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Abstract

The irreversible trend toward decentralized informa-
tion sources makes less and less adequate the cur-
rent approaches to search mostly based on a central-
ized index. The Constraint Based Knowledge Brokers
(CBKB) model is a first attempt to provide an effi-
cient decentralized search engine, and it does so by
exploiting the power of constraints. One of the rea-
sons of its efficiency comes from sending the informa-
tion providers requests based on very specific and pre-
filtered information. This is done via a method which
splits the scope of the broker agents as the requests
come. However, an exaggerated use of scope split-
ting may lead tO an unmanageable quantity of agents.
Techniques to avoid such situations may be based on
several approaches, which we briefly describe in this
paper, like scope merging based on anti-unification,
organizing agents in disjunctive structures, and limit-
ing scope splitting on the basis of the capabilities of
the knowledge bases.

Introduction

The need of adequate search capabilities for the grow-
ing bulk of on-line information is emerging as perhaps
the most urgent challenge for computing at the end
of the millenium. The inadequacy of the current gen-
eration of search engines becomes particularly evident
by contrasting their strongly centralized approach with
the irreversible trend toward decentralization of infor-
mation sources. Take for instance the "father "1 of
all Web-related search engines, Alta Vista (Alta Vista
URL). Moving from the Web domain to business appli-
cations implies coverage of heterogeneous sources such
as catalogues, databases, on-line libraries etc. Alta
Vista handles this problem by adding to its basic index-
ing machine some sort of brokerage service where infor-
mation coming from multiple sources is homogenized
for the user. It does so by attaching more database
indexes to its existing index, with coverage of multiple
file formats (Notes, HTML, MS etc). This is achieved,

1 At least in terms of coverage and penetration.

however, via a brute force, albeit smart, indexing pol-
icy, i.e. by packaging everything into a centralized in-
dex that is then searched against with state-of-the-art
tools. Other providers of commercial information re-
trieval tools (e.g. Fulcrum and Verity) follow essentially
the same strategy.

What we see is that, in reality, there are problems
with processing speed, performance, and document rel-
evance due to the impossible task of managing cen-
trally a dynamically evolving federation of information
providers. This applies even to the "simple case" of
indexing Web pages. As an example, take again Alta
Vista. It serves something like 20 million accesses per
day (increasing every day), while its index becomes
more and more outdated due to the rapid growth of the
Web-pages to be gathered and indexed. To tackle this
problem, A.lta Vista now offers the possibility of shar-
ing its technology through mirror sites in Europe and
elsewhere (to increase revenues but also to distribute
the load). Clearly, the load is split, but the gathering
problem is still there. In a short period of time, the
Web will become unmanageable with this kind of strat-
egy. The problem gets only amplified if we move from
the Web and the Internet to the world of corporate
intranets. How is a centralized indexing policy for the
search of information going to deal with distributed en-
terprises v~here empowered and autonomous local de-
partments are responsible for the management of their
own information repositories? How can it suit the
requirements of "network" organizations, where eco-
nomic actors can dynamically connect or disconnect
from the network?

There are further issues that are not tackled well by
today’s search systems, e.g. where to search for a given
query in a distributed world with thousands of accessi-
ble backends, and how to collect, fuse and present the
answers from the selected backends. For the resource
discovery problem, there are research attempts that
work nicely if all information repositories follow the
same retrieval model, such as the vector space retrieval
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model (Gravano & Garcia-Molina 1995). This situ-
ation is, however, unlikely to arise in practice. Also,
very few systems take retrieval costs (time, money) and
quality of the returned documents into account. In re-
search, however, early approaches are outlined (Fuhr
1997).

Constraint Based Knowledge Brokers

The Constraint Based Knowledge Brokers (CBKB)
(Andreoli, Borghoff & Pareschi 1996) model is 
early attempt to support search of distributed infor-
mation in a decentralized manner by leveraging two
innovative technologies: constraints and agents. The
CBKB model has been used in several practical en-
vironments (see for instance (Borghoff et al. 1996;
1997)) and part of its technology is in the course 
being transferred to a product development project.
Our intent here is to describe both how it revolution-
izes the concept of search in distributed, heterogeneous
environments as well as how it still falls short of some
the requirements for decentralized search. Before go_
ing into the details of this discussion, we would like
however to make clear the use of the terms constraints
and agents in the context of the CBKB framework:

¯ Constraints are used to flexibly define the behav-
ior of broker agents collecting information from in-
formation servers on behalf of users. Thus, they
provide a refinement on the client side of the ba-
sic client-server model of computation which corre-
sponds to the reality of distributed computing nowa-
days. This refinement can go beyond simple search
of information to account for transactional compu-
tations needed to support such applications as work-
flow management and electronic commerce; see for
instance (Andreoli & Pareschi 1996) and references
cited therein. First results concerning the methods
of the refinement on the server side are discussed in
(Chidlovskii, Borghoff & Chevalier 1997).

