
Java Constraint Library: bringing constraints technology on the
Internet using the Java language

Marc Torrens, Rainer Weigel and Boi Faltings

Laboratoire d’Intelligence Artificielle
Ecole Polytechnique Fbi~rale de Lausanne (EPFL)

IN-Ecublens, CH-1015 Lausanne
Switserland

{torrens,weigel,faltings}@lia.di.epfl.ch

Abstract

Distributed problem solving on the web is becoming
more and more important. Client server architectures
are often confronted with server overload. The pro-
cess of browsing a large number of alternative solu-
tions is particularly tedious. In this paper, we present
s methodology for distributing the computation be-
tween server and client. The ides is to formalise the
problem as s constraint satisfaction problem (CSP).
This formalisation supports a natural decomposition
of the task into two subtasks: generation of the CSP
by the server from its database, and generating and
browsing the solutions on the client. In this way, the
browsing process runs locally and can be very fast,
while the server is only accessed once during the pro.
ceas. We provide the :lava Constraint library (JCL)
for implementing the agent that solves the CSP on
the client. We illustrate the concept on the example
of planning a~ travel.

Introduction
From time to time, we are all faced with the problem
of arranging business trips. Typically, we have to meet
with a set of people in different cities, each of which
has certain days where they are available for a meet-
ing. Transportation schedules impose additional con-
straints: I can combine a meeting in Geneva in the
morning with another in Basel at lunch, but if the
lunch meeting is in Lucerne this is not possible as the
flight/train connection takes too long time. In the cur-
rent state of affairs, reliable schedule information can
only be obtained by queries to travel agents or WWW
servers for particular routes, dates and times. Thus,
really finding the optimal plan would require database
queries for every of every alternative itinerary. Since
each query implies response times on the order of 1
minute, this makes travel planning very tedious. Re-
cently, one researcher in our laboratory spent an entire
afternoon collecting flight schedules on the WWW just
for one rather simple trip! A better solution consists
of performing just one single database access where all
relevant information is collected, and then searching
for a particular best solution locally. Thus, we decom-
pose the process into two parts:

SERVER

Generation of the
CSP accessing the

Flight Database

Mini SQL

travel data
request b

%
agent

CLIENT

Solve CSP

Browse through the
solutions

Figure 1: A client server architecture o~ ATP.

¯ the information server compiles all relevant infor-
mation from the database in order that the client
build the constraint satisfaction problem. The CSP
is a compact representation of all solutions that the
problem can have given the initial restrictions of
places and dates.

¯ the server sends the user an agent consisting of the
CSP and solution algorithms. It allows the user to
browse through the different solution possibilities.
Since the agent executes on the client, response time
can be very fast and the user can compare different
alternatives without placing unnecessary load on the
server.

We have implemented a Java constraint library
which allows us to package constraint satisfaction prob-
lems and their solvers in agents. We will first give
a brief introduction to constraint satisfaction tech-
niques and the way in which they can represent so-
lution spaces. We then describe the Java library and
its application on the problem of air travel planning.
Figure 1 describes the basic architecture of Air Travel
Planning System (ATP). Using ATP a user can gen-
erate flight plans according to his wishes. In order to
generate the CSP that represents the flight plans, we
have to access our world wide through flights database
that contains all scheduled airline passenger services
November 1995. After having generated the CSP there
is no longer a need of accessing the server and thus the
user can interact locally on the Java client.

2]

From: AAAI Technical Report WS-97-05. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

Shell

user-friendly interface for editing and solving
CSPs

JCL
JavaScript

algorithms for searching
solutions and preprocessing

CSPs functions for
scripting HTML

pages
JAVA language

Figure 2: The components o/ the JCL environment.

Constraint Satisfaction Problems and
JCL

Many important applications, such as configuration,
resource allocation and diagnosis can be modeled as
discrete Constraint Satisfaction Problems (CSPs).
CSP is defined by P = (X,D,C,R), where X =
{X1,...,Xn} is a set of variables, D = {D1,...,D~}
a set of finite domains associated with the variables,
C = {C1,..., C,~} a set of constraints, and R ={R~j C
Di x Dj for a constraint applicable to Xi and Xj } a
set of relations that define the constraints. Solving a
discrete CSP amounts to finding value assignments to
variables subject to constraints. The theoretical com-
plexity for solving CSPs was shown to be exponen-
tial, however for many real world applications the cor-
responding CSP can be transformed in a reasonable
amount of time into a CSP that can be solved in linear
time. A large body of techniques exists for efficiently
solving CSPs.

