on which attention has been drawn is that of
conflicts between such agents. In this work we in-
vestigate a cyclic conflict that results in infinite loop-
ing between agents and has a severe debilitating effect
on performance. We present some new results in the
debate, and compare this problem with similar cyclic-
ity observed in planning systems, meta-level planners,
distributed agent models and hybrid situated models.
Some of our results are - 1. The probability of such
cycles developing increases as the situated agents be-
come more useful (phase transition). 2. Control meth-
ods for avoiding cycles such as prioritization are unre-
liable. 3. Behavior refinement methods that reliably
avoid these conflicts (either by refining the stimulus,
or by weakening the action) lead to weaker function-
ality. 4. Conflicts place a bound on the power of
new behavior that can be added to a situated system.
We use these and some other results to examine the
assumption of modularity in situated agents. Viewing
chess playing as a situated activity, we discuss how our
results hold relevance to the design of chess players.

1 Introduction
Artificial Intelligence paradigms today are moving to-
wards a more distributed agent-based architecture.
The charter for AI in the twenty-first century is to
build such agents for use in simulation, human assis-
tance, robot interaction etc. From web browsers to
intelligent houses to devices that "learn about differ-
ent users’ behavior", agents are rapidly moving into di-
verse types of applications. These agents can be many
modules of a single system e.g. a robot or simula-
tion system, or may be many agents themselves e.g. a
group of robots. They may be in hardware devices or
as softbots i.e software modules. However, all agent
systems attempt to reduce or eliminate the centralized

shared memory, relying instead on parameter passing
and communication between individual agents.

Many traditional AI practitioners are however, wor-
ried about reliability. How does one ensure that such
a system of independent modules, each performing its
own task, can deliver the appropriate overall function-
ality? In particular, how does one analyze the con-
flicts and interactions between such agents? One of
the problems well known in agent systems is that of
resource or goal conflicts. In this work we look at an-
other type of conflict which arises due to the tempo-
ral chaining of agent actions. Say an action of agent
A triggers agent B. Agent B’s action may trigger C,
which, unfortunately may trigger A again. This results
in an unending chain, which we call a cyclic conflict.
These are difficult to foresee during agent design. In
this work we investigate this type of conflict and pro-
pose some mechanisms which may be used to handle
it. We also propose some performance measures and
show how these cycle removal procedures result in a
cost to the performance.

The paper is organized as follows - In section 2, we
discuss the achievements of situated agency and in-
stances of cyclic conflicts reported. In section 3, we
develop a formal model of situated systems and use it
to prove our results in sections 5 and 6. In section 4, a
classification of behavior conflicts is provided and the
role of prioritization in eliminating cycles is discussed.
In section 5, we discuss our behavior refinement mech-
anisms for reliably eliminating cycles and prove our
results on effects of behavior refinements. In section 6,
our results on modularity are discussed. In section 7,
we discuss the implications of our conclusions for situ-
ated agency, chess players and distributed AI. Section
8 presents our conclusions.

2 Situated Agents
There are many different systems operating under the
rubric of "agent" today. One way of looking at these
is to consider the degree of autonomy of each agent (to
what extent are its decisions effected by other agents

37

From: AAAI Technical Report WS-97-04. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved. 



or boss agents), and the degree of situatedness (to what
extent the actions are a result of direct environmental
interaction vs planned or deliberative actions).

In this work we will first build a temporal model
for situated systems that will follow the temporal se-
quencing of the actions. Next we will investigate the
issue of cycles in such temporal chains, and identify
some techniques for avoiding such cycles in practice.
Finally, we shall show that there is a tradeoff between
the possibility of such conflicts arising and the amount
of global memory (e.g. history of recent actions) that
is maintained.

Situated systems became popular in robotics with
the work of Brooks[4], who challenged the deliberative
paradigrn in AI by building stimulus-response based
robots, also known as behavior-based robots. A typi-
cal situated robot is a collection of several independent
task-achieving modules, with a simple distributed con-
trol mechanism. Each behavior mediates directly with
the external world and is in a parallel control structure,
as opposed to the traditional serial structure where in-
teraction with the world is processed serially through
sensors, reasoners, planners, actuators, etc.

