
A Testbed For the Evaluation of Multi-Agent Communication and
Problem-Solving Strategies

Dorothy L. Mammen and Victor R. Lesser
Department of Computer Science

University of Massachusetts
Amherst, MA 01003, U.S.A.

{mammen, lesser)@cs.umass.edu

Abstract

We present here a distributed problem-solving
testbed, which we use for experimental analy-
sis of the relationships among distributed prob-
lem structure, inter-agent communication and co-
ordination strategies, and problem-solving per-
formance. Distributed problems in our sys-
tem are represented as distributed CSPs. The
testbed consists of two parameterized compo-
nents: (1) a problem generator, for the creation
of distributed CSPs in specific classes with re-
spect to distributed problem structure, and (2)
multi-agent problem solver, capable of employing
various communication, coordination and local
problem-solving strategies. We are beginning to
use this system to evaluate hypotheses about the
performance of different strategies for communi-
cation of partial subproblem results as a function
of distributed problem structure.

Introduction

Previous empirical work in distributed artificial intelli-
gence has shown that in multi-agent systems, the tim-
ing of sub-problem sharing and the use of shared par-
tial results can greatly affect the overall efficiency of
the problem-solving effort, either positively or nega-
tively (for example, (Lesser 8z Erman 1980; Lander
Lesser 1992)). On one hand, ff one agent has access
to information that bears not only on its own sub-
problem solution but the entire solution, sharing its
partial solution can help the system of agents reach a
globally consistent solution more quickly. On the other
hand, if a communicated solution that is ultimately in-
consistent with any global solution is incorporated by
another agent and used to guide its problem solving,
that agent can spend a lot of time "going down a gar-
den path" until it discovers that there is no compatible
solution in that direction.

Given that the impact of using another agent’s full
or partial subproblem sc~lution can be either positive or
negative, how should an agent decide whether, when,
and to whom to communicate a full or partial local sub-
problem result? How can an agent evaluate whether
its local subproblem solutions are likely to facilitate

problem solving overall or to delay successful solution
of the problem? How should an agent interpret a local
subproblem solution communicated by another agent?
If a communicated subproblem result is inconsistent
with an agent’s local partial solution, what should be
done about it? The goal of our work is to be able to
answer such questions relative to the structure of the
specific problem or its problem class, in a way that will
be applicable across domains, and in as many multi-
agent systems as possible.

Much work in the area of constraint satisfaction has
focussed on the relationship between problem struc-
ture and problem difficnlty (for example, (Hogg
Williams 1994; Mammen & Hogg 1997)), or on the
efficacy of various problem-solving heuristics, such as
variable and value ordering, based on aspects of prob-
lem structure (for example, (Haralick & Elliott 1980;
P.W. Purdom 1983; Fox, Sadeh, & Bayksn 1989)).
great many types of DAI problems, such as scheduling,
design, or multiple sensor interpretation, can be nicely
represented as distributed constraint satisfaction prob-
lems. Solutions to these types of problems may some-
times necessarily be handled via a distributed model
because of the distribution of expertise, control, or in-
formation inherent to the problem. For problems in
which domain and control knowledge are by necessity
distributed, questions about communication and con-
trol such as those raised above naturally occur, and
have yet to be answered.

A science of inter-agent communication and coor-
dination would relate communication strategies, per-
tinent aspects of distributed problem structure, sad
problem-solving efficiency. For such s science to be
general, and applicable across domains, it must be
cast in terms independent of any particular domain.
Since the constraint satisfaction problem (CSP) frame-
work is (1) appropriate for nicely representing many
types of DAI problems, and (2) has been the subject
of much analysis with respect to algorithm and struc-
ture, we employ the paradigm of distributed problem
solving viewed as distributed search, and adopt the
formalism of representing distributed problems as dis-
tributed constraint satisfaction problems (see, for ex-

32

From: AAAI Technical Report WS-97-05. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

ample, (Sycars e~ al. 1991; Yokoo & Durfee 1992)).
Information about appropriate strategy selection

as a function of problem structure may be used ei-
ther statically, based on initial problem (or problem
class) structure, or dynamically, as problem struc-
ture changes during problem solving. For example,
(Sen & Durfee 1992) found that in distributed meeting
scheduling different communication and commitment
strategies were better for some types of problems than
others. Our work would extend this reseaxch by ad-
dressing the relationships between strategy and prob-
lem characteristics in a way that could be readily trans-
ferred to other domains. Similarly, (Durfee, Lesser,
& Corkill 1987) reported that sometimes dynamic de-
cisions, based on the evolving problem-solving situa-
tion, greatly improved problem-solving performance,
and (Nagendrs Prasad & Lesser 1997) have explored
how agents can learn situation-specific coordination
strategies based on shared abstractions of the problem-
solving situation. Our work will contribute to further
understanding of how we can employ those strategies
most effective for the problem, statically or dynami-
cally.