JCL is a Java library that can be used in a Java
enabled browser (applet) and in stand-alone Java ap-
plications. Figure 2 shows the components of the JCL
environment. Its purpose is to provide the building
blocks for agents that solve binary Constraint Satisfac-
tion Problems (CSPs). JCL is divided into two parts:
A basic constraint library available on the network and
a constraint shell build on top of this library, allowing
CSPs to be opened, saved, edited and solved. JCL
allows the development of portable applications and
applets using the constraint mechanisms.

Algorithms in JCL

The library contains search and preprocessing algo-
rithms.

Figure 3: The constraints editor in the Constraint She~.

Search Algorithms
In JCL we have implemented 13 algorithms adapted
from (van Beck). There are three main algorithms de-
rived from Chronological Backtracking (BT) that ace:
Backmarking (BM), Backjumping (BJ) and Forward
Checking (FC) (Tsang 1993). Some combinations
them are implemented in (van Beck) and adapted’in
JCL. FC, for example, performs the consistency checks
forward. At each level, the domains of the future vari-
ables are filtered in such a way that all values incon-
sistent with the current instantiation are removed. FC
is very efficient because of its ability to discover incon-
sistencies early. The size of the backtrack tree is re-
duced. However, FC sometimes performs more consis-
tency checks than backward algorithms. In (Kondrak
1994) there are the hierarchies of some algorithms with
respect to the number of visited nodes in the search
tree and with respect to the consistency checks.

Preprocessing Algorithms

The objective of the preprocessing is to reduce the sise
of the CSP by removing redundant values from the
domains of the variables, or by removing redundant
compound labels from the constraints. A value of a
variable is redundant when its removal does not affect
the solutions of the CSP. If all the values from the do-
main of a variable are removed, then the CSP is insol-
uble. In JCL we have implemented two preprocessing
algorithms adapted from (van Beek) : Arc-consistency
and Path-consistency.

The Constraint Shell
The purpose of the shell is to provide a user-friendly
interface to the library. The following aspects are taken
into consideration:

¯ CSP problems definition and generation,

¯ algorithms application,

¯ intermediate and final solution management.

Figure 3 shows how constraints in between variables
can be edited using mouse and menus.

Another important window is the "solving control"
window shown in figure 4. It lets the user choose the
algorithm, solution options, displaying options, and

22

Figure 4: The solving control tvindow.

start the algorithm. The solutions and the display-
ing options panel selects the different options for solu-
tion output. The HTML output produces output in a
browser window. The "Algorithm" panel permits algo-
rithm selection between the JCL algorithms or other
algorithms implemented by the user. While the al-
gorithm is working, a "Solving in progress" window
is displayed by the default solution manager, indicat-
ing among other things how many solutions have been
found until now, and allowing to suspend, resume or
stop the resolution. JCL is available from the Internet
at: http://liawww.epfl.ch/torrens

Prototypical business Air Travel

Planning system

The prototypical business Air Travel Planning (ATP)
system is designed to illustrate the use of JCL for plan-
ning. A air travel plan is a sequence of flights con-
necting different cities a user wants to visit. Given
such a set of cities together with possible time slots to
visit each city, the system generates a representation
of plans from which the user can easily select the most
preferred one. Before describing the details and an ex-
ample we will first present the architecture of ATP.

A client server architecture for ATP

The basic idea is that a client sends a request contain-
ing the users raw travel data to a server. The server
will have access the flight database in order to generate
a Constraint Problem whose solutions are the possible
travel plans that will satisfy to the users requests. This
CSP together is packaged with search algorithms from
the JCL to form an agent which can interact with the
user. Building the CSP requires only a small fraction
of time compared to solving the CSP, so having the
agent execute on the client significantly reduces server
load.

Accessing to the server database

In order to access to the flight data needed to build
the CSP, we have created a database using MiniSQL1.

We use a Java class library called MsqlJava3 which
allows applications or applets to access and manipulate
MiniSQL databases. In the server the MiniSQL server
is running in background, and thus is possible that the
applet client can access to the flight database in order
to build the CSP. Table 1 describes some rows of the
created database.