Within this basic structure, a number of models have
evolved using the stimulus-response paradigm. One
great advantage is the ease of modeling and debugging
each behavior module at its own task, (e.g. "avoid-
obstacles") as opposed to the larger and more inte-
grated centralized controllers. Each module is fully
debugged before other modules are added, with suit-
able inhibitive interconnections where conflicting. Im-
pressive results have been achieved using this strategy
in a can collection robot [5], navigation of mobile robot
[2], a prototype airplane controller [7]. That the sit-
uated model has had a deep impression on Artificial
Intelligence is clear from the fact that several journal
issues have recently been devoted to debating this ap-
proach (Artificial Intelligence v.47, 1991, Robotics 
Autonomous Systems, v.6:l, 1990, Cognitive Science
v.17, 1993, Artificial Intelligence v.73 1995).

In the debate on situated models, traditional AI re-
searchers have argued that control cannot serve as a
complete substitute for representation [8]. Others have
attacked the parallel psychological model of situated
action, showing that the situated models were actually
symbol systems, or that they required significant inter-
nal representations which were, or could be represented
using, symbolic systems [14].

Despite this broad debate, no metrics have been
proposed for comparing the overall functionality of
different situated agent systems. Another aspect -
the "modularity" claim that other modules can be
added to them "later" - has gone largely uninvesti-

gated, though a number of skeptics have challenged
this claim. For example, questions of implementation
such as choosing an order in which to add or debug
behavior modules have not been answered. These are
some of the shortcomings that are addressed in the
current work.

Our primary objective here is to analyze temporal
cycles in situated systems and examine the promises
made by modularity. An instance of such a cycle is
recorded by Connell where a can collecting robot at-
tempts to re-pick the can it has just deposited. This
conflict was detected only after a full implementation
[5]. Cyclical wandering and cyclic conflict of going back
and forth between two obstacles is widely experienced
in robotic systems, as in [1]. Cyclic behavior in multi-
robot system for box pushing has been reported in [9].
Such cycles are potentially very costly in real systems.
Even when they are detected, it is not clear how to fix
these "bugs". These are some of the questions we set
out to answer.

The temporal structure of situated behaviors is often
sequential since one behavior usually provides the stim-
ulus for another, so that the behaviors are executed in
sequence. We show that cycles occurring in this tempo-
ral sequence can be eliminated with certainty only by
modifying the behaviors, either specializing the stimu-
lus or restricting the action of a behavior.

3 Evaluation Metrics
We consider a system of agents in this work. All
changes to the world are caused by the action of one of
these agents, which are interchangeably called behav-
iors. Nobody changes the world except these agents.
The essential notion of a behavior is a mapping from
a stimulus to a consequence. We model a behavior by
a 3-tuple: stimulus, action, consequence, thus behav-
ior/~i is denoted by < si, a~,c~ >. In the examples
and proofs that follow, the stimulus s and the con-
sequence c are defined using First Order predicates
as in Brooks’ subsumption architecture. This leads
to a structure much like the standard situation calcu-
lus models. In the notation in 3.1, the operator : in
(f~l : /~2) means that the module f~l precedes module
f~2 and this happens iff there exist time instants 81,
{?2, {?3, {71 <~ {?2 <~ {73 such that at {71, ~I is in execu-
tion but ~2 is not and at {?2, )~1 and ~2 are both being
executed and at {?3,/32 is executed but/~i is not.

3.1 Behavior Chain
We define a behavior chain and the corresponding task
as follows. ¯ Behavior Chain: a temporal sequence
of behavior modules (~i : /~2 : f~3 : ... : /~n}. Here
the action of the earlier module changes the situation
in such a way that the newly changed part of the situ-
ation is in turn a stimulus for the next module in the

38



sequence. Behaviors can be chained together to gen-
erate action-streams such as trajectories for a robot,
question sequences in coaching, etc.
¯ Task: A task is defined as a transition from an initial
state of the world to a new state, achieved through a
temporal chain of behaviors. Note that the chain of
behaviors by itself is executable only when the world
is in certain configurations. However to perform the
task from these configurations, this chain of behaviors
would need to be executed.

In particular we are interested in defining a measure
of the number of tasks that are potentially executable.
These correspond to all possible temporal chains of be-
haviors. Where this is achieved by executing behaviors
in a temporal sequence, tasks can be enumerated by
the total number of chain fragments that are possible.
Thus the chain {~I :/~2 : ~3} represents a task that is
different from (/~1 :/~2).