¯ Agents correspond here to simple information filters
organized in topologies that can dynamically evolve
through their interaction with an environment given
by the users requesting information and the servers
providing it. Thus, they are agents more from the
point of view of artificial life than from the point of
view of classical artificial intelligence: what counts
is the collective intelligence obtained through their
social relationships, rather than their own single ca-
pabilities.

The CBKB model tackles the issue of scalability of in-
formation gathering by partly following the approach
taken by Harvest (Harvest URL), an earlier system

that was not based on constraint technology. In Har-
vest, information is gathered from many (possibly mil-
lions) local Web administrators who have the task of
supplying up-to-date information to the "Harvest gath-
erers". These in turn provide meta-index-information
to "brokers." Thus, Harvest maintains a hierarchy
of brokers that scales well. Similarly, in the CBKB
model, brokers are responsible for a part of the world
domain (scope) and can be distributed. They commu-
nicate through a simple "coordination" language (Fo-
rumTalk). Furthermore, by using constraints to de-
scribe the scope of search of the agents, the CBKB
model radically extends the capabilities of Harvest. In
fact, the possibility of dynamically refining constraint
expressions can be leveraged in order to modify dy-
namically the hierarchy (or genetic tree) of brokers 
keeping into account their interaction with the users
requesting information (Andreoli et al. 1995). To use
a biological metaphor, constraints act as a kind of DNA
for describing the genotype of broker agents; this geno-
type can be optimally evolved according to the interac-
tion with that part of the environment corresponding
to the users accessing the information and constraints
offer the means for coding genetic evolution.

The constraints used in CBKB to specify the scope
of brokers are signed feature constraints (SFC) (An-
dreoli, Borghoff & Pareschi 1997). They are based
on the intuition of providing the user with a simple
constraint-based query language through which infor-
mation requests can be formulated, and of accounting
for changes in the topology of agents through an ex-
tended version of the same language.

Feature constraints (FC) were originally introduced
in linguistics to represent lexical information, and are
possibly complex constraints built from atomic con-
straints which are either sort or label constraints (Ait-
Kaci, Podelski & Smolka 1994). A sort constraint ex-
presses a property of a single entity. For example,
P :person expresses that the entity P is of sort person.
On the other hand, a label constraint expresses a prop-
erty linking two entities. For example, P : employer ->
E expresses that entity P has an employer, which is the
entity E. Feature constraints can also contain built-in
relations such as equality and disequality.

SFCs are obtained by taking the subset of FCs where
disjunction is not allowed, and by adding signs (posi-
tive or negative) to express the fact that we want the
entities to have a certain property or not. For example,
the scope of a broker agent in charge of the domain of
all books published in 1990 and whose author is not
Balzac is represented by the following SFC constraint:
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X
+ X : book
+ X: published -> P P:1990
- X: author -> A A:"Balzac"

The user requests are instead simpler SFCs where
negation is not allowed (and not even signs, meaning
that all properties are requested), called basic .feature
constraints (BFC). The mechanism by which the bro-
kers’ scopes are modified depending on the users’ re-
quests can be described by the following example: sup-
pose we have an initial broker in charge of all books.
That is,

X
+ X : book

Then a user request arrives for books by Honor~ de
Balzac:

X
X: book
X : author -> A A : "Balzac"

This leads to a first branching in the genetic tree, with
the creation of a specialist constrained to search for
books by Balzac, and another agent in charge of all
other books. That is,

X
+ X: book
+ X: author-> A A: "Balzac"

and

X
+ X : book

X: author -> A A: "Balzac"

Then another request arrives for books of more than
400 pages:

X
X: book
X: npage -> N N>400

So the genetic tree evolves again with the creation
of a specialist constrained to search for non-Balzac’s
books of more than 400 pages (the corresponding re-
fined search for books by Balzac of more than 400 pages
is handled by the previous Balzac-specialist through a
simple projection into the constraint store, that is, a
sifting of the relevant Balzac books):

X
~- X : book
+ X: npage-> N N>400
- X : author -> A A : "Balzac"

and a remaining agent now in charge for all other
books, i.e. non-Balzac books with less or equal to 400
pages, etc.

