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Abstract

This paper sets a model for Distributed Valued
Constraint Satisfaction Problems, and proposes
an incomplete method for solving such problems.
This method is a greedy repair distributed algo-
rithm which extends to the distributed case any
greedy repair centralized algorithm. Experiments
are carried out on a real-world problem and show
the practical interest of this method.

Introduction

The Distributed Constraint Satisfaction Problem for-
mulation (DCSP) is a general framework for model-
ing situations in which some agents are collectively
entrusted with the task of finding a consistent solu-
‘tion to a set of local and inter-agent constraints. This
framework has many practical applications such as dis-
tributed resource allocation, scheduling, timetabling
and concurrent engineering,

Significant research work has been done on this
model during last years. Taking a theoretical point
of view, (Collin, Dechter, & Katz 1991) demonstrated
that “it is generally impossible to guarantee conver-
gence to a consistent solution using a uniform proto-
col”, and thus established a limit of feasibility for al-
gorithms solving such problems. The distributed asyn-
chronous backjumping (Sycara et al. 1991) is an in-
complete algorithm which combines distributed con-
straint satisfaction with heuristic search ; it has been
experimented for job shop scheduling. (Prosser, Con-
way, & Muller 1992) present a distributed algorithm
for maintaining arc-consistency in distributed and dy-
namic CSPs. The asynchronous backtracking and asyn-
chronous weak-commitment algorithms (Yokoo et al.
1992; Yokoo 1995) are complete algorithms based on
nogood exchanges between agents. (Solotorevsky &
Gudes 1995; Solotorevsky, Gudes, & Meisel 1996) pro-
pose complete algorithms exploiting the relative dif-
ficulty of one central and many peripheral problems.

The distributed breakout algorithm (Yokoo & Hira-
maya 1996) is an incomplete algorithm for solving dis-
tributed CSP instances, based on the modification of
the weight of violated constraints in order to escape
from local minima. '

Few works consider the practical case, yet often
found in real-life problems, where instances are over-
constrained and no solution exists. However (Yokoo
1993) presents an extended framework in which con-
straints are given weights reflecting their importance :
the asynchronous incremental relazation algorithm is
a complete algorithm that relaxes less important con-
straints in a “lexicographic” order.

This idea of constraint valuation can be generalized,
leading to the Valued Constraint Satisfaction Prob-
lem (VCSP) formulation (Schiex, Fargier, & Verfaillie
1995). CSP algorithms look for satisfaction, whereas
VCSP algorithms look for optimization.

This paper presents a distributed extension of the
VCSP framework, then a distributed algorithm for
DVCSP optimization. Taking a practical point of view,
and considering that complete algorithms are out of
reach of most real-life problems, we deliberately turn
towards incomplete algorithms.

Valued Constraint Satisfaction
Problems

A Constraint Satisfaction Problem (CSP) instance is
defined by a triple (X, D,C), where X = {z;,...,z,}
is a set of variables, D = {d,,...,d,} is a set of finite
domains for the variables, and C is a set of constraints.
A constraint ¢ = (X, R.) is defined by a subset of
variables X, C X on which it holds, and a subset R. C
[l;,ex, di of allowed tuples of values. A solution of
an instance is an assignment of values to all of the
variables which satisfies all of the constraints.

Many CSP instances are so constrained that no so-
lution exists. In this case, one can search for a solution
minimizing the number of unsatisfied constraints. This
is the partial CSP model, introduced by (Freuder &
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Wallace 1992). This model can be further generalized
by giving a weight or a valuation to each constraint,
mirroring the importance one gives to its satisfaction.
We then search for a solution minimizing an aggre-
gation of the valuations of the unsatisfied constraints.
This extension of the CSP model is called the Valued
Constraint Satisfaction Problem framework and was
introduced by (Schiex, Fargier, & Verfaillie 1995).

A VCSP instance is a quintuple (X,D,C,S,yp)
where (X,D,C) is a classical CSP instance, S =
(E,®, %) is a valuation structure, and ¢ : C — E is
a valuation function, giving the valuation of each con-
straint. E is the set of possible valuations ; > is a total
order on E ; T € E is the valuation corresponding to
a maximal dissatisfaction, and L€ FE is the valuation
corresponding to a maximal satisfaction ; ®, the ag-
gregation operator, allows one to aggregate valuations.
In order to have a sensible behavior, ® must satisfy
some properties : commutativity, associativity, mono-
tonicity w.r.t. > ; L must be the identity element, and
T an absorbing element.