In this report, we present a distributed problem-
solving testbed, consisting of two parameterised com-
ponents: (1) a problem generator, for the creation
of random constraint satisfaction problems in spe-
cific classes with respect to distributed problem struc-
ture, and (2) a multi-agent problem solver, capa-
ble of employing various communication, coordina-
tion and problem-solving strategies. This testbed will
be useful for experimental analysis of relationships
between distributed problem structure, distributed
problem-solving strategy choices, and problem-solving
efficiency. In particular, we will focus on communica-
tion strategies: when it is most advantageous for an
agent to communicate what information with whom,
as s function of problem structure, including the way
in which the overall problem is distributed among the
agents.

We work with those abstract characterizations of
problem structure that we feel best capture the im-
portant aspects of the underlying structure of prob-
lems. One domain-independent characterization that
we employ is constrainedness (Gent, MacIntyre,
Prossei 1996), which is implemented in our random
CSPs via the density and distribution of nogoods, or
sets of inconsistent assignments. Problem constrained-
ness is a measure of problem structure that has a
well-documented relationship to problem dii~iculty and
solvability across many types of combinatorial prob-
lems ((Cheesemsn, Kanefsky, & Taylor 1991; Mitchell,
SeIman, & Levesque 1992; Williams & Hogg 1992;
Hogg & Williams 1994)). We also consider other as-
pects of distributed problem structure such as the
distribution of constralnedness of partial subproblems
among and within agents, the locality versus interde-
pendence of agent constraints, and the overall size of

the problem.
For problem solving, we assume ~ non-hierarchical,

fully distributed, multi-agent system, with agents
working asynchronously and in parallel on their own
parts of s problem subdivided among them, with the
ability to share information. No data are shared other
than via direct communication, and no agent is desig-
nated to coordinate the search process or to integrate
and present the solution. Each agent has full knowl-
edge of its own intra-agent constraints, that is, those
constraints between elements of its own part of the
problem. In addition, agents are assumed to have the
following knowledge with respect to inter-agent con-
stralnts:

1. Relevance: An agent knows which other agents are
responsible for assigning variables connected via one
or more nogoods to each of its own variables, and

2. Cons~tenc9: An agent knows which values of its
own variables are consistent and which are incon-
sistent with any variable assignment it or another
agent might make.

Note that an agent does not know the impact of its
own assignments on other agents, unless and until that
information is communicated to them.

The final results of problem solving are distributed
among the agents, according to which part of the prob-
lem they were responsible for. Termination detection
is part of our algorithm, so that the agents know when
the problem has been globally solved, and they can be
certain they need work no further on their part of the
problem.

Finally, with respect to the question of cooperat-
ing versus selfish agents, the individual success of each
agent is defined to be the degree of success of the group
as a whole in reaching a globally consistent solution as
quickly as possible.

As a matter of terminology, we call that subset of
the entire problem belonging to a single agent its sub-
problem, even though a single agent’s subproblem may
consist of what intuitively might be considered multi-
ple logically distinct pieces. We call any subset of an
agent’s subproblem a partial subproblem.

With this general overview of our goals, assump-
tions, and approach, we next present s description of
our parameterized multi-agent problem generator. We
follow this with an outline of our multi-agent problem-
solving algorithm, an extension of (Yokoo 1995)’s asyn-
chronous weak-commitment search algorithm, includ-
ing the ways in which our multi-agent algorithm is pa-
rameterized, and why. Finally, we outline the kinds of
experiments we plan to carry out in this testbed, and
the kinds of results we expect to produce.

Parameterized Problem Generator

Our domain-free problem generator creates distributed
problems parameterised with respect to domain-inde-
pendent characteristics of problem structure that we

33

consider likely to be relevant with respect to coordina-
tion, communication, and problem-solving strategies.
These characteristics relate to problem size, and var-
ious aspects of the density and distribution of con-
straints within and among the agents.