X
+ X: book
- X: author-> h h:"Balzac"
- X: npage -> N N>400

Actually, constraints like

+ X: npage -> N N>400

do not match the syntax of SFCs, which says that ev-
ery relation (also >) is binary. However, in this paper
we use them because they are equivalent and more in-
tuitive than the correct ones. Foi~ example, the correct
way to write the above constraint would be the follow-
ing:

+ X: npage-> N N > N’ N’>400

In theory, this approach based on scope splitting
allows optimal use of network resources, by request-
ing the information providers with very specific, pre-
filtered information, as well as maximal concurrency
and asynchronous behavior, thus avoiding "waiting
lists" of requests. Furthermore, constraints offer a sim-
ple solution to the collection and presentation prob-
lem, i.e. how to merge results from different sites hav-
ing different ranking algorithms in use and different
corpus statistics. With the CBKB model, results can
be ranked according to constraint satisfaction ratio,
avoiding direct use of the non-comparable ranks com-
ing from the backends.

In reality, this approach remains partly theoretical,
due to the fact that just a few user interactions gener-
ate quickly an unmanageable proliferation of special-
ists; see for instance the complexity results in (An-
dreoli, Borghoff & Pareschi 1996). So, in practical
implementation of the CBKB model, the opposite ap-
proach has been followed, with a fixed topology where,
for each information domain, there is always a sin-
gle agent in charge. The constraints are still used ef-
fectively, but only for filtering and ranking informa-
tion coming from the backends, and for creating de-
pendencies among agents responsible for different in-
formation domains. To overcome this situation, we
need to complement genetic specialization with an-
other feature of biological systems, namely the possi-
bility of genetic cross-breeding, that would allow pass-
ing the capabilities of multiple specialists to single
individuals, thus permitting a control on the size of
the population of broker agents. From a computa-
tional point of view, this amounts to defining a sound
method for dynamically combining brokers by finding
the greatest lower bound of the constraints that define
their scope of search. This combination should effec-
tively merge genotypes by discarding unwanted specific
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genes, and thus should not trivially sum up constraints
(e.g. through disjunctions). At the same time, it should
maintain certain general properties of constraint ex-
pressions that are relevant for the CBKB model, such
as stability of scope splitting (Andreoli, Borghoff 
Pareschi 1997). These requirements lead to the pro-
gram of research that we describe in the next section.

A program of research for
constraint-based decentralized search

In the current framework, a new generation of special-
ists is created for each new request. The specialists
explicitly try to enumerate the knowledge tokens in
their scope and thus generate answers to the requests
from which they derive. Enumerating knowledge to-
kens may either be achieved by directly querying a
database or by issuing subrequests and combining the
answers. On the other hand, the non-specialists, which
cover the domain not covered by specialists, do not try
to explicit the knowledge tokens implicitly described in
the scopes. Their role is only to spawn new specialists
at each new request.

To avoid an unmanageable proliferation of special-
ists, we explore several directions.

First, we could avoid over-specialization by letting
the agents decide how to split their scopes, creating a
specialist and a non-specialists, upon reception of a re-
quest. For example, a request for novels by Balzac may
split a book agent into a specialist for Balzac writings
(and not just novels) and a non-specialist covering the
other authors. A later request for Balzac’s mail cor-
respondence would be handled by the same specialist
and would not generate a new one.

Second, we could allow not only scope splitting,
as occurs when specialists are created, but also scope
merging. Typically, a specialist for novels before 1851
and a specialist for novels after 1850 could be merged
into a single specialist for novels. A possible approach
to scope merging could rely on inductive generaliza-
tion methods (Plotkin 1970), which find the most re-
stricted property (or constraint) which is more gen-
eral than all those given as input. However, one has
to be careful in that merging several scopes may lead
to constraints which are not expressible in the avail-
able constraint language. Thus, restrictions have to
be posed on the sets of constraints to be merged. For
example, if we have a specialist for the novels before
1800 and one for the poems before 1400, then the scope
merging would need a disjunction in the resulting con-
straint, which is not allowed by the language used in
the CBKB formalism. As noted above, in the current
state of the system, we impose that all scopes of the
agents be expressed as SFCs, and we have designed

an algorithm for combinator agents in that case. The
choice of SFCs as uniform format for the scope of our
agents has been influenced by our (naive) strategy for
splitting-no-merging (i.e. split exactly what is needed,
no merging). Indeed, SFCs are the smallest subset of
feature constraints which is stable by splitting, assum-
ing requests are all expressed as BFCs.

The merging of the scope of two specialists is intu-
itively their logical or. Let us now see how this can
be computed. Each scope can be seen as the logical
and of several SFCs. First we represent each SFC as a
conjunction of predicates. For example,

P
+ P : person
q-P : spouse->P’

P ~ : person

P ’ : name -> N N : "Genny"

is represented as person(P), spouse(P,P’), 
son(P’), name(P’,N), Y="Genny", and

P
+ P : person
- P : spouse->P’

P’ : person
P’ : employer -> E E: "Xerox"

is represented as person(P), not(spouse(P,P’), 
son(P’), employer(P’,E), E = "Xerox"). Note that
in this representation unary predicates represent sorts
while the others represent labels.

