From: AAAI Technical Report WS-97-05. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

Dynamic Prioritization of Complex Agents in
Distributed Constraint Satisfaction Problems

Aaron Armstrong
Edmund Durfee

Department of Electrical Engineering and Computer Science
University of Michigan
Ann Arbor, MI 48109 USA
{armst, durfee } @umich.edu

Abstract

Cooperative distributed problem solving (CDPS) by
loosely-coupled agents can be effectively modeled as a
distributed constraint satisfaction problem (DCSP)
where each agent has multiple local variables. DCSP
protocols typically impose (partial) orders on agents to
ensure systematic exploration of the search space, but
the ordering decisions can have a dramatic effect on the
overall problem-solving effort. In this paper, we
examine several heuristics for ordering agents, and
conclude that the best heuristics attempt to order agents
based on the cumulative difficulty of finding
assignments to their local variables. Less costly
heuristics are sometimes also effective depending on the
structure of the variables’ constraints, and we describe
the tradeoffs between heuristic cost and quality. Finally,
we also show that a combined heuristic, with weightings
determined through a genetic algorithm, can lead to the
best performance.

Introduction

Cooperative distributed problem solving (CDPS) is often
modeled as being done by a group of loosely-coupled
computational agents involved in extensive local
computations (Durfee, Lesser, and Corkill 1989; Luo,
Hendry, and Buchanan 1993). Because these agents need to
develop local solutions that together comprise one or more
solutions to collective problems, they need to
communicate intermittently about aspects of their local
solutions to ensure compatibility. This may be usefully
viewed as a distributed constraint satisfaction problem,
where there are constraints between the local solutions of
the different agents (Yokoo et al. 1992). The agents want
to exchange enough information to identify and to rectify
violations of constraints. Rapid delivery of pertinent
information is essential for the agents to avoid
computationally expensive dead-ends. The challenge is in
controlling this exchange so that it does not swamp the
agents with messages, and so that it efficiently results in
convergence to consistent solutions.

One way of ensuring systematic exchange of partial
solutions and of ensuring the identification of constraint

This work has been supported, in part, by the National
Science Foundation under PYI award 91-58473.

violations is to order the agents, such that some agents
make commitments to particular solutions around which
others must work. If a work-around cannot be found, the
system backtracks by asking agents up the pecking order to
try different commitments. This strategy is the multi-agent
version of a centralized, backtracking search. In fact, it is
possible for backtracking to exploit parallelism, in cases
where constraints are not highly constraining, by
asynchronous backtracking (ABT) (Yokoo et al. 1992).
With ABT, all agents in parallel pass their own variable
assignments to relevant, lower priority agents and pass
information on inconsistent combinations of value
assignments (no-goods) to higher priority agents.

While instituting an ordering over the agents leads to
systematic exploration, in the worst case there could still
be an exhaustive search over the space of combinations of
local solutions. To make this approach more effective,
therefore, it can help if the agent ordering tends to focus
search in more promising areas first. For example, highly
constrained agents should have first choice.

Mapping this once again to the constraint satisfaction
problem (CSP) framework, it would appear that ordering
the agents is analogous to ordering the variables. In fact,
this is the strategy that has generally been employed
(Minton et al. 1990; Yokoo 1993), along with the typical
assumption that each agent has one variable. The trouble
in CDPS is that, to use communication bandwidth
efficiently, the problem is distributed into a relatively
small number of complex local problems—corresponding
to a number of local CSPs. Realistically, the agents
cannot be modeled as each having a single variable, but
rather as each having multiple variables. In addition,
considerations such as geographic distribution may suggest
that we model the agents as each having a fixed set of
variables, corresponding to a fixed problem decomposition
(e.g. specified by resource availability). Now, even if
variable ordering information is available, agents cannot be
ordered strictly based on the variable ordering, because it is
unclear how best to combine variable priorities to obtain a
ranking of the agents. Further, even if good average-case
methods for generating agent priorities were found, they
could still be inferior to algorithms allowing dynamic
priority assignment, since dynamic prioritization allows
the CSP search process to discover and use additional
information particular to the current problem. This research

uses problems from a path planning domain to investigate
the problems of how to prioritize dynamically and how to
apply heuristics to ensembles of variables, so that DCSP
algorithms can be efficiently used by the agents.