At this point, we need to address an issue relating
to all situation calculus models: the finiteness of the
universe. Typically, the set of predicates required for
any set of behaviors is finite. Of this set, only a few
will be affected by the actions in a behavior chain; the
rest constitute the universe, which in the rest of this
discourse, is considered to be a finite set of entities U.
When we write (c4 =~ s~÷l), c~ contains the entire finite
universe U. For compactness in the explicit statements
below, we do not list all predicates from U and limit
ourselves to those whose change affects the firing of
various stimuli in the chain.

What we mean by the finite universal state can be
clarified by an example. Let the state of the Universe
beX A YAZands2=XAA. Let us say that the

execution of/~l makes A true. However cl is assumed
to contain X which is a part of the universe. Then

/~1 leads to/~2 and (cl =~ s2). Thus when we say that
{/~1 :/~2} we mean that a part of s2 was true in the Uni-
verse and execution of/~1 causes the rest of s2 to come
true. This is another version of the frame problem,
which arises in any model of such temporal sequenc-
ing, such as the add and delete list model used widely
in planning and knowledge representation. Including
the state of the universe allows us, in finite domains,
to proceed with the core of our argument.

We define a behavior space B as a set of distinct be-
havior modules, (i.e. no two modules have the same
stimulus and consequence). A temporal chain of be-
haviors C is said to be composable from B (written as
C<~B), if the elements of C are also elements of B.

3.2 Power, Usefulness, and Modularity of Be-
haviors
To compare different behavior systems, we define some
metrics that relate to the effectiveness of a behavior

system to deliver the desired level of functionality. In-
tuitively, it is desirable that a behavior be capable
of being used in a wider range of situations, without
weakening the effect of the action. This is captured in
the < stimulus, response > formalism by the notion
of power defined next.

¯ Power: A behavior (/~ := <s, a, c>) is more
powerful than (fl’ := <s’, a’, d>) iff (s’ =~ s) A (c 
d). In other words, it can be triggered at least as
frequently as a less powerful behavior and results in a
state that subsumes the older one. A behavior space B
is more powerful than the behavior space B~ if Be can
be obtained from B by replacing some module/~ E B
by less powerful module ft.

The following metric attempts to evaluate an answer
to the question - how economical is the behavior space?
(similar terminology has been defined in [10])

¯ Span: Behavior space B spans task space r if and
only if {V(t e r) (3(C <3 B)fulfills(C, t)).

¯ Greatest Potential Task Space rc,(B): Is the
set of all tasks that can be solved by behaviors in B, i.e.
the largest task space that is spanned by the behavior
space B.

¯ Usefulness : The ratio roJ~_~.

¯ Flexibility: A behavior space B is at
least as flexible as behavior space Be if (Vt 
(re(B) N rc,(B’))B(C <~ B){fulfills(C,t) A V(ce <3
B’){ful/iUs(Ce, t) I<1 CeI}} }. Thi s means
that B can fulfill tasks with shorter chains (which can
be composed from fewer behaviors).

¯ Modularity : A behavior space is more modular
if the different modules in that space are more inde-
pendent, in the sense of minimal interference between
modules. One measure of interference in a behavior
space is the incidence of cyclic behavior. We therefore
define the modularity of behavior space B as the in-
verse of the likelihood that cyclic conflicts will arise in
the given behavior space B.

4 Temporal Cycles
In the broad sense of the word conflict, any behavior
chain leading to non-fulfillment of the desired objec-
tives can be said to contain a conflict. Let a chain C
= {/~1 : /~ : ... :/~n} be the behavior sequence that
achieves a desirable outcome. There are three types
of conflicts that can cause the chain C from not being
executed. In each case, some sequence/3i :/~i+1 must

be broken. (a)Extraneous behavior Conflict: /~i
: if,/~’¢C. Here the conflict is with a module outside
the current chain; it can be inhibited. (b)Cyclic Con-
flict :/~i :/~k,/~k E C, k < i. This is the type of conflict
that we are focusing on. (c) Skipping Conflict : /~i
: /~k, /~ E C, k > (i+l). This type of conflict can 
treated in a manner analogous to extraneous behavior
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conflicts.
In this paper, we axe focusing on cyclic conflicts,

where, both /3~+i and/3k may be triggered and the
triggering of/3k would lead to a cycle (Figure I).

Figure 1. Cycle in a temporal chain of behaviors.

