
NoGood Caching
for

MultiAgent Backtrack Search

William S. Havens

Intelligent Systems Laboratory

School of Computing Science
Simon Fraser University

Bumaby, B.C., Canada V5A IS6
email: havens@cs.sfu.ca

(Research Paper)

Abstract

Multiagent solutions to the distributed constraint satisfaction
problem (DCSP) require new types of techniques which ac-
commodate the local autonomy of agents and the difficulties of
computing in a network environment. Recently a technique
called asynchronous backtracking has been developed to solve
the DCSP. The algorithm works by sending nogood messages
among agents to effect intelligent backtracking. One important
issue is developing nogood caching schemes which are appro-
priate to asynchronous backtracking. There has also been re-
cent progress in a sequential algorithm called dynamic
backtracking which exhibits a polynomial bound on nogood
cache size. In this paper, we show by example that the existing
caching scheme used by dynamic backtracking is not appropri-
ate for the multiagent context. We suggest two alternate
nogood caching schemes and two caching algorithms based on
these schemes. Experimental comparisons of these caching al-
gorithms are forthcoming.

Introduction
Distributed constraint satisfaction problems (DCSPs) are
appropriate abstraction for multiagent cooperative problem
solving. They are characterized by multiple reasoning agents
making local independent decisions about a global common
constraint satisfaction problem (CSP). The motivation for
studying the DCSP is not solely speedup of sequential algo-
rithms but the wider issue of coordinating search among mul-
tiple and perhaps disparate agents. The applications of
multiagent systems in network environments are proliferating
but generally focus on straightforward negotiation issues.
The next step in this evolution will be multiple agents who
collaborate to solve combinatorial tasks as DCSPs. Thus, an
important research focus is the development of effective dis-
tributed constraint solving algorithms for DCSPs.

The recent work by [Yokoo et al. 92] in adapting intelli-
gent backtracking (113) techniques to solving DCSPs has gen-
erated considerable interest. The method, called
asynchronous backtracking (AB), constructs inconsistent

sets of variable bindings (nogoods) and communicates them
among multiple agents to effect an IB search.The method has
also been extended to’incorporate heuristic search [Yokoo
93]. The key idea is that agents can make local autonomous
decisions yet effect a global systematic search.

Since AB is claimed to be complete, an obvious question
to ask is: How space efficient is the algorithm? In particular,
how many nogoods are derived and then communicated
among agents during the search?. The reports cited above do
not indicate the size of the nogood store actually computed.
But its size is certainly crucial to practical application (espe-
cially across slow communication media such as the internet).
We seek to understand this issue.

Recent advances have also been made in sequential IB al-
gorithms. A technique called dynamic backtracking (DB)
[Ginsberg 93] is a form of IB which provides considerable
flexibility in the search direction while maintaining com-
pleteness. Furthermore, the algorithm exhibits a polynomial
space bound of O[n2d] on the number of nogoods stored at
any time [Ginsberg&McAllester 94].

In this paper, we analyse the nogood caching behaviour of
DB from the perspective of its application to the DCSP. In
particular, can a similar polynomial space bound be estab-
lished for AB which also supports the autonomy of the mul-
tiagent approach? The answer is a qualified yes. We show
that the existing caching scheme defined for DB is inadequate
but can be modified to the advantage of DCSP search.

In the next section, we introduce the DCSP and the basic
method of intelligent backtracking. From this framework, we
then consider asynchronous backtracking and dynamic back-
tracking. In particular, the nogood caching rule given by
Ginsberg and McAllester [94] is examined. In the following
section, a DCSP example is given which is problematic for
the DB caching rule. It is already known that this caching rule
preemptively discards nogoods which must be recomputed
repeatedly [Baker 95]. For AB, this is a particularly ineffi-
cient scheme because it unnecessarily resets the states of
agents not involved in the backtracking. The problem is

26

From: AAAI Technical Report WS-97-05. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

exacerbated in the network environment where weseek to
minimize communication between agents.

Next we consider an alternative caching rule which re-
moves this difficulty. It is shown that our new caching rule
supports a variety of caching algorithms. Two such algo-
rithms are proposed. This is a preliminary report on nogood
caching which has application in both the CSP and the DC-
SP. Experimental confirmation of these results are forth-
coming.

Distributed CSPs and Backtrack Search
Definition 1: A constraint satisfaction problem, CSP =

(N, C), where XN is a setof discrete variables and C is
a set of k-ary constraints on these variables.