Distributed Constraint Satisfaction

In standard formulations of constraint-satisfaction, the
problem is defined as one of instantiating an ordered set of
variables V from a respective set of domains D such that a
set of constraints C over the variables is satisfied. Figure 1
illustrates a CSP where V = (x3, X3, X3, X4), D = ({1, 2,
3}, {1,2},{1,3}, {(1}),C= { (x1 #£x2), (x3=3), (x3=x;
+2), (x3 #x4)}. A solution is (x1, X2, X3, X4) = (2, 1, 3,
1).
Backtracking search is a basic approach to solving
CSPs. The variables are ordered and then the algorithm
does a preorder walk of the implicit search tree. To reduce
the size of the search space, we may use static or dynamic
consistency methods to prune the tree, such as node, arc,
and path consistency checks.

Asynchronous Backtracking

To allow us to study dynamic prioritization, we developed
a DCSP protocol inspired by the asynchronous
backtracking (ABT) (Yokoo et al. 1992) and weak-
commitment (WC) protocols (Yokoo 1994). A key idea of
asynchronous backtracking is to distribute the search
problem and then allow the agents to work concurrently on
their local problems. This creates potential parallelism by
allowing each agent to actively guess solutions and by
allowing agents to discover no-goods simultaneously. In
ABT, each agent is responsible for a single variable, and
the agents are usually related by a fixed, total order (though
the communication is only between mutually constrained
agents). They use periodic communication to synchronize
constraint checking information. Each constraint is
checked by the lowest priority agent among the set of
agents involved in the constraint. Continuing the example
above, the constraint (xy # X3) would be checked by x,, the
constraint (x3 # x4) would be checked by x4, and the other
constraints would be checked by x3. (Assuming a total
order of x; > X3 > X3 > x4.)

The process begins by having each agent assign a value
to its variable and then passing that value to agents who
are constrained by the agent’s variable. Each agent, on
receiving values from higher priority agents, checks to see
if its own choice is compatible. If not, it tries to pick a
new value. If it finds a legal new value, it passes on this
change to its dependents and otherwise tells its parent that
its parent’s value is no-good. (A no-good is defined by a
subset of the agents and their variables’ instantiations such
that some lower priority agent cannot instantiate its
variable(s) without violating some constraint.) If an agent
receives a no-good message, it records the no-good as a
new constraint and tells the other (more important) agents
involved in the no-good to keep the agent who is
processing the no-good informed of any changes to their
variables. The agent then tries to find a new value for its

variable, as
above. The algor-
ithm terminates
when the lowest
priority agent has
found a value
consistent with
all higher-priority
agents—success.
It also terminates
when an agent
discovers that it has an empty domain (e.g. from new
constraints)—failure.

In the example above (figure 1), the agents choose (x,
X2, X3, X4) = (1, 1, 3, 1). Note that node constraints can be
locally processed and so x3 does not choose value 1. Each
agent passes its information to agents checking mutual
constraints. Agent (variable) x, receives x;’s message and
changes its value to 2, sending along a message to x3
stating the changes. Agent x3 receives x,’s message and
responds saying that x; = 2 is a no-good for x5. Agent x2
accordingly adds a self-loop constraint that x5 # 2. Agent
X, informs x; that x; = 1 is a no-good for x; and informs
x3 that it has now chosen xp = 1. Agent x adds a self-loop
constraint that xq # 1, chooses x 1 = 2, and sends this on to
X5. Agent x; receives this message and has already chosen
x3 = 1. The other two agents likewise do not need to
change their assignments (a slight time savings from
parallelism). The agents find the solution (x), x2, X3, x4) =
2 131). .