In earlier work on the relationship between prob-
lem structure, problem-solving algorithms, and so-
lution cost for centralized CSPs (Mammen & Hogg
1997), we specified problems using just three parame-
ters: number of problem variables, rh domain size of
variables, b, and number of nogoods, m. In this work,
we use a generAllv.ed measure of constrainedness devel-
oped by (Gent, MacIntyre, & Prosser 1996), and de-
rive the number of nogoods secondarily. In addition,
for the distributed context, we augment the central-
ised problem description by including the number of
agents and describing how the variables and nogoods
are distributed among the agents.

Our problem generator creates random constraint
problems parameterized along nine dimensions of prob-
lem structure, enumerated below. For each problem
parameter, we specify a frequency distribution of pos-
sible values from which the generator will choose one or
more values, depending on the parameter. Any given
parameterization thus describes a class of problems, of
which each generated problem is one instance. The
nine problem parameters and their relevance with re-
spect to characterizing problem structure are described
below. Considerably more detail is available in tech re-
port form from the first author.

Problem Class Parameters

¯ Number of problem variables, n; set of problem vari-
ables denoted V = {~1...~,~
Specify/~,, ~; normal distribution.
Number of variables is one measure of problem size.

¯ Problem variable domain sizes, be,.., b~
Specify ~b~, ~b~; normal distribution.
Problem variable domain sizes are an additional
measure of problem size.

¯ Problem constrainedness,
Specify g,ni~, ~;m~z; uniform distribution. From
problem constrainedness, we compute the number
of nogood constraints.
The degree to which problems are constrained has a
great influence on problem difficulty and solvability
(see text).

¯ Number of agents, g; set of agents denoted A -
{al...aj
Specify pg, %; normal distribution.
Number of agents is one aspect of distributed prob-
lem structure.

¯ Number of problem variables per agent, na~ ...n~,;
set of problem variables belonging to agent a de-
noted V’a
Mean number of variables per agent,/~a. = n/g.

Specify #n. as coefficient of variation; normal distri-
bution.
Variance in number of variables per agent is one
measure of balance in problem distribution among
agents.

¯ Number of nogood vertices per agent, rnaz ...m,,
Mean number of nogood vertices for each agent is
determined by m and b,~ ... b,~.
Specify ~,n. as coefficient of variation; normal dis-
tribution.
Variance in number of nogood vertices among agents
is a measure of balance in constrainedness among
agents.

¯ Number ofnogood vertices per variable, m~ ... m~,,,
within an agent
Mean number of nogood vertices for variable vi E F’,
is determined by m, and b~ ...b~..Specify cr,,t.,ev " as coefficient of variation; normal

distribution.
Variance in number of nogoods among variables
within an agent is a measure of balance in con-
strainedness, or variable tightness, within one agent.

¯ Relative proportion of local nogood vertices per
agent, fc,1 .../a
Specify 0.0 _~ ~,,~ _~ fa.~.. ~_ 2.0; uniform distri-
bution, indicating the proportion of an agent’s no-
goods that are internal to the agent, relative to the
frequency of internal versus total nogoods.
Relative proportion of agent nogoods that are inter-
hal is a measure of degree of independence versus
interdependence of agents.

¯ Number of local nogoods per agent variable, within
an agent, l¢~ .../~
Mean number of local nogoods for variable vi is de-
termined by m~, and b~... b,..
Specify ~z., as a coefficient of variation; normal dis-
tribution.
Variance in number of local nogoods per agent vari-
able is a measure of balance in an agent’s non-local
constraints among its variables.
This set of parameters allow for control of overall

problem size using number of variables and their do-
main sizes; for overall problem difficulty using con-
strainedness; for distribution of subproblem difficulty
using number of agents and variance in number of vari-
ables per agent; for distribution of variable tightness
within and among agents using variance in nogood ver-
tices among agents and variance in nogood vertices per
variable within an agent; for relative independence ver-
sus interdependence of agents using relative proportion
of local nogoods per agent; and for distribution of inter-
dependence with other agents among variables within
an agent using variance in local nogoods per agent vari-
able. Some of these aspects of the number and distribu-
tion of constraints, combined with choice of algorithm,
are known to affect solution cost in central~ed sys-
tems. As descriptors of distributed problems, some of

34

these parameters may be more or less significant than
others; that remains to be seen. In any case, they allow
for fine control of the distribution of constraints within
and among agents, any of the aspect of which may be
relevant with respect to the evaluation of communica-
tion, coordination, or problem-solving strategies.