We will refer to subsets of the variables in XN using index
set notation. The set of all subscripts is N={ 1...n}. The com-
plete set of n variables in the CSP is then XN. A particular
subset of variables Xj~XN refers to the variables { Xj]jej
such that J~N. Each variable XiE XN has a domain Di of
discrete values. Likewise any constraint Cj¢ C is a relation
on variables Xjc::XN.
Definition 2: A distributed constraint satisfaction problem

(DCSP) is a CSP where the variables N and the con-
straints C are distributed among a finite set of agents.

There are many possible mappings of variables and con-
straints to agents. For simplicity, we assume (like AB) that
each agent has exactly one variable and knows every con-
straint on that variable. Unlike AB, constraints are not bina-
ry directed arcs in the constraint graph but general k-ary
predicates Cj for k = IJI. We will informally substitute vari-
ables for agents and vice versa when the distinction is not
important.

Definition 3: The binding of a variable Xi to some element
¢z~ Di is the assignment Xi = ¢x.

We can abbreviate the notation by referring simply to ai as
the binding since the subscript ’T’ identifies which variable
Xi it is assigned. A set of bindings (a tuple) is denoted also
using index set notation. Hence aj ={(Xj}j¢ j represents the
set of bindings for variables Xj, j~ J. A constraint Cj holds
on this tuple iff aj~ Cj.
Definition 4: A solution to the DCSP is a tuple an for all

variables XN such that aj ~ Cj, aj ~aN, which must
hold for every constraint Cj E C.

Since aN contains a binding for every variable in the CSP,
we can think of it as encoding a point in the search space. As
the search moves in this space (or some subspace), individ-
ual constraints are variously consistent or inconsistent.
Whenever a constraint becomes inconsistent, a record of the
inconsistency is made in the form of a nogood.
Definition 5: The negation of an inconsistent tuple, written

-,¢xj, is called a nogood. This assignment of values to

variables Xj is known not to satisfy some constraint(s)
C.

Nogoods are constructed either by the failure of a given con-
straint or by resolution from existing nogoods. If the empty
nogood is derived (containing no bindings) then the CSP
unsatisfiahle. For details, see for example [Gins-
berg&McAllester 94].
Definition 6: (culprit selection rule) In any nonempty

nogood there is a distinguished binding called the culprit
which is the most recent binding made in the ordering of

variables. In the nogood -~aj = { aj }j ¢ J, the culprit is
binding at ~ aj such that t >j for allj ¢ J.

Definition 7: A nogood expressed in culprit form is --,¢xj =
--,(a K at), where t i s t he culprit b inding according to
the culprit selection rule and ¢zK, K=J-{t}, is the anteced-
ent.

A nogood in culprit form can also be expressed equivalently
as the implication (aK~--,ff.t) such as used by [McAllest-
er&Ginsberg, 94]. In general, let Fi be the nogood cache for
agent "i" containing the set of nogoods derived for culprit
variable Xi. The global nogood cache F is simply the set of
all the agent’s local stores, F={Fi} i ¢ N"

Definition 8: The subset Ai ~Di is called the live domain
of variable Xi which represents those values in its
domain Di which are consistent with the current partial
solution.

The live domain for Xi is then those values ffi ~ Di which are
not precluded by any existing nogood whose antecedent is
currently contained in the global point aN. More precisely:

Ai = {o~i ~ Di I V~(0~K0~i) ~ Fi, 0~K0~0~N] (1)

Initially since there are no nogoods, every value in the do-
main is also in the live domain. Note that the live domain can
change radically as the search moves point otN in the search
space. The values of nogood antecedents aK are only true
when 0~KCO~N. Our challenge is to manage the nogood
cache (and hence the live domains) efficiently as the search
proceeds.

Definition 9: A variable Xi whose live domain Ai = {} is
called a bottom variable and written Xi = .I..

Asynchronous versus Dynamic Backtracking
First we review the method of asynchronous backtracking
from the perspective of nogood generation and propagation.
Then we proceed to analyse the application of dynamic
backtracking within this framework.

Asynchronous Backtracking

Yokoo [92] defines a message passing protocol for realizing
IB in the multiagent context. Agents correspond to individ-
ual variables which are initially assigned a total order.