Asynchronous Weak-Commitment Search

In (asynchronous) weak commitment search (Yokoo 1994,
1995), agents solve their local problems and check
constraints in a manner similar to asynchronous
backtracking, but whenever a no-good is discovered, the
agent ordering is changed so that the agent who discovered
the no-good now has highest priority. In weak-
commitment search, the ordering is total and dynamic.
Yokoo (1995) is not explicit in this regard, but many
agents will need to be apprised of the situation whenever
an agent is reprioritized so that constraints and no-goods
will not be lost. Usually the lowest priority agent involved
in a no-good stores the no-good information. Changing the
order may then cause the no-good to be effectively
forgotten, since another of the involved agents may
become lower in the ranking and thus may eventually have
to rediscover the no-good.

In our continuing example, the agents initially choose
(x1, X2, X3, X4) =(1, 1, 3, 1). Agent x5 then receives x1’s
message (x; = 1) and changes its value to 2, sending along
a message to x3 stating the changes. Agent x3 receives x,’s
message and responds saying that x5 = 2 is a no-good for
x3. The ordering then changes to (x3, X}, X2, X4). Agent X3
sets its value to 3 and informs x;. Agent x; retains its
value of 1, causing x5 to report a no-good of xy = 1. The
priority then changes to (x3, X3, X1, X4). The agents choose
(x2, X3, X1, X4) = (1, 3, 2, 1) and the problem is solved.

Summary

ABT and WC have similar benefits and a couple of
problems, Their common benefit is the distribution of the
problem and the result of possible parallelism. In addition,
WC adds the ability to change bad orderings so that bad
choices made by the high-priority agents will be discovered
faster. One resulting problem of these distributed methods
is the exponential space usage from the no-good storage.
Another problem, the focus of our research, is the
rigidness of the agent ordering. In ABT, the agent ordering
is static and in WC, the ordering method is limited to a
single heuristic.

Algorithm

Our algorithm was developed from the desire to use partial
information from the search process to guide the remainder
of the search, given our basic goal of investigating the
problem of ordering agents with multiple variables. We
generalized from ABT and WC to allow asynchronous
local search with a more flexible reordering of the agent
hierarchy.

Description

In our distributed algorithm, the variables and their
domains are distributed among agents, each of which can
check all constraints in which its variables are involved.
There is also a central agent, which is responsible for
starting and stopping the process and a no-good processor
(possibly distributed), which keeps no-good information
from being lost when the agents reorder.

The problem solving is divided into epoches, in which
the central agent gives an initiation signal, the agents
calculate and broadcast their priorities (thus establishing a
total order of agents), and then the agents attempt to solve
the problem. The epoch is terminated when a solution is
discovered or when a no-good is discovered with fewer than
m agents involved. (The parameter m is constant, typically
small, during the search.) When m = 0, there will only be
one epoch in the process, since a no-good involving zero
agents implies that the problem has no solution. With this
setting, the protocol reduces to a case of asynchronous
backtracking in which communication is limited to an
agent’s immediate (typically two) neighbors in the total
ordering. When m > n, where n is the nhumber of agents,
every no-good will cause a re-prioritization. With this
setting and with the prioritization determined by a rapidly
decaying number of no goods heuristic, the protocol
reduces to weak-commitment search.

When a no-good is discovered, the variable assignments
causing it and the IDs of the agents involved are sent to the
no-good processor, which saves the no-good. Later, when
an agent has found a tentative assignment for its variables,
it consults the no-good processor to make sure that its
assignment along with any known assignments of higher
priority agents do not constitute a no-good. More on the
no-good processor appears in the next subsection.

Each agent, after broadcasting and receiving priorities,
constructs a tentative assignment of its variables. It

10

consults with the no-good processor, then passes its
assignment on to the next agent in the ranking. Gradually,
information from higher ranking agents accumulates at
each agent. This information is used to constrain the
possible assignments of the agent’s variables. All current
information is passed on to the next agent in the ranking
whenever a tentative assignment is made. In the case that
the bottom agent is able to make an assignment to its
variables and it has information from all higher ranking
agents, the agent contacts the central agent to signal a
solution to the problem. In the case that an agent cannot
make an assignment to its variables, it has discovered a no-
good. It will again contact the central agent, this time to
signal a no-good (which may potentially trigger a new
epoch). It will also signal the next-higher agent to find a
new assignment for the higher agent’s variables.