Let A be an assignment of values to all of the vari-
ables, namely a complete assignment. We define the
valuation of A for the constraint ¢ by

L if ¢ is satisfied by A
p(c) otherwise

o0 ={
and the overall valuation of A4 by
w(A) = ® p(4c).
ceC

By instantiating the valuation structure S one can
define specific frameworks such as :

— classical CSP, where E is {true, false}, false >
true, L is true, T is false, Vc € C,p(c) = false and ®
is A (boolean and)

- additive VCSP, where E is N U {+oo}, > is >
(natural order), L is 0, T is +00 and ® is +

—max VCSP, or possibilistic VCSP, where E is [0, 1],
~is>,1is0, Tis1 and ® is maz

- lexicographic CSP, providing a combination of ad-
ditive and max CSP.

The standard objective is to find a complete assign-
ment with minimal valuation. Two kind of algorithms
can be used for this purpose :

— complete algorithms which explore systematically
and completely the solution space, based on branch
and bound schemes ; they find an optimal solution,
provided they are given enough time

— incomplete algorithms which, leaving out com-
pleteness, try to find quickly good solutions in an op-
portunistic way. These methods are generally based on
greedy repair schemes and randomization techniques
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(van Laarhoven & Aarts 1987; Selman, Levesque, &
Mitchell 1992). Although they often produce very good
quality results, they cannot guarantee a distance to the
optimal valuation.

- A Distributed Model for Valued
Constraint Satisfaction Problems

We propose an extension of the VCSP framework to
the distributed case. This extension allows one to
formalize the following situation. Some agents are
entrusted with the task of solving existing local in-
stances of VCSP. However, these local instances appear
later to be interconnected by inter-agent constraints
(constraints holding on variables of different local in-
stances). Agents are now faced with a distributed
VCSP instance. The union of optimal local solutions
is not in general an optimal solution of the whole dis-
tributed problem instance. Each agent remains respon-
sible for the values assigned to the variables of its local
instance, but agents have to cooperate in order to find
an optimal, or at least a good solution of the whole
problem instance.

Like (Solotorevsky & Gudes 1995), we formalize the
distributed constraints by adding an inter-agent prob-
lem instance to the set of local instances. A Dis-
tributed CSP (DCSP) instance will be defined by a
couple (P, Pr) :

o P={P,...,P,} is a set of CSP instances, where
each P; = (X;,D;,C;) represents a local problem
instance ; X;,¢ = 1...m are disjoint sets of variables

e Py = (X;,Dy,Cy) is an inter-agent CSP represent-
ing the connection of the local instances, where C;
is the new set of inter-agent constraints, and X; is
the set of inter-agent variables, on which inter-agent
constraints hold.

Note that {X,,...X,,} is a partition of all of
the variables, X; C U:';l X; (an inter-agent vari-
able is also a variable of a local instance), and that
{Ci,...Cn,Cr} is a partition of all of the constraints.

Similarly, a Distributed VCSP (DVCSP) instance is
a couple (P, P;) where P is a set of local VCSP in-
stances having the same valuation structure. Each lo-
cal VCSP instance is equipped with its own valuation
function ;. Pr is the inter-agent problem instance,
with the same valuation structure, and equipped with
the valuation function ;.

Let A be a complete assignment, and A; (resp. A;)
the projection of A over the variables in X; (resp. Xj).
A; is the agent i’s local assignment. We now define the
valuation of A for the constraint ¢ by
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Figure 1: Taking into account an inter-agent con-
straint.

_ | p(Ai,c) ifceC;
o(A,c) = { o(Ar,c) ifceCy.

The valuation of a complete assignment is just
p(A) = @ ¢(4,c)
ceC

where C = (U2, C;) UC7 is the set of all constraints.