27

Constraints axe binary directed links between agents (or-
dered from lower to higher agents in the order). Agents au-
tonomously choose values for their variables which are then
communicated to neighbour (receiving) agents along the di-
rected links. The sending agent sends its value to the receiv-
ing agent via an "OK?" message. Receiving agents maintain
a tuple of received variable bindings (called its agent-view)
which are checked along with its own binding against its
constraints.

If all constraints are satisfied then the global set of bind-
ings for the variables constitutes a solution to the DCSP.
Otherwise, the agent-view comprises a nogood antecedent
which eliminates the current value (the culprit) from the
agent’s live domain. The agent then freely (heuristically)
chooses a new value from its live domain and recursively
sends the OK7 message to all connected agents lower in the
order. However, if the agent variable reaches bottom by ex-
hausting its live domain, then the agent-view comprises a
nogood which is communicated (via a "nogood" message)
to the highest variable appearing in the nogood (the culprit
selection rule).

When an agent receives a nogood message, first it
checks its binding in the nogood. If that value is its current
binding then it removes it from its live domain and chooses
a new value (if possible) as above. If the empty nogood
derived then the DCSP is unsatisfiable and all agents stop.

Although there are precautions necessary to accommo-
date the multiprocessing nature of the AB algorithm, basi-
cally i t is very similar to other forms of IB, in particular DB.
It would seem natural to adapt the nogood caching scheme
of DB to AB if possible.

Dynamic Backtracking

A major research goal of DB is the maximum "freedom of
movement" in the search space while maintaining a system-
atic and complete search. The authors argue that DB is a bal-
ance between these two conflicting criteria. In particular, the
caching scheme employed by DB is based on the notion of
an "acceptable assignment" (hereafter the AA-rule) which
limits the size of the nogood database as the search proceeds
through the search space. However, there is a direct conflict
between freedom of motion in the search and retention of
nogoods. For distributed algorithms, we argue that this con-
flict is debilitating.

Local autonomy is paramount in the multiagent ap-
proach. Each agent must be free to maximize its own utility
according to its own heuristics. Interactions among agents
should be minimized (in the network environment) and me-
diated solely by their mutual constraints (and not by details
of the nogood store). We assume a precedence order among
agents (as per IB and AB). Agents higher in the order must
accede to the variable values established by previous agents
in the order. In other words, higher agents must backtrack in

the environment established by lower agents. Otherwise,
agents maximize their local utilities as they are able.

Unfortunately, the DB method cannot achieve this goal
in the multiagent context. In particular, the AA-rule forces
agents to repeatedly discard their (hard earned) nogood
stores as the environment of other agents changes. To make
this situation clear, we introduce the nogood caching rule
given for DB.

NoGood Caching

We begin by stating the AA-rule in our framework.

Definition 10: (AA-rule) an acceptable assignment is a
point tXN that encodes every_ antecedent in F and none of
the culprits [Ginsberg&McAUester 1994].

More precisely,

V~(O{K(Xt)¢ F, ~KC(~Nand(~t~CgN (2)

which says that every nogood, --,(0~K0~t), in the store must
obey the following: l) the antecedent 0[K must be currently
true (contained in the current global point, 0tN) and; 2) N
cannot contain any binding 0~t precluded by such a nogood.
The second condition makes sense because it eliminates any
point 0[N in the search space which is known to be inconsis-
tent given the other bindings ~K contained in this same
point.

The first condition is more problematic. It says that any
nogood O[K whose antecedent is currently false (i.e.

~K~N) must be deleted from F. This is the basis for the
polynomial space bound on the nogood store. The rule has
also been called "l-relevance learning" since the cache con-
tains nogoods which differ from 0~N in at most one binding
(i.e. the culprit)[Bayardo&Miranker 96].

Cache (~j) =

If (Xj=O then Halt.

r <-- Fu(~a}
let ((~K(Xt)

for every -~(~(X i)EF such that (XtE~,

F ~- F-{~(ff~i)}
if Xt=l then

let ~±={~ I (~H(~t)EFand
Cache (-~(X±)

end.

Algorithm 1: DB version of procedure Cache

Algorithm 1 above gives the nogood caching procedure
for 1DB . This procedure is called whenever a new nogood,

~a, is discovered during the search. Cache checks for the
empty nogood (in which case the CSP is unsatisfiabl¢) and

l.Recoded from procedure "simp" in [Ginsberg&McAllester 94].

