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Abstract

The following paper defines a framework for
constraint.based agents, as used within the EX-
CALIBI3R project. The underlying dynamic real-
time environment demands special properties of
constralnt-based agents, such as dynamic adapta-
tion and real-time behavior. Underlying models
and algorithms have to ensure these features.

Introduction

The increasing availability of distributed information
and computation capacities, from client-server solu-
tions to intranets and the internet, raises new oppor-
tunities and requirements on computer science. The
term "agent" gains more and more relevance. (Woold-
ridge & Jennings 1995) define autonomy, social ability,
reactivity, and pro-activeness as essential properties of
these agents.

The agent concept can be used to simplify the so-
lution of large problems by distributing them to some
collaborating problem solving units. This kind of stra-
tegy is called distributed problem solving. On the other
hand the agent concept supports more general interac-
tions of already distributed units, which is subject to
multi-agent system research. The focus of this paper is
on multi-agent systems within dynamic real-time envi-
ronments.

A crucial aspect of an agent is the way its behavior is
determined. If there shall be no restriction to reactive
actions an underlying planning system is needed. A
lot of research has been done on planning, and a wide
range of planning systems was developed, like STRIPS
(Fikes & Nilsson 1971), UCPOP (Penberthy & Weld
1992), or PRODIGY (Veloso et al. 1995).

The advances in constraint programming suggest its
application in planning problems, where planning is
treated as a constraint satisfaction problem. Recent re-
markable results with Graphplan (Blum & Furst 1997)
and Satplan (Kautz & Selrnan 1996) proove the appro-
priateness of this approach. 45

Required Properties

Planning (resp. constraint programming) has to deal
with the special properties of dynamic adaptation, real-
time behavior and social abilities. The following sec-
tions will discuss these matters in more detail. Figure 1
shows some related work within the field of constraint
programming. The cross indicates the aspired integra-
tion.

Dynamic Adaptation

Because of the limited view of an agent and the chan-
ging environment, an agent has to be adaptive. New
information will restrict or relax the possible actions
of an agent. When usual constraint solvers face relax-
ations they recompute the entire system again. The-
reby the efficiency of the computation gets worse as
well as the stability of a solution. Incremental ap-
proaches (Ramalingarn & Reps 1993) overcome this 
updating only the affected parts, rather than recom-
puting the whole system.

As this problem plays an important role in various
fields, a lot of work on incremental approaches has been
done which aim at the so called Dynamic Constraint
Satisfaction Problem. A short survey can he found in
(Verfaillie & Schiex 1994).

There can also be a need for dynamic adaptation da-
ring the planning phase. As the optimal plan length is
not known in advance, the size of the constraint system
might change during the search for a solution. Examp-
les of constraint-based planning systems which perform
a problem expansion during the search are Graphplan
and Descartes (Joslin & Pollack 1996).

Real-time Behavior

In a dynamic real-time world an agent does not have
unlimited time to think about an optimal plan. Some
planning systems incorporated this idea, and replaced
the deliberative planning by reactive behavior rules,
where reasoning is abandoned. The most famous re-
active system is PENGI (Agre & Chapman 1987).
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Figure 1: Related work and integration target

Also hybrid architectures like PRS (Georgeff & Lansky
1987) were developed.

Just as the early planning systems, most of the exi-
sting constraint-based systems compute the search for
solutions off-line. An approach to eliminate this weak-
ness can be the application of anytime algorithms (Zil-
berstein & Russell 1995). These techniques provide 
solution at any time, whilst the quality of the solution
is subject to a permanent improvement. In particular
large problems and short time limits result in consi-
derable advantages over classical methods (Wallace 
Freuder 1996). An advantage over hybrid architectures
is the continuous transition from reaction to delibera-
tion. First steps towards an application of anytime
algorithms in planning were made by (Dean & Boddy
1988). 46

In (Kautz & Selman 1992) and (Kautz & Selman
1996) planning is treated as a satisfaction problem and
solved by the application of iterative local search tech-
niques. Local search methods like simulated annea-
ling, GSAT, Walksat, tabu search or genetic algorithms
qualify for the use in anytime systems. Furthermore
the method of iterative improvement is predestined
for a combination with Dynamic Constraint Satisfac-
tion, Constraint Satisfaction Optimization, and Partial
Constraint Satisfaction.