Problem Formulation

The input data for ATP system is a set of meetings,
where every meeting is described by the place and the
possible time-slots for the different days the meeting
can take place. A solution of the business travel prob-
lem can be seen aa a sequence of flights in between the
cities of the meetings. For each meeting one of the pos-
sible days must be assigned and it must be guaranteed
that then exists at least one flight connection between
consecutive meetings. We have formulated the prob-
lem of finding a travel plan aa a binary constraint satis-
faction problem (CSP). The variables of the travel plan
CSP is the union of meeting variables MV and flight
variables FV. The meeting variables together with the
constraints between them induce a constraint problem
that we call meeting CSP (MCSP). Similarly the CSP
induced by the flight variables FV is called flight CSP
(FCSP). Next we describe the MCSP, the FCSP and
the constraints between them in more detail.

Meeting CSP (MCSP) For every meeting Mi
variable Mgi(i = 1,..., n) is created and the domain
of the variable is the set of possible days where the
meeting M~ can take place. There is an inequality
constraint between two variables if their domains in-
tersect in at least one value. A solution of the MCSP
is a assignment of day to each meeting such that no
two meetings can be held on the same day. Having a
solution does of course not guarantee that the solution
can be refined down to the actual flights. Consider as
example the travel data from table 2. Solving MCSP is
computational equivalent with solving the list coloring
problem which is known to be NP-complete.

XReference at http://Huges.com.au
2Reference at http://mama.minet.uq.os.au/msqljava

23

[M [City [Time-Slots for November

M1 AMS 1" 12h-16h 3¢~ 13h-15h
M2 BCN 1" 12h-15h 2"~ 13h-17h
M3 LON 2~d 12h-15h 8th llh-14h
M4 GVA 2~d 9h-12h 4t~ 9h-12h 5’h 10h-15h
M5 PAR 5m 8h-12h 8¢’* 8h-12h
M6 BER 6t~ 15h-18h 8t~ lOh-16h
M7 FRA 4th 8h-12h 7~h 8h-12h

Table 2: Input Data to be send to the server.

Meeting First Solution Second Solution

M1 1" 12h-16h 3¢~ 13h-15h
M2 1’¢ 12h-15h 2"~ 13h-17h
M3 2n~ 12h-15h 8m llh-14h
M4 2nd 9h-12h 4ta 9ho12h
M5 5" 8h-12h 8" 8h-12h
M6 6’~ lSh-18h 8m lOh-16h
M7 4th 8h-12h 7*~’ 8h-12h

Table 3: T~#o of the possible solutions to the MGSP.

Flight CSP (FCSP) The FCSP can be considered
as the planning or sequencing part of the travel plan-
ning CSP. For each planning step exists a variable and
the values of these planning steps are the flights in be-
tween cities where the meetings could take place. In
order to apply a flight action from meeting j to meet-
ing i is the traveler must simply have finished meet-
ing j and he should arrive before the meeting i starts.
Whenever a meeting is scheduled for day/c we create
a "Before Meeting" variable BMh and a "After Meet-
ing" variable AMk. Using such a model lets us easily
express the constraint that a traveler would like to stay
in town X after the meeting and takes the flight on the
next day. The values for a B]VIi variable are either the
flight from a meeting he had before day i to the possi-
ble meeting places at day/c (/c ~ i) arriving before the
meeting starts or a "no-action" value if he is already
in a city where the meeting takes place.

Constraints Having introduced the variables and
the values for the MCSP and FCSP we will now de-
scribe the constraints that have to be satisfied. The
following constraints need to be expressed:

¯ [AM~ - BMk+x]: if we stay at the meeting place on
day k, which is the "no-action" value AMk, then we
have to fly to the place of meeting /~ + 1 arriving
before the meeting starts. On the other hand, the
flight to the meeting]~ % 1 leaving the meeting city/~
after the meeting, is compatible with the "no-action"
value for Bk+x.

¯ [BMk - AMk]: four combinations are possible : 1)
The "flight-flightn tuple, if we arrive in the city di-
rectly before the meeting and leave the city on the
same day. 2) The "no-action-flight" tuple if we are
already in the city and leave directly after the meet-
ing. 3) Similarly the "flight-no-action" and finally
4) the "no-action- no-action" tuple.