28

otherwise adds -’(~a to F. Let the nogood have an anteced-
ent (~ and culprit 0~t. Then the procedure deletes from r
every other nogood -~ ((XH(Xi) which contains culprit (Xt in
its antecedent (X~. Finally, if this additional nogood forces
variable Xt=l, then a new nogood (X± is induced from the
antecedents 0~H of every nogood on Xt and Cache called re-
cursively on this new nogood.

A Problematic Example for DB Cache

How will this procedure Cache based on the AA-rule effect
the efficiency of the AB search? Please consider the follow-
ing example shown in Figure 1.

% antecedent

I. +- true

i
] ~ % antecedent

-- " \ r, /~Fl’*-a01

V - I"*-%11

aI antecedent ~ _ _a3 antecedent

[r vr

Figure 1: A Problematic Example for DB Cache

We have a DCSP with four agents (variables) and two con-
straints. Constraint C13 relates variables X1 and X3 while
constraint C012 relates variables Xo, X1 and X2. Attached to
each variable is the corresponding nogood store V. Each bul-
let in the store represents some value ¢x from its domain and
the arrows indicates some existing nogood whose anteced-
ent has eliminated that value from its live domain. For ex-
ample, variable X1 has four domain values, two of which
have been eliminated by nogoods whose singleton anteced-
ents are the binding a0 for variable X0.

For illustration, we assume that the agents for X0 and X1
have communicated their bindings (via OK? messages)
the agents for variables X2 and X3. Thereafter however, con-
straints COl2 and C13 repeatedly fail on these bindings gen-
erating new nogoods of the form -~(0~010~2) and ~(0~10~3)
respectively. Successive domain values for X2 and X3 are
thus ruled out as illustrated. Suppose eventually X2fI since
its live domain has been completely eliminated thus induc-
ing a new nogood ~(0~o(Xl). The AA-rule then forces the
moval of every nogood with culprit O~l in its antecedent.
Thus, neither X2 nor X3 will have any nogoods remaining in
F and their live domains will be fully restored.

The assumption here is that discarded nogoods can be
derived again later if required. This is the basis of the O[n2d]
space bound for V. But these discarded nogoods will be re-
discovered and then discarded again an exponential number
of times in the worst case [Baker 95]. Another problem is

that some nogoods will never be discovered. Suppose al-
ways X2 reaches bottom before X3 (e.g. ID21 << ID31) then
never will any nogoods be induced from X3=.L. This is be-
cause the AA-rule will "reset" the work done by X3 each
time X2 cycles its live domain asserting the new nogood
-~(~ at).

In order to show that the AA-rule unnecessarily discards
and then rediscovers nogoods, we need the following def’mi-
tion (adapted from [Bayardo&Miranker 96]).
Definition ll:The defining set for Xi is the set of variables

XK previous in the variable ordering (i.e. Vk¢ K, k < i)
which can appear in the antecedent of some nogood for

Intuitively, the defining set XK are those variables which
when backtracked will cause the nogoods computed for Xi
to be discarded since these nogoods contain antecedent
bindings from the current values of these variables XK. In

Figure 2, suppose another variable Xj shares (part of) the
same defining set with Xi. Then when Xj backtracks into XK
every nogood in Xi will be discarded (and vice versa) in the
worst case. This is clearly an undesirable caching scheme
for any multiagent algorithm such as AB. We would prefer
a scheme which left the set of nogoods for Xi intact as much
as possible when Xj backtracks but still does not require ex-
ponential space for the nogood store.

deflnin letls for Xi culprit variables

o, ’Q
"x| O O/~

\ antecedents

Figure 2: .Nogood interactions between agents

Improved NoGood Caching Schemes
In this section, we offer two alternate nogood caching
schemes and then suggest two caching algorithms based on
these schemes. The first has an unrestricted cache size while
the second imposes the same polynomial limit as the AA-
rule but without the difficulties noted by example above.

The basic idea of the first scheme is to keep nogoods in
the cache whose antecedents are not necessarily contained in
the current state (thus violating the AA-rule) but still delete
unnecessary nogoods whenever possible. We will allow
multiple nogoods to have the same culprit but different an-
tecedents (i.e. (aH, ~) and (~., ~)). More precisely,
first improved caching rule is the following:

29

V ~ (0~ K0~t)¢ r, ((X c~(~ N:=) 0~t~ 0~ N) andt ~:.[. (3)

which says that for every nogood ~ ((X K(Xt) in F, the current
point (XN must not contain this culprit C~t if the antecedent
(XK is contained in the current point (XN and the culprit vari-
able Xt must not be bottom. So F may contain nogoods
whose antecedents are not currently true but every such
nogood must refer to a culprit which is not currently a bot-
tom variable. The caching strategy implied from this rule is
to keep a cache for each variable which contains nogoods
whose antecedents range over the entire defining set for the
variable but to delete that cache whenever the variable
reaches bottom. In particular, we note that the only reason
for keeping the antecedents for each nogood is to resolve
them into a new nogood when the variable is bottom. There-
after, we can discard these nogoods and thus reset the live
domain for the variable.