The No-Good Processor(s)

The issue of no-goods is crucially connected to
completeness and to the space requirements of the DCSP
algorithm. With asynchronicity, the algorithm could get
stuck and continue to check and recheck the same variable
assignments. To avoid this, as sections of the search tree
are found not to contain a solution, data specifying the
fruitless branches are recorded as no-goods to be avoided in
the future. In asynchronous backtracking, when a no-good
is discovered, the lowest priority agent involved in the no-
good stores it in the form of an additional constraint.

In asynchronous weak-commitment search and in our
protocol, using this method could result in the agents
rediscovering and storing many copies of the same no-
good, one for each time a different participating agent in
the no-good had lowest priority. A no-good processor gives
us the benefit of reduced storage costs (only one copy) and
reduced search time (only discovered once). The tradeoff is
in additional message passing. As mentioned before, we
could distribute the no-good processor to reduce the
computation and storage load on any particular process. In
this case when an agent wants to check a collection of
instantiations for no-goods, it sends the set of agents
involved (and the variable assignments) to the no-good
processors. The no-good processors are each responsible for
mutually exclusive partitions of the power set of the
agents. Each processor checks all subsets of the current list
of agents corresponding to subsets in its piece of the
partition. For example, with two agents and 2 no-good
processors, processor A might store no-goods involving
agents {1} and {2}, while processor B might store the no-
goods for {1, 2}. If an agent wanted to check whether an
assignment to the variables of agents {1, 2} was valid,
processor A could check no-goods involving just agent 1
or just agent 2 and B could check no-goods involving both
agents. Note further that if information from the higher-
priority agents is consistent, the processors only have to
check subsets involving the most recently added agent.

Performance Optimization

Now that the basic algorithm has been described and since
it is a complete search technique, the next question is one
of performance. Since CSP is NP-complete, we will
merely attempt to improve the average case performance.

Heuristics. Obviously, to get good average performance
from any search algorithm, we need to focus the search in
more promising areas. These DCSP algorithms are focused
by determining which agents have precedence and which
values they prefer (choose first) for their variables. Value
ordering heuristics, though important, were not the aim of
this research and so were not used. We concentrated instead
on the problem of deriving agent ordering heuristics from
variable ordering heuristics which have been described in
the literature, e.g. (Yokoo 1993; Minton et al. 1990). In
much of the previous work, there had been a trivial
derivation: since each agent had one variable, an ordering
of the variables constituted an ordering of the agents. With
multiple variables for an agent, there must be a method of
combining the ordering information of single variables to
produce agent-ordering information.

To improve the performance of our algorithm on test
problems in the path-planning domain (discussed later in
the paper), we investigated various heuristics. For
uniformity and control purposes, we used two null
heuristics—one static and the other dynamic. The
remaining heuristics attempted to quantify the degree of
constraint on an agent, equating “more constrained” with
“more important.”

* Random (but static). This heuristic would initially
assign a random total order to the agents and hold the order
fixed throughout the search. This was our standard for
comparison.

* Random (dynamic). This heuristic randomly generated a
different order with each reprioritization.

* A pseudo-heuristic which ordered the agents the same
way that the dynamic random heuristic had ordered them
when it had finished solving the same problem. This
allowed us to examine the importance of ordering vs.
building up knowledge of no-goods.
¢ The number of no-goods discovered or a decaying
average of the number of no-goods discovered. These
heuristics gave priority to agents which had discovered
larger numbers of no-goods. The hope was that this would
dynamically determine the most constrained agents. An
exponentially decaying average is the basic heuristic of
Yokoo’s weak-commitment search (1994).