Example

Figure I shows an example of a set of problem class
parameters and one problem instance generated within
the specified class. A combination of analytical and
empirical methods will be used to identify parame-
ter ranges that win give rise to natural problem class
boundaries. For example, it is well-known that prob-
lems in the transition region between solvable and un-
solvable are much more difficult on average than prob-
lems in the underconstrained or overconstrained re-
gions, and ranges of ~ can be chosen accordingly. On
the other hand, little is known about how the distri-
bution of local versus external constraints among an
agent’s variables will affect problem-solving; thus the
effect of those parameters on class boundaries may be
evaluated more empirically.

Within even a very narrowly defined problem class,
there will be variation in the efficiency of problem solv-
ing due to (1) randomized aspects of problem gener-
ation, such as exactly where the nogoods are placed,
and (2) random choices made during problem solving.
If a range of parameter values give rise to the same
results and same variation in results as a fixed value of
the parameter, then the range would seem to form a
natural class. We will use sensitivity analysis to iden-
tify important class boundaries, and will work with a
representative subset of problem classes.

Parameterized Multi-Agent Problem

Solver

We use a simple, complete, efficient multi-agent prob-
lem-solving protocol as a basis for studying the ques-
tion of when to transmit partial solutions. The foun-
dation of our multi-agent problem-solving protocol is
that each agent works on its own subproblem in some
way, choosing variables and values to assign by some
method, communicating subproblem results at certain
points in the process, and making decisions along the
way about assimilation of partial results, conflict reso-
lution, and other matters relevant to continued prob-
lem solving. Various aspects of local search, com-
munication and coordination strategies are parameter-
ised. At any point during problem solving, an agent
may be involved in one of three components of dis-
tributed problem solving: extension of the local sub-
problem solution, computation (for example, consis-
tency checking), or communication with other agents.
Neither computation nor communication are "free" in
our model, as both take time, which is used as the
ultimate common currency.

Based on Yokoo’s asynchronous weak-commitment
search algorithm (Yokoo 1995), our algorithm allows
for parallel processing among the agents and is guar-
anteed to correctly find a solution if one exists, or re-
port that none does. Our version extends Yokoo’s al-
gorithm by allowing each agent to be responsible for
multiple variables, by including a termination deice-
tion mechanism (using a consistent message sent to
all agents when an agent has assigned all its variables
consistently as far as it knows), and by using a more
sopldsticated nogood generation method when bar]k-
tracking occurs. In addition, agents send ok.~ mes-
sages only to those agents for whom the information is
relevant, namely those agents with whom a constraint
is shared. Finally, there is flexibility for agents to scud
more information than assignment value and priority
along with a variable assignment for use in problem-
solving deckion-msking.

The parameterisation of local problem solving, com-
munlcation and coordination are discussed below, fol-
lowed by the algorithm.

Problem-Solving Parameters
¯ Communication strategy

Specifies at what point during problem solving a sub-
problem solution will be communicated.
Options: after assignment of every z variables,
where 1 ~ z ~ n, (default, z = 1); after any rel-
evant change (an assignment to a variable involved
in any nogoods with variables belonging to another
agent); when a consistent, complete local solution
has been reached; when a certain percentage of no-
goods are accounted for; when a certain probability
of 0 of the local subproblem has been reached; when
an assignment is made that resolves a conflict with a
variable of any rank, or creates a conflict with a vari-
able of lower rank; when backtracking is necessary;
or some combination of these.

¯ Communication delay
Specify mean and variance; normal distribution.

¯ Initial ranking strategy
Specifies method for determination of initial variable
priorities
Options: random equivalent (default); in order
number of nogoods variable participates in.

¯ Variable ordering
Specifies which of its variables an agent selects
for assignment. Options: random, priority order
(default), most remaining nogoods, most relevant
agents.

¯ Value ordering
Specifies which value an agent selects for a vari-
able assignment. Options: random, rain-conflict (de-
fault).

Algorithm for Each Agent
Main processing loop:

35

Parameter Specification Value
n /~ = 10, ~. = 2.0 10

b,,...b~ /~b. = 3, O’b. = 1.0 3, 2, 2, 3, 1, 4, 3, 4, 4,1
If 0.54 < ~ < 0.75 54 nogoods
g /~g= 4, ~g = 1.0 4

fbal ... ~baa
¢x.. -- 0.25 2, 2, 2, 4

TJ’~tI ¯ ̄ , T/’I, IS0 o’m. = 0.25 19, 24, 18, 47
n~9 ...my. <r,~., = 0.25 10, 9, 9, 15, 4, 14, 10, 13, 12, 12

/,,.../~, fa = 1.0 4, 4, 2, 24
l,, ...lo~ o’t., = 0.0 2, 2, 2, 2, 1, 1,6,8,8,2

Figure 1: Example of a set of problem class parameters and a problem instance drawn from that class.