However, all cycles do not result in a conflict, e.g. there
may be repeated tasks, or even life-cycle-maintenance
tasks. Next we investigate the question of removing a
cyclic conflict after it is detected. One of the meth-
ods widely noted in natural behavior systems is that
of behavior inhibition, where one behavior inhibits an-
other from performing its normal task. The inhibitive
effect may or may not continue beyond the end of the
execution period of the inhibiting behavior. But this
mechanism does not necessarily kill the stimulus of/3k
and the cycle may still persist.

5 Behavior Refinement
Here our objective is to break the /3i : /3k link in
the cyclic conflict without disturbing the/~i :/3~+a or
/3~-x : /3k triggerings which are essential to the suc-
cessful execution of the chain. Thus we seek to modify
the behaviors such that (ci=~si+1) and (Ck-i =~sk) 
be maintained whereas (c/=~s~) would be negated. 
develop two methods for achieving this: in stimulus
specialization, sk is specialized, and in response gener-
alization, ci is generalized.

5.1 Stimulus Specialization
Let us consider the conflict in picking up the soda cans,
where the freshly deposited can is picked up. If we were
to add the condition "not-deposited-just-now ix) ’’ to
the stimulus predicate for pickup, then this might be
achieved. Here the stimulus for/3~ becomes more spe-
cialized. However, in doing this, one must be careful so
as not to disturb the rest of the chain, i.e. (ck-1 =~sk)
should still hold but (c~ =~sk) must be broken. Clearly
this will not be possible where (c/=~Ck-x), then any
changes we make in sk such that -, (ci =~ sk) will also
result in -, (ck-1 =~ Sk). Thus stimulus specialization
can be used only if (ci =~ Ck-1) is not true.

Conflict arises when, for k _< i:, (Ck-1 =~ sk) and
(ci =~ st+l), and (c~ =~ Sk).

In Stimulus Specialization, we seek to specialize Sk
s.t (c~ =~ s~) is not valid. If (c~ =~ ck-1) does not 
and we assume that the stimuli and consequences are
expressed in purely conjunctive form, then there must
be some literal p in ck-I which does not occur in ci.
ANDing s~ with p gives new s~ that is not implied by

5.2 Response Generalization
We can also break the cycle by generalizing c/to d so
that (c~ =~ d), but -, (d =~ c~). For example, we 
modify the action of the module drop so that while
dropping the can the robot crushes it so it is no longer
recognized as a can. The original consequence was (vis-
ible(z) A can(z) A graspable(z)) and the modifed con-
sequence is (visible(z) A 9raspable(z)). Otherwise, we
may modify the consequence by covering the can to
make visible(z) false, then this leads to addition of a
new behavior module or modifying the action part of
the original module, both of which require considerable
re-programming, and are expensive. In response gener-
alization, (c/=~ sk) must be negated, while (ci =~ s~+a 
must hold. Hence response generalization can be used
only when (Si+l =~ s~) does not hold.

5.3 Effects Of Behavior Refinement
Let us now investigate the effects of stimulus special-
ization and response generalization.

Lemma 1 (a). Whenever a behavior space B is mod-
ified to B~ to eliminate cyclic conflicts by specializ-
ing stimulus s of some behavior/3 E B to s~ so that

(s’ => s)A-~(s ::> s’), then ~ > 
Proof :- Let E be the stimulus space and s C E and s be
a stimulus that is a conjunction of its members. Now
let s be specialized to s~ so that s* C s. Now tasks or
subsequent behaviors fulfillable or triggerable in (s - ~)

(this difference corresponds to the states of the world
in which s holds but s* does not) will no longer be so.
Thus we need a new behavior/3" for some s" C_ s, such
that (s" U *) =s,so that /3 *and/3" together serve
the stimulus set s which implies that I B [ increases
and the usefulness of B decreases. If the new behav-
ior is not added, the usefulness decreases because of
decrease in the greatest fulfillable task space. The no-
tion of this proof can be generalized to non-conjunctive
stimuli, where also a similar set of unserviced stimuli
can be found.D
If a new behavior is added, length of the chain required
to fulfill unfulfilled tasks will not necessarily increase,
hence we do not claim that stimulus specialization does
reduce flexibility. However this is not the case with re-
sponse generalization. This leads us to the next result.