Most of the iterative methods are incomplete, and
it is possible to get trapped in local optima or on pla-
teaus. But with increasing dynamics of the agent’s
environment, the importance of this disadvantage de-
creases.
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Figure 2: Plan task scheduling

Social Abilities

In a distributed environment the interaction between
the agents plays an important role. When agents co-
operate to pursue group goals, they should come to a
globally (sub)optimal solution, which is likely to be dif-
ferent from locally (sub)optimal solutions. Also ques-
tions of coordination, the structure of the agent organi-
zation (centralized/decentralized), and communication
protocols have to be handled.

In the domain of constraint programming most con-
ceptional work focuses on distributed problem sol-
ving, rather than multi-agent systems. In the Dis-
tributed Constraint Satisfaction Problem as defined in
(Yokoo, Ishida & Kuwabara 1990), agents play the
role of contributing computation units instead of au-
tonomous actors with specific intentions. While these
techniques are useful to pursue superior group goals,
higher-level concepts of Distributed Artificial Intelli-
gence are more relevant regarding social interactions
within multi-agent systems, such as (Levesque, Cohen
& Nunes 1990), (Tidhar et al. 1992) and (Wooldridge
& Jennings 1996).

From the Situation Calculus to
Temporal Intervals

A major design question is the appropriate represen-
tation of time. Most existing planning systems use
a STRIPS-like representation, which is based on the
situation calculus (McCarthy & Hayes 1969). This ap-
proach uses forward branching time point structures.
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There has been a lot of criticism on this represen-
tation. Problems include continuous changes, simul-
taneous actions, and actions or events that last over
a period of time. Especially in multi-agent domains
with temporally complex actions, the STRIPS-like re-
presentations is rather ineligible.

An approach to overcome these weak points are
interval-based representations. Allen’s interval tem-
poral logic was introduced in (Allen 1983) and (Allen
1984), and is discussed in detail in (Allen & Fergu-
son 1994). Time intervals are the basic units, which
are correlated by relations like BEFORE or OVER-
LAPS. (Freksa 1992) revises this approach by semi-
intervals, where the relations are defined between pri-
mitives, which determine the intervals’ start and end.

An example of a first-class application domain of the
interval approach is the constraint-based scheduling,
see e.g. (Goltz & John 1996). In planning the interval-
based time representations is used rarely. The ZENO
planning system (Penberthy & Weld 1994) is one 
few exceptions.

Planning as a Close Relative of Scheduling

Planning models based on the interval-based time re-
presentation can be seen as a close relative of typical
scheduling models. The assumption of (Kautz & Sd-
man 1992) concerning the differences in the compu-
tational nature of planning and scheduling might be
caused by their STRIPS-like approach.

Figure 2 shows a simple plan as a Gantt chart, which
sketches the relation to scheduling. On one or multiple



action resources the action tasks (like EAT APPLE) are
placed, where the usual non-overlap constraints have to
be ensured. The beginning and the end of these tasks
are determined by control variables. By constraints
between the action tasks and the state resources with
their tasks pre- and post-conditions are maintained.

Each task has a value, which is mapped to a value of
the resource’s domain. For action resources this map-
ping is the identity, as the tasks already describe the
actions to execute. State resources can have a more
complex mapping, whereby the problem of continuous
changes can be solved, too. For example a gradient as
value of a task can be mapped (e.g. by addition to 
default) to the state resource to cause a relative change
per time (see HUNGER STATE RESOURCE).

The main difference to scheduling are the dyna-
mics, as we do not know in advance how many of
which tasks have to be performed. The case of a re-
striction to a special set of tasks would be comparable
to the length bounds of plans in Descartes, Satplan, or
Graphplan.

Conclusion
The paper introduced a framework for constraint-
based agents, and discussed specific properties of dy-
namic adaptation, real-time behavior and social abili-
ties. Furthermore a modeling approach for the agent’s
planning was outlined. Other important aspects of the
EXCALIBUR project were omitted, such as agents’ lear-
ning.

The goal of the EXCALIBUR project is to develop a
generic architecture for autonomously operating agents
within a complex computer game environment. The
main research tasks are the extension of constraint
programming to fulfill the requirements of a real-time,
dynamic, and distributed environment, and the proper
use of learning algorithms. Further information about
the project are available at:

ht tp://see, f irst. grad. de/concorde/EXCALIBURhome, html
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