Consistent-Agents +- nil
Nogoods_Sent +- nil
Agent_View ~- nfl
for each local variable e do

Relevant_Agent(v) ~-- agents owning any variable
with which v shares a nogood

add (e, de), where de is some starting value for
variable v, to Agent_Vieao

loop
if Message_Queue is empty then

if it is time to transmit [comm. strategy] then
for each variable v to be transmitted, in

1 priority order, do
send okT(v, de, Pu) to each agent on recipient l~st

else
Check/Extend0

else
process messages

until Consistency_Reached0
report solution: all local variable assignments

when received(ok?, (v, d,, pu))
add (v, d~, p,) to Agent_Vieu~
if sending agent is on Consistent_Agents then remove it

when received(nogood, nogood) do
add nogood to NogoodList
if any local variable v is involved in the nogood with a

variable z belonging to an agent a not on
Relevant_Agents(v)

then add a to Relevant_Agents(v)

when received(consistent, a)
add a to Consistent_Agents

procedure Check/Extend
for each local variable v in [variable ordering] order do

when de is not consistent with one or more higher
priority variables do
if Agent_ID E Consistent-Agents then

remove Agent_ID from Consistent_Agents
if no value in Do is consistent with all higher

priority variables
then Backtrack(v)
select d E D~ where d is consistent with higher

priority variables in Agent_Vieto
and d meets [value ordering criteria]

vt-d

if it is time to transmit [comm. strategy] or if
Meuage_Queue is not empty

then return
if Agent.[D ~ Consistent-Agents then

add Agent_lD to Consistent.Agents
send eonsistent(Agent_ID) messages to all agents

end Check/Extend

procedure Backtrack(v)
Nogoods 4- Inconsistent_Subsets(v)
when 0 E Nogoods do

broadcast to all agents that there is no solution
terminate algorithm

when Nogoods n Nogoods_Sent = 0 do
for each nogood 6 Nogoods do

add nogood to Nogoode.Sent
for each variable z G nogood do

send nogood(nogood) to agent owning z
p, ~- 1-l- max(pj),j ~

return
end Backtrack

function Consistency_Reached
for each agent a do

if afL Consistent_Agents
then return false

return true
end Consistency_B cached

Timing of Communication of Partial
Solutions

Every agent involved in problem solving is faced
with the decision of when to send its partial results.
To share partial subproblem solutions most advanta-
geously, aa agent must balance two competing pres-
sures:

1. An agent does not want to communicate a partial
subproblem solution too soon, because it wants to
maximize the probability that the shared partial re-
sult is locally extendible. That is, the agent does
not want to share a partial result, then continue
its local problem solving only to discover that it
must "take back" the communicated partial result

36

because it is not even locally feasible, as this will re-
suit in wasted communication and processing time,
both for the sharing agent and for receiving agents as
well. In general, the more complete an agent’s par-
tial subproblem solution, the more certain the agent
can be that the partial solution will be at least lo-
cally extendible. This results in pressure on agents
to share partial subproblem solutions later rather
than sooner.

2. An agent does not want to communicate a par-
tial subproblem solution too late, because the other
agents will have extended their own subproblem so-
lutions further as well, simultaneously and inde-
pendently. The longer problem solving progresses
without the sharing of partial solutions, the more
likely it is that work will have to be undone in or-
der to reconcile the independently-derived subprob-
]era solutions. Earlier sharing of a partial subprob-
lem solution confers the benefit of increased abil-
ity to maintain global consistency during distributed
problem solving. This result in pressure on agents
to share partial subproblem solutions sooner rather
than later.

In our parameterized model, at one extreme, an
agent can communicate its local subproblem results to
other agents when it has achieved COMPLETE LOCAL
CONSISTENCY for its own subproblem. At the other
extreme, it can send its local subproblem results every
time it makes a RELEVANT CHANGE, that is, each time
it makes an assignment to a variable that participates
in a nogood with one or more variables belonging to
one or more other agents. In between these two alter-
natives, one strategy is that an agent can transmit its
local partial subprob]em solution when it has a certain
degree of confidence, ~, that it will be able to extend
that partial subproblem solution to a complete, con-
sistent, local subproblem solution. In this case, the
agent will send its confidence estimate, L, along with
its partial subproblem solution, for use by the receiv-
ing agent with respect to disposition of the received
partial subproblem solution.