Lemma 1 (b). Whenever a behavior space is mod-
ified to eliminate cyclic conflicts by response general-
ization, the flexibility and usefulness of the behavior
space decreases.

Proof :- If the consequence c of/3 is generalized to d
so that d D c. Thus (c - d) is not being made avail-
able by 8. Let the behavior space containing f~ be
denoted by B~. Hence other new behaviors are needed
to complete the tasks requiring (c - d) which increases

40



[ B I. This implies that the usefulness of B decreases.
Also, addition of new modules increases the lengths of
the chains composed to fulfill these tasks resulting in
decrease in flexibility. If this not done then some tasks
requiring (c - d) (this should be interpreted as a pure
difference of literals) cannot be performed which im-
plies that [ rc,(B’) I < [ rc,(B) [ which means that the
usefulness of the behavior space decreases. The notion
of this proof can be generalized to non-conjunctive con-
sequences, where also a similar set of unserviced stimuli
can be found.i:]
If pick.up is specialized so that it does not pick up a
can it has dropped, then to drink coffee, we will have
to design another "multiple.pick_up". In some cases,
it may not be possible to design an action such that
it will fulfill these conditions. This discussion brings
us to our most important results, about the power and
usefulness of behavior spaces.

Behavior Modification Theorem. Given two be-
havior spaces B and B’ such that B is more powerful
than B’ (i.e. ~ i s obtained f rom Bbyreplacing some
behaviors/3 of B by the less powerful ones/3’) then:
(a) The greatest fulfillable task space of behavior space
B’ is less than that of B, i.e.
IrG(B’)l<Ira(B)l
(b) Usefulness of B is larger than that of B’ i.e.

>
(c)Likelihood of a cycle in B is at least as large as that
for B’.

Proof (a, b) :- First, let us consider the case where a
single behavior/3 has been replaced by the less powerful
/3~. The set of chains of behaviors composable from a
behavior space represents a tree with initial point cor-
responding to the availability of the right initial stimu-
lus and each node in this tree represents a world state
which may correspond to the desired state, indicat-
ing existence of a task fulfilling chain. The greatest
fulfillable task space is proportional to the total size
of this tree of behavior chains (this size is defined in
terms of the number of all possible chains contained
by the tree and the number of such trees, since differ-
ent trees can be constructed for different initial world
states. Such trees can be combined into a single tree,
the root of which is a node that represents virtual ini-
tial state. This root can then be connected to actual
initial states of the world by links). Now, either the
behavior/3 will have more applicability due to smaller
stimulus length as compared to the behavior/3~, or the
behavior/3 will have stronger consequences resulting in
more behaviors being triggerable after it or both. In
terms of the task tree, either/3 will have more parent
nodes, or it will have more children. In either case, the
branching factor in B is larger than that in B’ and the

size of the task tree will be larger. Hence the result
(a). Since [B] has not changed, the usefulness of the

behavior space, ~ decreases when /3 is replaced
by/3’ which proves part (b). This treatment can 
extended to multiple instances of replacing a strong
behavior by a weak one. []

Proof (c) :- Let/3i E B and/3~ E B~ be two behaviors
s.t. /3i is more powerful than/3~, i.e. (s~ ::¢, si) or si
is weaker than s~. Now consider any chain of length n
composable in B and B*, which differ only in that the
module/3i is replaced by/3~. Now consider all behaviors
/3j E C, j > i, with consequence cj. The likelihood
of a cycle in B, denoted by Lc~ae(B) (which is 
restricted to 0-1 range like probabilities) is

and L(B’) is
n

F_, ob(cj ).
j>_t

Clearly, since (s~ =~ si), (Vj[p’rob(cj =¢. si) 
prob(cj ~ s~)]}. Similarly (ci =~ c~) for which sim-
ilar analysis can be carried out. Thus Lc~cte(B) 
Lc~ae(B~). If there is a cycle in ~, there will b e a
cycle in B too. []

6 Modularity
One of the key questions that we set out to answer is
that of modularity. We had defined modularity as the
extent to which behavior systems are free of destruc-
tive interactions among the modules. Here we ask a
more direct question. Given two cycle free behavior
systems, if we wish to add a new module to them, can
there be some estimate of the likelihood that this new
module will cause a temporal cycle? In an interesting
result, we find that the likelihood of such a cycle /s
greater for the more powerful behavior system. This is
stated more formally in the following theorem, which is
based directly on part (c) of the Behavior Modification
Theorem.