* Total or average number of different values in a single
agent’s domains. These heuristics gave priority to agents
with fewer choices for their variables.

* A weighted average of the domain sizes. This heuristic
is similar to the last one, but it gave more weight to
variables representing important choices (e.g. more likely
to conflict). In the path planning domain, the size of the
domains of variables representing agent location at the
middle of the path were considered to be most informative
and so were given the greatest weight.

11

* Number of local solutions. This heuristic requires
exhaustive constraint satisfaction internal to the agent to
be performed first, effectively reducing the agent’s set of
variables to a single variable. If this is computationally
infeasible, we could also estimate this number by checking
some subset of the local problem for solutions. Another
variation is to dynamically account for changes in the
number of local solutions as no-goods accumulate and rule
out solutions.

Combining Heuristics. In addition to investigating
single heuristics, we also implemented an algorithm to
automate performance tuning of combinations of
heuristics. Priorities were assigned to agents by combining
the heuristic values in a weighted sum. We used a genetic
algorithm (Holland 1992) to search the space of heuristic
weightings, to automatically discover which heuristics
were effective, and if possible to exploit epistatic relations
between them.

Example. In our toy example (figure 1), there are four
problem-solving agents, each with one variable. (In our
experiments, there are more variables for each
agent—around 5-10.) The other two agents are the central
agent and the no-good processor.

At the beginning, the central agent broadcasts an
initiation message to all the agents. The agents calculate
their priorities and broadcast them to each other. Suppose
the ordering is (A = x|, B = x5, C = x3, D = x4), where we
equate agents with single variables. The agents then choose
(x1, X3, X3, X4) = (1, 1, 3, 1). Each checks with the no-
good processor, which okays these choices. Agent A sends
B a message that x; = 1. B discovers a conflict. It changes
x2 =2 and passes (X1, X2) = (1, 2) to C. Agent C discovers
a conflict. C determines further that there is no selection
for x3 that is consistent with the assignments to x; and x;.
It tells the no-good processor that the ordered agent set (A,
B) cannot use the assignments (x, x3) = (1, 2). Agent C
sends a message to B telling it to try a different local
solution and also sends a message to the central agent
announcing a no-good involving (A, B).

If we assume the constant m > n, the central agent will
start a new epoch for each no-good discovered. It instructs
the agents to restart. They recalculate their priorities. Let
us assume that agents who have discovered more no-goods
and who have fewer solutions get higher priority. The
ordering may then change to (C, D, B, A), where C’s no-
good increased its priority. The agents pick (x;, X2, X3, X4)
= (1, 1, 3, 1). The no-good processor then forces A to
choose 2 instead. The agents pass on information until A
has received information from the others. Agent A now has
a consistent assignment, minimal priority, and solutions
from all higher priority agents, so the CSP has been
solved. Agent A notifies the central agent, which
broadcasts a halt message.

As this example illustrates, we can potentially benefit
from the parallelism of computation as in ABT. We can
also benefit from a good initial ordering and any reordering

of the variables, using dynamic information on the number
of no-goods discovered and increasingly accurate estimates
of the number of local solutions.

Experimental Evaluation

To evaluate our protocol and test our intuitions about
various heuristics, we selected a simple family of
problems and collected statistics on the performance of the
algorithm using the different heuristics.

Problem Domain

We chose a problem in the domain of multiple-agent path
planning as a source of the agents and their constraints.
The n agents inhabit nodes in an arbitrary graph. Each
agent starts at some node and must arrive at some other
node. There are ¢ time steps available for solving the
problem. At each time step, each agent traverses an edge
(possibly a self-loop). The solution to the problem
consists of n paths between the n starts and goals. The
paths must not conflict with one another (no simultaneous
occupation of the same node or edge). '

In figure 2 we have an example of a small problem.
There are 3 agents, A, B, and C. This could potentially be
a starting configuration. If the final configuration was (A,
B, C) = (6, 4, 5), we could have a solution in which A
uses path (1, 2, 3, 6); B uses path (7, 8, 5, 4); and C uses
path (6, 9, 8, 5). In the CSP formulation, each agent
might have 4 variables, corresponding to its position at
times 1-4.