In evaluating a particular multi-agent strategy for
a given class of problems, we look at the total (sys-
tem) problem-solving time as one measure of problem-
solving efficiency. We also keep track of the maximum
number of assignments by any agent, the number of
assignments undone during problem solving due to the
receipt of communicated partial subproblem results,
the number of communication packets sent, and the
number of consistency checks done during the evalu-
ation of communicated partial subproblem solutions.
These measures can be weighted to give a measure of
the effort involved in problem solving. We also keep
track of the amount of time that agents are idle: wait-
ing for needed partial solutions to come from other
agents.

We are currently conducting experiments with the
generator and simulator system described in this pa-

per, to discover and evaluate relationships between
characteristics of distributed problem structure; strat-
egy choices such as timing of communication between
agents, other issues of coordination, and local problem-
solving strategies; and problem-solving performance.

Acknowledgements
This research was supported by the National Science
Foundation under Grant No. IRI-9321324 to Victor
R. Lesser. Any opinions, findings, and conclusions or
recommendations expressed in this material are those
of the authors and do not necessarily reflect the views
of the National Science Foundation.

References
Cheeseman, P.; Kanefsky, B.; and Taylor, W. 1991.
Where the really hard problems are. In Proceedings
of the Twelfth International Joint Conference on Ar-
tificial Intelligence, 331-337.

Durfee, E. H.; Lesser, V. R.; and Corkil], D. D.
1987. Coherent cooperation among communicating
problem solvers. IEEE Transactions on Computers
36(11):1275-1291.
Fox, M. S.; Sadeh, N.; and Baykan, C. 1989.
Constrained heuristic search. In Proceedings of the
Eleventh International Joint Conference on Artificial
Intelligence, 309-315.
Gent, I. P.; MacIntyre, E.; and Prosser, P. 1996. The
constrainedness of search. In Proceedings of the Thir-
teenth National Conference on Artificial Intelligence.
Haralick, R., and Elliott, G. 1980. Increasing tree
search efficiency for constraint satisfaction problems.
Artificial Intelligence 14(3):263-313.
Hogg, T., and Williams, C. P. 1994. The hardest
constraint problems: A double phase transition. Ar-
tificial Intelligence 69:359-377.
Lander, S., and Lesser, V. 1992. Customizing
distributed search among agents with heterogenous
knowledge. In Proceedings of the First International
Conference on Information and Knowledge Manage-
ment, 335-344.
Lesser, V. R., and Erman, L. D. 1980. Distributed
interpretation: A model and an experiment. IEEE
Transactions on Computers C-29(12): 1144-1163.
Mammen, D. L., and Hogg, T. 1997. A new look
at the easy-hard-easy pattern of combinatorial search
difficulty. Journal of Artificial Intelligence Research.
Forthcoming.
Mitchell, D.; Selman, B.; and Levesque, H. 1992.
Hard and easy distributions of SAT problems. In Pro-
ceedings of the Tenth National Conference on Artifi-
cial Intelligence, 459-465.
Nsgendra Prasad, M. V., and Lesser, V. R. 1997.
Learning situation-specific coordination in coopera-
tive multi-agent systems. Computer Science Techni-
cal Report 97-12, University of Massachusetts.

37

P.W. Purdom, J. 1983. Search rearrangement back-
tracking and polynomial average time. Artificial In-
telligence 21:117-133.
Sen, S., and Durfee, E. H. 1992. A formal analysis of
communication and commitment in distributed meet-
ing scheduling. In Working Papers of the Eleventh
International Workshop on Distributed Artificial In-
telligence, 333-342.

Sycara, K.; Roth, S.; Sadeh, N.; and Fox, M.
1991. Distributed constrained heuristic search. IEEE
Transactions on Systems, Man~ and Cybernetics
21(6):1446-1481.
Williams, C. P., and Hogg, T. 1992. Using deep struc-
ture to locate hard problems. In Proceedings of the
Tenth National Conference on Artificial Intelligence,
472-477.

Yokoo, M., and Duffee, E. 1992. Distributed search
formalisms for distributed problem solving. In Pro-
ceedings of the Eleventh International Workshop on
Distributed Artificial Intelligence, 371-390.

¥okoo, M. 1995. Asynchronous weak-commitment
search for solving distributed constraint satisfaction.
In Proceedings of the First International Conference
on Principles and Practices of Constraint Program-
ming (CP-95), 407-422.

38