We must now consider the way agents manage inter-
agent constraints. (Solotorevsky & Gudes 1995) sug-
gest that a new agent is entrusted with the task of
solving the inter-agent problem instance. But it seems
preferable not to add a new agent and to distribute
the inter-agent problem instance over existing agents.
Each agent must know all inter-agent constraints hold-
ing on its variables. Suppose (figure 1, top) a binary
inter-agent constraint ¢ connecting variables z; and z,
of local instances P, and P». Following (Prosser, Con-
way, & Muller 1992), we add to P; a new variable z}
which is a remote copy of z; (figure 1, bottom). Simi-
larly, we create = on P;. We now replace the original
constraint ¢ by two copies on each instance, and we
add two new specialized inter-agent constraints, repre-
sented by oriented edges (z;,z}) and (z2,z%). These
new constraints will capture the fact the same value
must always be assigned to a variable and its remote
copies. A simple way to satisfy these last equality con-
straints is to consider that remote copies of variables
must be and can only be assigned by the agent which
owns the original variable. This will be our hypothesis
in the following section. Communications are supposed
to be realized via message-passing.

An Incomplete Method

It is easy to show that the decision problem associated
with the VCSP optimization problem is NP-complete,
by restriction to MAXIMUM 2-SAT (Garey & John-
son 1979, LO5). Therefore, it is highly improbable
that there could exist a polynomial time algorithm
for this problem. In practice, all known algorithms
present an exponential time behavior in the general
case. Relatively small instances having 50 variables
with 10 values per domain are generally out of reach
of complete algorithms. The situation is even worse
for distributed complete algorithms, due to commu-
nication overheads. For example, a simple forward-
checking mechanism, which is a minimal improvement
for a branch and bound scheme, would entail an enor-
mous amount of messages between agents. The way
(Yokoo 1995) tackles the problem in the pure satisfac-
tion case, namely by local accumulation of nogoods, is
difficult to extend to the valued case. We conclude that
complete algorithms are generally not relevant in the
context of VCSP instances with real-world size. There-
fore, we have to turn toward incomplete methods.

We present a greedy repair distributed method
which extends to the distributed case any greedy re-
pair centralized algorithm. The major difficulty with
distributed systems is that no agent can know precisely
the state of other agents at any instant. The main idea
of our method lies is the following statements :

—.a “leader agent” can know the valuation of a com-
plete distributed assignment, not at any instant, but
at precise instants of time

- suppose a stable complete distributed assignment
A ; if an agent modifies .A by assigning new values to its
variables, then the resulting variation of the valuation
of A can be computed by this agent, provided that it
is the only one to change the assignment.

This last property is easily verified. Here is a sketch
of the proposed method :

o during the initialization stage of a try, each agent
initializes its local variables, and sends messages to
initialize remote variable copies ; this corresponds
to a complete initial assignment, made of the union
of local assignments ; a leader agent (which can be
one of the existing agents) gathers information from
the others in order to compute the valuation of this
complete initial assignment

¢ next, each agent in turn is allowed to modify its local
assignment, using locally a greedy repair algorithm ;
during an agent’s turn, other agents must not change
their local assignment

¢ at the end of its turn, an agent sends messages to up-
date remote copies of its variables ; it sends also the

16



induced variation of the valuation of the complete
assignment, computed locally, to the leader agent,
allowing it to update the valuation of the complete
distributed assignment

e the end of a try is decided by the leader agent ;
several tours may be necessary to converge toward a
good assignment.

By tuning the parameters of local greedy searches,
one has to find a compromise between

- short local greedy searches, with many tours, al-
lowing more inter-agent variables to change in a given
lapse of time, at the expense of increased communica-
tion overheads

— longer local greedy searches, with less tours, de-
creasing communications.

In the first case, it is expected that agents will con-
verge sooner toward a good solution, whereas in the
second case the convergence will be slower.

It is important to observe that, in both cases, main
communications are reduced to updating remote vari-
ables copies, after an agent’s turn. This communica-
tion time can very small when compared with typical
local search times.

Let us go into details. Here is first the pseudo-
code of a general centralized greedy repair method for
VCSP optimization, adapted from (Selman, Levesque,
& Mitchell 1992) :

GREEDYREPAIR((pg)
1 A* « INITIALASSIGNMENT()
2 for e =1 to MazTries
A ¢ INITIALASSIGNMENT()
while not FINISHED()
if o(A) < o then return A
if p(A) < p(A*) then A* « A
V + NEIGHBOROOD(A)
A + CHOICE(V)
return "not found better than" : A*

U=dile < B B o ) B SN L)

The parameter y is a lower bound of the valuation
searched for : the search will stop as soon as an assign-
ment whose valuation is less or equal to ¢y is found.