Topologies

We considered various topologies, since the topologies
affect the kinds and numbers of constraints between
variables more generally. We looked at randomly connected
graphs, tree graphs, grid graphs, and hub graphs (each
graph had multiple hubs). We did much of our work with
grid graphs for ease of visualization and with hub graphs
as a source of more difficult problems.

Experimental Analyses

We here summarize a few of our experimental results,
focusing on the hub graph topology, but unless explicitly
stated otherwise the reader can assume that the trends
reported apply to the other topologies as well. We
measured the impact of each agent-ordering heuristic on the
time required by the agents to solve their path problems
and on the amount of communication overhead
incurred—the number of messages passed. The charts in
figure 3 represent averages over 1200 randomly generated

problems for the hub topology (with 12-16 nodes in each’

graph).

Effects of Agent Ordering. During the constraint
satisfaction problem-solving, performance depends on the
accumulation of additional constraints (discovery of no-
goods) as well as on the ordering of agents. To get an
appreciation of the relative influence of these factors, we
can use the situation where the agents were given a fixed

12

order for com-
parison. The order
can be assigned
randomly (in the
charts, this is the
“uniquifier” col-
umn) or can be
based on the final °
ordering discovered
by the dynamic
random heuristic
(in the chart, this
is the “last run” heuristic). As shown in the charts
(rightmost columns), a good ordering results in a time
savings of 37% and a message savings of 32% compared to
a random ordering. Similar savings occur in other
topologies. Clearly, proper ordering can make a big
difference.

Effects of Dynamic Ordering. As just seen, agent
ordering can make a big difference. If a random order starts
out badly, performance will suffer. If agents arc given a
chance of reordering dynamically, their performance might
improve even if the reordering is random (the “random”
column in the charts). Our experiments bear this
hypothesis out.

Performance of Heuristics Based on No-Goods.
Yokoo’s weak commitment search strategy would assume
that an agent which discovers a no-good is highly
constrained and should be moved to the front of the priority
list. We evaluated this heuristic (“Decaying NG”), along
with the variation of this heuristic that prioritized agents
based on total no-goods discovered so far (*Num NGs”).
Putting the most recently over-constrained agent first does
shuffle the ordering to improve performance better than a
random reshuffling, but we discovered that, at least for the
DCSPs created in our domain across various topologies, it
is better to consider more history: the total number of no-

‘-—M_ullcuwﬂubTwnbgy
s E -
°aaaa{{§i;q':j o
SERREERE
| Time on Hub Topology |
::E-agaa:é—é{l];ﬁm.ﬁ“
pidlgpty
Figure 3

goods discovered heuristic generally performed better, and
never performed worse, than the decaying no-goods
heuristic that mimics Yokoo’s.

Performance of Heuristics Based on Domain
Size. A widely used heuristic for ordering variables in
CSPs is to assign the most-constrained variable first. OQur
heuristics approximated this by assessing the total sizes of
the domains of all of an agent’s variables (“Total Diff
Nds”), the average domain size of an agent’s variables
(“Domain Size”), and a quadratically weighted average of
the domain sizes (“Quadratic Est”). The first did poorly
overall, probably because the different agents tend to have
similar domain sizes (similar path characteristics), but the
latter two generally did well, though slightly less well
than the number of solutions, discussed next.

Number of Local Solutions. Of course, a better
approximation of the most-constrained variable heuristic is
to treat each agent as having a single variable (as in
previous DCSP analyses). In our case, this amounts to
having an agent generate the set of legal solutions to its
local CSP, and then ordering the agents in terms of which
of them has fewer local solutions. We experimented with
both static (“Stat Num SIn”) and dynamic (“Dyn Num
SIn”) versions of this heuristic. Not surprisingly, it did
very well across the board. Somewhat surprisingly, a static
ordering did statistically as well as a dynamic ordering, but
considering that usually constraints across groups of
agents are discovered dynamically, we can see that dynamic
changes to local solution sets may be minor.