Modularity Theorem. Given cycle free behavior
spaces B and B’ (B~ is obtained from B by replacing
some behaviors of B by less powerful ones) and a mod-
ule )~ not belonging to B and * i s added to both of
them, then the space Bt.J)~ has a higher likelihood of
cycle than the space B’UA.
Proof - The theorem follows from the part (c) of be-
havior modification theorem. As B contains more pow-
erful behaviors, the chance of occurrence of a chain
C = {/31 : /32 : .../3n} such that (c4 =¢" s/:), > k,1
i, k < n is higher in BU)~ and from part (c) of behavior
modification theorem, Lc~ae(B) >_ Lc~cte(B*). Thus,
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L~a,(B U A)_> L~a,(B’ A). Hence,   L,~,,,(BUA)I <

1
L°,,~.(B’u~)" This decreases modularity as defined in
section 2.3. This holds irrespective of the power of the
behavior A. These results imply that more powerful
behavior spaces are consequently less modular.O
Usefulness of a behavior space B(i) is denoted by
U(B(i)), the greatest potential task space B(i) is
denoted by ra(B(i)).

We define two disjoint behavior spaces B(i) and B(j)
to be scalable together if ra (B(i) U B(j)) D (ra (B(i)) 
 o(BCi)))

Lemma 2. If disjoint behavior
spaces B(1), B(2), .... , Bin) are scalable together, then
uCB), I B I> (uCB(1)), I B(1)I +... + vCBCn)), 
B(n) where B = B(1) U B(2) U .. Bin)

Proof - By definition of usefulness, I rc,(B(i)) 
U(B(i)), I B(i) Sin ce the behavior spac es
B(1),B(2),...,B(n) scalable together, Ira( B)I>1

I + I v"c,,(B(2)) +...+ I rG(B(n)) I 
result follows from these two equations. Hence the
proof.l:]

Lemma 3. When p new behaviors are added to a
behavior space B, rc,(B) must increase by a factor 

at least ([~--[ + 1) for the usefulness to increase.
Proof- For this, it is necessary to have U(B U P) 

U(B), where P is the set of p new behaviors to be

added to B. Hence, we need r° BI~£-~V-F21 - 1~1 > 0.IBI+p
The result follows from this.[]

Lemma 4. If a behavior ff is added to behavior
space B such that there exists ff E B which is less or
more powerful than fl~, such that/3 and lJI cannot occur
concurrently, there exists a control conflict in (B U fll).

Proof - Let us say that/3~ is more powerful than ft.
When ~ is triggered, fI ~ will also be. If ff is less pow-
erful than f3, then when fl~ is triggered, fl will also be.
Hence in any of the two cases, fl, fll will be triggered
at the same time, resulting in a control conflict. Hence
the proof.[]:]

Theorem 3. Elimination of cyclic conflicts places
a bound on the power of behaviors to be added to a
behavior space.

Proof- Let the new behavior to be added to the
behavior space B be fla. There should not exist a
chain {/3il : ~a, : flis : ... : flij_, : /3ij} in the
tree corresponding to ~’G(B) such that new behav-
ior can come after this chain and the chain can suc-
ceed the new behavior, resulting in the chain {fli~ :

: ... : : Zij : Za : Z*, :
/3~s :... : /3it_, : fii#} This requires that-~((% 

a) A (fl~ -</3~,)))). Intuitively, s~ should be stronger
and ca should be weaker, so that it cannot both occur

immediately after the existing chain and immediately
precede the existing chain. These conditions should
hold for all chains in the current ~’c,(B). This places 
bound on the strength of sa and ca which is not very
desirable since we want a stimulus to be as weak as
possible and the consequence to be as strong as possi-
ble. Hence the result.[]::]

Ideally, a behavior space should exhibit same perfor-
mance irrespective of the order in which the behaviors
are added. The following result shows that this is not
always true.

Lemma 5. If a set of behaviors {fli~, fli~, ~is, ...,/3~ }
(such that these behaviors form a cycle free behavior
space), is to be added to a behavior space B such that
for all 1 _< m, n _< k, m < n, fli, is more powerful than

f~i., then there exist orders in which the behaviors can
be added to detect and avoid cycles in the resulting
behavior space.