INITIALASSIGNMENT : returns an initial assignment,
generally randomly chosen.

FINISHED : returns true when a stopping criteria
is satisfied, for example no improvement of p(A) has
been obtained within a fixed number of changes (flips)
of the current assignment.

NEIGHBOROOD(A) : returns a set of assignments
close to A, for example all assignments obtained by
changing the value of one variable.

CHOICE(V) : picks an assignment in V, for example
one with a minimal valuation.

Here is now the main procedure of the distributed
greedy repair method, executed by the leader agent :

Di1sTRIBUTEDGREEDYREPAIR(p)

1l o T

2 for e =1 to MaxzTries

¢ + DISTRIBUTEDINITIALIZATION()

i1

while not FINISHED()
if ¢ < o then STOP()
if p < ¢* then MEMORIZE()
Ay + AGENTGREEDYREPAIR-i()
P @Dy

10 i + NEXTAGENT(3)

11 EnD()

O 003, W

DISTRIBUTEDINITIALIZATION : activates the initial-
ization step of a try — as explained in the above sketch
of the method — and returns the valuation of an initial
distributed assignment.

SToP : signals to each agent that local assignments
form together a complete assignment satisfying the re-
quired lower bound, so that the search is achieved.

MEMORIZE : asks each agent to memorize its local
assignment, because it participates in the best com-
plete assignment found so far.

END : ends the search ; the best assignment is the
one memorized by the last call to MEMORIZE.

Note that AGENTGREEDYREPAIR-i returns the vari-
ation of the valuation which results from agent i’s turn,
which can be computed locally.

At the end, here is the pseudo-code executed by each
agent in turn :

AGENTGREEDYREPAIR-1()

1 A; + current agent ¢ ’s local assignment
2 A; + INITIALASSIGNMENT-i()

3 while not FINISHEDAGENT-%()

4 Vi + AGENTNEIGHBOROOD-i(A})

5 Al « AGENTCHOICE-i(V;)

6 UPDATEREMOTECOPIES-i()

7 return Ap(A4 - A')

Experimental results

The goal of our experiments was to compare the per-
formance of the proposed distributed method and of a
centralized greedy repair. Since we address real-world
problems, we choose for this experiment a Radio Link
Frequency Assignment Problem (RLFAP) real instance
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Figure 2: Typical executions of the distributed and centralized greedy repair algorithms, on RLFAP instance # 6.

from the French CELAR!. This additive instance has
100 variables?, 44 values per domain, and 1222 con-
straints weighted from 1 to 1000. Variables have been
arbitrarily distributed over 5 agents.

The greedy repair method used for both candidates
is a simple hill-climbing local search : the CHOICE
function returns an assignment randomly chosen from
those which do not increase the valuation. The dis-
tributed method was simulated using the greedy al-
gorithm, modified in such a way that only variables
of the active agent are allowed to change. Hence we
don’t take into account communication overheads. Re-
call however that they are very limited in the proposed
method.

Figure 2 shows typical valuation/time profiles for
distributed and centralized searches. In this first ex-
periment, each method was given a 500 seconds max-
imum time. During this amount of time, the dis-
tributed algorithm did 3 tries, each one composed of
20 complete tours, that is to say about 300 agent local
searches, each one consuming 1 to 2 seconds of CPU
time. It can be observed on these particular cases
a general behavior : with the centralized algorithm,
the current valuation decreases more rapidly, but both
algorithms converge toward valuations close to each
other. In figure 2, the distributed algorithm appears

!This benchmark and others are available in a CSP
archive maintained by P. Eaton, ftp://ftp.cs.unh.edu
/pub/csp/archive/code/benchmarks.

2 Actually, the original problem instance has 200 vari-
ables and 1322 constraints, but by exploiting the structure
of imperative constraints, it can be reduced to 100 variables
while preserving the optimal valuation.
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slightly better in the long run : this is not a general
behavior, but it happens sometimes.