Combinations of Heuristics. We used a generation-
based genetic algorithm (GA) to study combinations of
heuristics. Each of the 100 population members consisted
of a concatenation of Grey-coded weights. The weights
determined the amount of influence exerted by each
heuristic. There was some difficulty with slow
convergence because of the wide variation of the randomly
generated problems.

After running the GA, we selected some of the top
combination heuristics and ran them against several of our
“pure” heuristics, measuring the number of time steps and
the number of messages sent averaged over 1500
problems. Successful combinations placed high emphasis
on the number of local solutions and on the number of no-
goods. A high value was also accorded to the dynamic
random heuristic. Combination heuristics proved to be
modestly better than any pure heuristic.

In practice, such an algorithm could be used to gradually
optimize the performance of a large CSP system.
Heuristics and parameter settings could be guessed and as
the system was used, it would adapt to the particular
distribution of problems that it faced and identify the most
useful heuristics with relatively little overhead.

Conclusions

While several researchers have recognized the similarities
between cooperative distributed problem solving and

13

distributed constraint satisfaction, the emphasis of the
former on loosely-coupled agents solving substantial local
problems has not been adequately addressed in the latter. In
this paper, we describe a foray into this area of
investigation. We have described a protocol that is assured
of terminating and that generalizes asynchronous
backtracking and weak commitment search to permit
variations in the timing and criteria of agent reordering.
Our empirical investigation using these capabilities has
revealed that a good ordering is critical to performance, and
that ordering based on the local solution spaces is most
effective. However, because the computations for this
heuristic amount to solving a substantial local CSP, more
cost effective approximations are available that perform
nearly as well. Yokoo’s approach of placing the most
recently over-constrained agent first is one possibility,
although our results indicate that the total number of no-
goods and the average domain size heuristics can be even
more effective.

Many open problems remain, including characterizing
the tradeoffs between local computation and the benefits of
the heuristics. We also need to investigate further decentral-
ization of the protocol and storage of no-goods. Finally, it
might be the case that a good ordering of agents is not
possible without redistribution of variables, leading to
issues of negotiation and load-balancing.

References

Durfee, E., Lesser, V., and Corkill, D. 1989.
Cooperative Distributed Problem Solving. In A. Barr, P.
Cohen, and E. Feigenbaum (eds.). The Handbook of
Artificial Intelligence, Volume IV, Addison-Wesley,

Holland, J. 1992. Adaptation in Natural and Artificial
Systems: an Introductory Analysis with Applications to
Biology, Control, and Al, 1st MIT Press ed. Cambridge,
MA: MIT Press.

Luo, Q., Hendry, P., and Buchanan, J. 1993. Heuristic
Search for Distributed Constraint Satisfaction Problems.
Research report KEG-6-93, University of Strathclyde, UK.

Minton, S., Johnston, M., Philips, A., and Laird, P.
1990. Solving Large-Scale Constraint Satisfaction and
Scheduling Problems using a Heuristic Repair Method.
Proc. of AAAI-1990, 17-24.

Yokoo, M., Durfee, E., Ishida, T., and Kuwabara, K.
1992, Distributed Constraint Satisfaction for Formalizing
Distributed Problem Solving. I2th IEEE Int. Conf. on
Dist. Computing Sys., 614-621.

Yokoo, M. 1993. Dynamic Variable/Value Ordering
Heuristics for Solving Large-Scale Distributed Constraint
Satisfaction Problems. Proc. of 12th Int. Workshop on
Distributed Art. Int., 407-422.

Yokoo, M. 1994. Weak-Commitment Search for
Solving Constraint Satisfaction Problems. Proc. of the
12th National Conf. on Art. Int., 313-318.

Yokoo, M. 1995. Asynchronous Weak-Commitment
Search for Solving Large-Scale Distributed Constraint
Satisfaction Problems. Proc. of the st Int. Conf. on
Multi-Agent Systems, 467.