Proof- One can add the most powerful behavior

fli~ first and check if the behavior space (B U (fli~})
contains a cycle. If the new behavior space is cycle
free, adding one or more less powerful behaviors will
not introduce a cycle and behaviors from the remain-
ing set {fli~, f~i~, ~3is, ..., fli~_t } can be added in any or-
der. If addition of fli, results in a cycle, one can avoid
adding it and add remaining behaviors in decreasing
order of power. This ensures that the largest subset
of {~i~,/3i~, fli,, ..., fl~_~ } that does not cause a cycle
when added to B, is added to B. One can add the
least powerful behavior f~ia first and check for exis-
tence of cycle in the space (B U {fli~ }). If (B U {~3i~ 
contains a cycle, adding any other behavior will also
result in a cycle. In that case one can just discard the
set (fli~, ~3~, f~is, ..., f~i~ }. Hence the proof.[

Corollary 1. Cycles occur even if individual mod-
ules are combined into more complex behaviors.

Proof- We consider two ways of combining behav-
iors - chaining and conditional combination. In chain-
ing, behaviors fli~,fli~, flis, ...,fli~ forming the chain
{fl~,fli~,/J~],...,f~i~} are replaced by a single behav-
ior 13z such that sz = s~ and cz is a conjunction
of consequences of individual behaviors of the chain,
with literals whose truth is changed by latter behav-
iors and never changed after that, being absent in cz
(e.g. if behaviors ~ and 82 are replaced by a single
behavior that is essentially the chain {fl~ : fi2} and
cx -- al Aa2 Aa3 and c~ = -~a~ Aa4 Aah, then con-
sequence of this chain is ai A-~a2 A a3 A a4 A as).
But this combination does not do behavior refinement
in the form of stimulus specialization and response
generalization, which is required to eliminate cycles.
Hence cycles persist (though the lengths of cycles de-
fined in terms of number of behaviors involved change).
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In conditional combination, set of k behaviors can be
combined into a single behavior whose stimulus is a
disjunction of stimuli of individual behaviors and con-
sequence is a disjunction of consequences of individual
behaviors. Even this does not prevent the cycles from
occurring. These kinds of reorganization or restruc-
turing of existing behaviors really does not solve the
knowledge level problem. Hence the result.n

7 What do these results mean?
One important question that this work raises, however,
deals with the entire problem of distributed knowledge
representation. The key difference between DAI and
the situated behavior model studied here is that of
shared global memory (similar to the notion of Black-
board), which is a repository for all the results learned
by all the agents. The difficulties of implementing this
model arise, as Durfee so elegantly stated in his AAAI-
92 invited lecture, in much the same issues of social in-
teraction that arise between human beings, What your
computer really needs to know, you learned in kinder-
garten. These include using a common language, defin-
ing and maintaining a shared memory, and resolving
conflicts in a manner appropriate to the achievement of
the shared overall goal as opposed to individual agent
subgoals. This last is the key issue addressed in this
paper, and we showed that in situated systems, the
likelihood of fatal conflicts increase as the system tries
to achieve more complex tasks.

How do the arguments change if one uses a large
global memory, as in DA/? The answer is not very
clear. Certainly a long history of past actions is useful
in avoiding cycles; but even this cannot be infinite, or
infinitely detailed. The other type of shared memory
that systems may find useful to have are symbolic rep-
resentations of the problem domain which are always
very succinct and also useful. One of the arguments is
that situated systems have always used such symbolic
models but instead of having one model shared by the
task-achieving modules, each module has its own in-
stance of the same symbolic description [14]. We feel
however, that memory alone is not sufficient to avoid
this type of cyclicity, although it may certainly make
many operations more efficient. What one does with
this memory is critical. For example, even if we main-
taln a list of recently accomplished events, it is not
easy to distinguish cycles from repeated tasks such as
repeated visits to the same location to drop off differ-
ent cans. To do that requires much more knowledge;
of the overall objectives, of the plan being followed, of
the possible outcomes, etc. - a problem that situation
calculus has been struggling with since the early days
of AI.

One of the approaches to this problem, suggested

originally on the work in planning and situational cal-
culus, is to use a meta-level reasoner, or a central over-
seer which decides priorities between modules based on
global objectives. A number of researchers have built
robot behavior systems using some form of higher-level
mediation as in [6], and there is also considerable DAI
literature using global mediation strategies. A lot of re-
search issues remain open on the meta-level approach
to conflict resolution. A variation of the meta-level ap-
proach, called hybrid systems, offer a compromise by
employing a reactive system for low-level control and
a planner for higher level decision making as in [11].