Given this caching rule, a variety of actual caching algo-
rithms are possible. The simplest version is given in Algo-
rithm-2 below which has no bound on its cache size but
exhibits the desired property that backtracking a culprit vari-
able will not discard the caches of other variables which
share some defining set with that variable.

Cache (-~(Xj) --

If (Xj=O then Halt.
F +- ru{~a}
let (~(Xt) J
if xt=i then

let (X±={~H I (~H(Xt)~Fand ~H_C~N}
for every ---I (~H(Xt) E

r~ r-(~(~M~t)
Cache (-~(~±)

end.

Algorithm 2: Improved procedure Cache with
unrestricted space bound.

This version of Cache, like the previous version, first checks
for the empty nogood. Otherwise, the new nogood ~(~j is
added to F. Let the nogood have an antecedent (X~ and cul-
prit (Xt. If variable Xt is now bottom then perform the fol-
lowing. Resolve a new nogood U.L from those nogoods in F
whose culprit is C~t and whose antecedent is currently true
(i.e. contained in the current point). Then delete every
nogood from F which has culprit (Xt (i.e. empty Ft). Finally,
recursively cache this new nogood (X±.

Algorithm-2 differs from Algorithm-1 in its strategy for
emptying the cache. Instead of discarding nogoods whose
antecedents are not contained in the current point (the AA-
rule), Algorithm-2 discards nogoods only when their cul-
prits become bottom variables. These nogoods have served
their useful purpose and been resolved into a new nogoed.
They can now be deleted.

Let’s consider the example of Figure-1 again using this
new caching algorithm. Again constraints COl2 and C13
repeatedly fail generating new nogoods of form (CCOl(X2)
and ((Xl0~2) respectively. Successive bindings for X2 and X3
are ruled out. Eventually X2=.I. inducing a new nogood (C~0
0~1). The new Cache algorithm removes only nogoods for
X2 (since 2 i s bottom) while t he existing nogoeds for X3
remain intact. Any subsequent nogoods derived for X2 and
X3 will be of the form ([301 U~2) and ([31 3) respectively
(since the binding now of t has necessarily changed). W
note that the nogoods are now (possibly) disjunctive for each
culprit. Suppose eventually X3=/for some antecedent (say
~l) and a new nogood ({) ~l) is derived which means
the algorithm will conclude that the current value [3! for X1
is globally inconsistent (since the antecedent is null).

Algorithm-2 is an improvement over the original DB
version of Cache since it achieves our goal of maintaining
autonomy among agents in AB. Nogood caches are not dis-
carded unnecessarily. Communication among agents not in-
volved directly in the backtracking is reduced. However, we
have also lost the desirable polynomial space bound provid-
ed by DB. Can this bound be reclaimed? We note that there
are a wide variety of caching schemes in use (e.g. virtual
memory, disk caches). Most of these schemes do not pre-
emptively empty their caches (like the AA-rule) before the
cache is actually full! To do so is to unnecessarily discard
the results stored therein.

Cache (-.(Xj)
If (Xj=O then Halt.

F ~-- I~{--,(Xa}
let (f~K(Xt) =(Xj

if IFl>-Max then
for every --i (~H(Xi) e F such that

F +- F-(~(O~±))

if Xt=l then

let (X±={~HI (~H(~t)~Fand ~H~N}

Cache (-.(X±)

end.

Algorithm 3: Improved procedure Cache with O[n2d]
space bound.

From this observation, we offer a second nogood cach-
ing scheme by relaxing the requirement that no culprit vari-
able of any nogood can be bottom. Instead we will impose
an external constraint on the size of the nogood store. Algo-
rithm-3 above looks very similar to Algorithm- 1 except that
it refrains from preemptively emptying the cache until the
size of F is greater than some predetermined value Max.
Otherwise, nogoods are retained in the cache in an unre-
stricted fashion. The value of Max could be set by how much

3O

memory is available or on some other external criterion. For
fair comparison with DB, we will choose Max to yield the
polynomial space bound of O[n2d]. Next we show that Al-
gorithm-3 has this desired polynomial bound.