To describe how decisions made in the MCSP can
be propagated to the FCSP, we have to describe the
constraints in between MCSP and FCSP: If a variable
M~ has the value/c in its domain i.e. meeting Mi can
be scheduled on the kth day, then there is a constraint
in between the BMk variable and the AMt variable

in the FCSP. The allowed value combinations are the
following:

¯ [M~ -BMk]: I~ is compatible with a "flight to cry of
meeting k" or with the "no-action" if we are already
in the city of meeting/~. All the other values of M~
are not related with the meetings on day k and are
therefor valid.

¯ [M~ - AMh]: similar to the other constraints above.
is compatible with a "flight from city of meeting

k to another city" or with the no-action if we are
planning to stay overnight in the city of meeting k.
All the other values of Mi are not related with the
meetings on day k and are therefor valid.

Example

We use the example already presented in table 2. The
user will in a first step decide on the days the meet-
ing can take place. That is he decides on the days the
meetings will take place without having to consider
more details. For doing so the system needs to solve
the MCSP (see table 3). A solution to the MCSP
a partial solution of the overall CSP which can then
be propagated to the FCSP. This allows the removal
of values from the domains of the variables in FCSP
that are not consistent with selected days by the users.
One can show theoretically that making the CSP arc-
consistent after having decided on the meeting days
guarantees global consistency of the CSP. This implies
that any partial solution of the FCSP can be extended
to a global solution of the whole CSP without back-
tracking. The table 4 describes the variables and their
domains of FCSP after having propagated the second
partial solution from table 3. In table 4 one can observe
for example that there are no flights leaving Barcelona
with destination Amsterdam after 17h. This implies
that the user has to fly to Amsterdam the next day.
Furthermore no hotel is needed in Amsterdam since he
is required to take the flight to Geneva directly after
the meeting. The user can select a single flight from
all flights leaving Barcelona and arriving in Amster-
dam before 13h depicted in table 5. The actual flights
can then be presented to the user in the form of a list
such that the user can easily select the most preferred
one.

24

Meeting City] DayI TimeSlots Variable BM Variable AM
1. M2 BCN 2~d 13h-17h FL : M0- M2 M2
2. M1 AMS 3ttt 13h-15h FL : M2- M1 FL : M1 - M4
3. M4 GVA 4th 9h-12h M4 FL : M4 - M5
4. M5 PAR 5th 8h-12h M5 M5, FL : MS- M6
5. M6 BER 6th 15h-lab M6, FL : MS- M6 FL : M6 - M7
6. M7 FRA 7|A 8h-12h M7 MT, FL : M7- M3
7. M3 LON 8Ch llh-14h M3, FL : MT- M3 M3

Table 4: The solution space after hauing propagated a partial solution.

I Comp] Fly]From [To I Dep [Art [Dur]
IB 4248 BCN AMS 10:15] 12:25] 2:10 [
KL 352 BCN]AMS 7:05 [9:25 2:20]
SR 724 GVA PAR 12:15 13:20 1:05
AF 2855 GVA PAR 14:10 15:15 1:05
SR 726 GVA PAR 16:15 17:20 1:05
AF 2835 GVA PAR 17:15 18:20 1:05
AF 2893 GVA PAR 18:05 19:10 1:05
SR 728 GVA PAR 18:45 19:50 1:05
AF 2887 GVA PAR 20:40 21:45 1:05

Table 5: Possible flights arriving in Amsterdam from
Barcelona before 13h. and the flights from Geneva to Paris
on the 4ts day.

Conclusion
As a result of the spread of the world-wide web, inter-
active information servers axe becoming more and more
important. Browsing through databases requires quick
response times which are difficult to achieve when users
interact directly with a server. We have shown an ex-
ample of how the agent techniques underlying Java can
separate browsing from database access. The key el-
ement of this approach is to represent solution spaces
through constraint satisfaction problems. The same
approach is applicable to other problems where a com-
bination of elements needs to be configured into a co-
herent whole. Such configuration systems will be an
important technology for many areas of electronic com-
merce.

References
Kondrak, G. 1994. A Theoretical Evaluation of Se-
lected Backtracking Algorithms. Technical Report
TR-94-10, Department of Computing Science, Uni-
versity of Alberta, Edmonton, Alberta, Canada.

Tsang, E. 1993. Foundations of Constraint Satisfac-
tion. London, UK: Academic Press.
van Beek, P. CSPI, ib : a CSP library written in C lan-
guage, vanbeekOcs.ualberta: University of Alberta.

25