While this is probably the general direction in which
a solution may lie, cycles are handled here using meta-
knowledge, and hence these are susceptible to the same
problems as meta-level planners. Also the question
of tradeoffs between the reactive and the deliberative
parts are crucial. These have been considered in the
work by Simmons in his Task Control Architecture [13]:

The other question that arises is that of the repre-
sentation. Could it be that the symbolic logic used in
situated agents cause these conflicts, i.e. the conflicts
are an attribute more of the representation than the
problem domain? This has been a source of significant
debate among cognitive psychologists, for instance -
see [14] for a guide. A quick look at the problem here,
however, shows this to be unimportant. The cycle that
occurs in the can dropoff task is due to the nature of
the task itself, and is not at the representation level.
Behaviorists claim that symbolically motivated behav-
iors lack the "strength of stimulus" concept so critical
to biological systems. Most predicates such as can(x),
are really based on low level sensory information that
reflect the can-hess of an object, a modality that can
be captured by using a different representation such
as fuzzy logic or a neural network. The representa-
tions associating potential fields with objects in the
environment as in [2] also achieve such a strength of
stimulus notion. However in the can pickup conflict
for example, it is clear that a change of representation
in itself will not reduce the problem. After dropping
off the can, if the robot happens to "see" the same
can, there is nothing in the fuzzy or other representa-
tion that would cause it to stop: whatever mechanisms
are needed to avoid cycles in the boolean logic frame-
work would still be needed in these other representa-
tions. Thus, the conclusions of this work, since they
reflect underlying properties of the problem and not
the representation, and remain valid across different
representational schemes.

One other question that our results open up is that
of the task limitations of situated systems. While the
probability of conflicts will increase with more pew-
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erful behaviors, it may be possible, with much fine-
tuning, to design systems that work well even for com-
plex tasks. Can we set some limitations oll the tasks
themselves? This would be a stronger result, no doubt.
However, distinguishing this class of tasks seems to be
a difficult problem.

Wilkins describes a program called PARADISE
(pattern recognition applied to directed search) in [15]
that finds moves in chess in tactically sharp middle
game positions using a large body of production rules.
Wilkins claims that human masters whose play is still
much better than the best programs seem to have a
huge number of stored patterns and analyze position by
matching these patterns to suggest plans for attack or
defense. Such knowledge should be incrementally mod-
ified and expanded. To achieve this, PARADISE has a
knowledge base of largely independent rules. Hence we
can view PARADISE and similar chess players as being
situated agents that have a modular structure. PAR-
ADISE also carries out static analysis to produce plans
that help in focusing on critical part of new position,
making it similar to situated agents having a hybrid
computational structure that contains a planner and a
reactor.

[12] describes CHINOOK, an automated checkers
player that derives its power from perfect informa-
tion on all positions with seven pieces or less. CHI-
NOOK’s evaluation function has 25 heuristic compo-
nents, weighted sum of which gives a positional evalua-
tion. These heuristic components are like agents whose
output is combined by a meta-level agent. CHINOOK
has been reported to have stuck in deadlock, being
unable to make next move. [3] describes a backgam-
mon program which uses some pre-computed tables
and heuristic functions, rather than carrying out search
(backgammon domain involves 102° positions). It car-
ries out more computation for evaluating each alterna-
tive in current position rather than doing brute force
search and can be viewed as being a situated agent.
Hence our results on modularity apply to a number of
game players.

8 Conclusion
Our analysis assumes minimal communication among
agents, that occurs largely through the world. Real
situated agents however allow "finite inter-agent com-
munication" while still maintaining modular structure.
However our arguments that use cyclicity to challenge
the assumption of modularity continue to apply to
agents with finite communication bandwidth, since this
bandwidth cannot eliminate internal state. Having
finite communication just means that some modules
can maintain internal state that can be queried by
other modules to eliminate cycles. In chess playing,

certain board patterns correspond to certain moves.
Some moves can be used more frequently than others.
The moves can be looked upon as situated agents that
modify board patterns creating different consequences.
Hence our results have implications not only for the fu-
ture of situated agency, but the design of chess players
as well.
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