Theorem 1:Algorithm-3 has a space bound of O[n2d] for
value Max = n(n-1)d.

Proofi
¯ Suppose a new nogood -, (C~O~t) is added to F causing

it to be full.
¯ Zero or more nogoods will be deleted from I" of the form

---~ (0~l(Xi), for (~te H.
¯ If at least one nogood has been deleted then the cache is

no longer full (and the bound is not exceeded).
¯ Otherwise, zero nogoods have been deleted. This could

happen at most once for each possible culprit (gt which
is n variables times the average size of the domains d.

¯ Therefor if we define Max = n2d -nd = n(n-1)d then the
actual size 113 can never exceed n2d nogoods at any par-
ticular time.

Discussion
The nogood caching problem identified here manifests
when trying to preserve agent autonomy in AB. [Ba-
yardo&Miranker 96] suggest that in sequential applications
of IB that retaining nogoods which differ from the current
point by no more than a single binding (1-relevance learn-
ing) exhibits worst-case execution behaviour that is within
constant of unrestricted retention of all nogoods for a partic-
ular variable (dependency directed backtracking). We sus-
pect that this may be true for only the worst case in
sequential algorithms but is not true in the distributed case
of AB. The intuition is that sequential depth-first algorithms
tend to focus on exhausting the live domain of a single cul-
prit variable before backtracking and hence changing the de-
fining set of that variable. Thus the defining set changes
bindings slowly and the AA-rule does not affect perfor-
mance too adversely. This is clearly not the case for distrib-
uted algorithms whose agents are allowed to
asynchronously change the bindings of their variables. In
the distributed case, defining sets change spontaneously and
unpredictably.

Conclusion
Multiagent approaches to solving CSPs are becoming more
prevalent. Constraint solving techniques developed for se-
quential algorithms need to be evaluated carefully before be-
ing applied in the DCSP framework. In this paper, we have
examined the nogood caching scheme developed for DB and
found it unsuitable for maintaining the nogood store in AB.
We showed that this caching scheme discards and forces the
recomputation of nogoods for each agent repeatedly. Two
new nogood caching schemes were suggested which allevi-

ate this problem. Neither scheme preemptively nor unneces-
sarily empties the cache. Two new cache algorithms were
given. The fast algorithm has a non-polynomial space
bound while the second algorithm exhibits the same doair-
able polynomial space behaviour as DB. These results are
work in progress and empirical evaluation of these caching
algorithms is underway.

Acknowledgments
This work was begun while visiting the Knowledge Systems
Group at Sydney University. I would like to thank Dr. Nor-
man Foo for his gracious hospitality and Dr. Aditya Ghose
for his insightful comments.

References

Baker, A.B. 1995. Intelligent Backtracking on Constraint
Satisfaction Problems: Experimental and Theoretical
Results. Ph.D. thesis, Dept. of Computer and Information
Systems, Univ. of Oregon.

Bayardo, R.L & Miranker, D.P. 1996. A Complexity Analy-
sis of Space-Bounded Learning Algorithms for the Con-
straint Satisfaction Problem. In prec. AAAI-96: 13th
National Conf. on Artificial Intelligence, Portland, Oregon,
298-304.

Dechter, R. 1992. Constraint Networks. In Encyclopedia of
Artificial Intelligence, 2nd ed., 276-285. Wiley.

Ginsberg, M. L. 1993. Dynamic Backtracking. Journal of
A.I. Research 1, Morgan-Kaufmann, 25-46.

Ginsberg, M. L. & McAllester, D. 1994. GSAT and
Dynamic Backtracking, In proc. 2nd Workshop on Princi-
ples and Practice of Constraint Programming, Orcas Island,
WA.

Yokoo, M.; Ishida, T.; Durfee, E. H. & Kuwabara, K. 1992.
Distributed Constraint Satisfaction for Formalizing Distrib-
uted Problem Solving, In proc. 12th IEEE Int. Conf. of Dis-
tributed Computing Systems, 614-621.

Yokoo, M. 1993. Dynamic Variable/Value Ordering Heuris-
tics for Solving Large-Scale Distributed Constraint Satis-
faction Problems. In proc. 12th Int. Workshop on
Distributed Artificial Intelligence.

31