To have a better idea of the performance of the dis-
tributed method compared to the centralized one, we
need more accurate comparisons. Our main experi-
mental results are reported Table 1. The MazTries
parameter was fixed to 1 for each method, in order to
get a more precise measure of the dispersion of results.
The FINISHEDAGENT-% test was just a maximum num-
ber of flips test. Note that this is not the best way to
use greedy repair methods, but these settings allow us
to obtain a more accurate comparison. Each line of
the table reports statistics obtained for 500 tries. Let
us compare, lines A and B of the table, the centralized
and distributed algorithms when the maximum num-
ber of flips is set to 500,000%. We observe

~ a relatively large dispersion of the valuations

- that average values are increased by 8% from the
centralized to the distributed case : this is the price to
be paid for the distribution.

The line C shows that this loss of performance can
be overcome by more computational work : doubling
the number of flips by try allows one to recover and
even to improve the performance level of the central-
ized algorithm.

The optimal valuation for this instance is not known.
The best known today (to our knowledge) is 3389.
Table 1 shows results which appear far from this.
But recall that this is only a coarse experiment, the
aim of which is to compare distributed and central-

3Leading to an average CPU time of 250 seconds per
try.



| # tours | # flips | min | max | med. | aver. | st. dev.
A | centralized 0,5M | 4169 | 14353 | 8115 | 8184 1789
B | distributed 1 50 | 0,5M | 4471 | 17351 | 8804 | 8851 | 2020
C | distributed 2 100 1M | 4116 | 14067 | 7815 | 7917 | 1729

Table 1: Simulation results for RLFAP instance #6, giving statistics on valuations obtained for 500 tries.

ized methods on fair grounds, in order to get a pre-
cise idea of the loss of performance due to the tour
mechanism. Better results for the distributed method
could almost certainly be obtained by more sophisti-
cated local search algorithms such as simulated an-
nealing or taboo search, including a better control of
tries (FINISHEDAGENT-i test). Note also that the best
known valuation (3389) was obtained by a specific and
very sophisticated method?. So we should rather com-
pare it to the minimum valuation (4116) given in Table
1 line C.

Variants

This distributed method allows for several variants and
adaptations.

First, local optimization turns could use any algo-
rithm, possibly a complete algorithm, if the size of lo-
cal instances permits it.

Second, it could be worth taking into account possi-
ble structural properties of the inter-agent constraint
graph. In this respect, the suggested method presents
some similarities with the work of (Kask & Dechter
1996), which is not in the context distributed opti-
mization, but concerns only centralized satisfaction :
variables are partitioned into two subsets, according
to the structure of the constraint graph, and distinct
procedures — one of which is a greedy repair, the other
is a specialized complete algorithm for tree-like graphs
— are applied in turn on each subset.

Third, when there exist imperative constraints (with
cost T), one could use a distributed 2-consistency poly-
nomial algorithm (Prosser, Conway, & Muller 1992) in
order to eliminate some values, as a pre-processing be-
fore tackling the main optimization problem.

Finally, the proposed method is open to some degree
of parallelization :

- agents which do not share constraints can be acti-
vated simultaneously

- m tries (m is the number of agents) can be exe-
cuted in a network of parallel pipelines : during the
first turn, agent i starts the try number ¢ ; then during
the second turn, agent ¢ + 1 mod m continues the try

4 A mix of a genetic algorithm and integer programming,
developed by Antoon Kolen from Limburg, The Nether-
lands.

number %, and so on. This scheme implies that all turns
spend the same time, and that data for each pending
try is memorized by agents

— a parallel variant inspired by (Yokoo & Hiramaya
1996) consists in running all agents simultaneously
during a try (without exchanging values) ; one agent,
among those which bring the best improvement of the
global valuation, is allowed to exchange its values.

Conclusion

We presented in this paper an incomplete method
for solving Distributed Valued Constraint Satisfaction
Problems. This method is a greedy repair distributed
algorithm which extends to the distributed case any
greedy repair centralized algorithm. It is quite simple,
based on successive greedy repairs computed in turn by
agents. It induces a low rate of inter-agent communica-
tions. Finally, it can be tuned such that the handicap
due to the distribution is overcome by more computa-
tional work. Experiments have been conducted on a
real-world size problem instance and demonstrate the
practical interest of this method.
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