Now we must compute the logical or of these two
conjunctions. By distributing the or over the and, we
get a conjunction C of disjunctions, where each dis-
junction has the form (A or B) and A and B are BFCs
with possibly a sign. At this point, we must compute
a SFC constraint C’ which is more general than C but
less general than any other generalization of C. We
call it the least generalization; see (Plotkin 1970) where
they use the same term to generalize clauses of C. We
do this by considering each logical or and computing
its least generalization. We have to take into account
several cases:

¯ (A or B) where B = A: this obviously generates 

¯ (A or B) where B ¢ 

- if any of A or B is not a built-in constraint, then
we get the empty SFC; otherwise

- if both A and B are built-in constraints (over
the same variable X), we consider the inter-
val represented by each of A and B over X,
say IA = (A1,A2) and IB = (B1,B2). The
union of these two intervals is given by I --
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(rain(A1, B1),max(A2, B2)). If I is the whole 
teger line, then we get the empty constraint; oth-
erwise we write the built-in constraint(s) repre-
senting the interval I.

¯ (A or not A): we get the empty constraint.

¯ (A or not (A and B)): empty constraint.

¯ (A or not C), where C does not contain 

- if A is a built-in constraint and C = (B and D)
where B is a built-in constraint (over the same
variable as A), then we get: not((not(A) and 
and D), where (not(A) and B) is a built-in 
tainable from A and B by a suitable constraint
solver. If instead C does not contain any built-in
constraint, we get the empty constraint.

- if A is not a built-in constraint and it is not a sort
constraint, it generates the empty constraint; oth-
erwise, if C contains a sort (over the same variable
as A), it generates not(C). This is due to the fact
that sorts are assumed to be disjoint. Otherwise
we get the empty constraint.

¯ (not A or not B): it generates not(A and 

After applying these reduction rules, we may still
simplify the obtained SFC because there may be situ-
ations like not (A and B) and also not(A), which 
be simplified to not(A), or also duplications which can
be eliminated.

Let us consider the following two scopes to be
merged:

X
+ X : book
+ X : topic-> T T:"Art"
+ X : published-> Y Y >1950

X : author-> A A:nationality-> N
N : "American"

X
+ X : topic-> T T:"Art"
- X : author -> A A:nationality-> N

N : "American"
-X : book X : published-> Y Y >1950

We get: topic(X,T), T--"Art", not(author(X,A),
nationality(A,N), N=’American"), which corresponds
to the SFC

x
+ X : topic-> T T:"Art"
- X : author -> A A:nationality->

N : "American"

scenario 1

scenario 3

least generalization
"’...

"...
".,~

scenario 2

°i

scenario 4

Figure 1: Geometrical characterization of scope merg-
ing

Scope merging can also be characterized geomet-
rically. Each SFC describes an n-dimensional space
where n indicates the number of different labels for
each sort, e.g. name, age, employer, spouse etc. for the
sort person. SFCs have been constructed such that this
n-dimensionai space is convex.9 If the union of two
convex spaces (representing the scopes of the special-
ists in question) leads to a convex space too, the merg-
ing of the scope of two specialists is straight-forward
(see scenarios 1 and 4 of Fig. 1). If this union, on the
other hand, is not convex, we have to look for a convex
"shell" that wraps both spaces (see scenarios 2 and 
of Fig. 1). In the most general case, this is the en-
tire n-dimensional universe (represented as an empty
constraint in the discussion above).

An alternative to scope merging consists of splitting
the agents and then smartly organizing them in a dis-
junctive form (for example, and or-tree), and then an
efficient search method could be used to find the most
suitable agent for the request at hand. For example,
the search method could be based on decision tables,
as described in (Martelli & Montanari 1978).

2In reality this issue is more tricky. Some of the built-in
constraints may have gaps and hales or may consist of the
union of (e.g. integer intervals) and still be conform with
the SFC definition.
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Another aspect to consider is the other side of the
environment where the broker agents interact, namely
the kind of information servers which the agents will
refer to: if they are not able to handle a very detailed
request, it is useless to further split the current special-
ist if it already has reached that level of detail. Thus,
a reasonable approach has to decide upon a limit to
the level of specialization of the agents, by considering
also the knowledge bases which will be most used by
them.

Probably, the best approach will derive from a suit-
able and flexible combination of these four intuitions.
We plan to investigate the effects of these approaches
to improve the state of the art of distributed knowl-
edge information retrieval systems, starting specifically
from the system which uses the CBKB formalism.
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