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Abstract

There has been an increasing interest in developing
computational theories of agents which are typically
reactive. However theoretical foundations of such
agents are less developed. It is also not clear what
combination of bottom up and top down approaches
is the best. We develop a formal model of reactive
agency and use it to analyze the interactions among
complexities of goals, multi-agent system and its en-
vironment. Using the notion of coupling that cap-
tures dependency within the internal structure of an
agent system, we show that more complex goals de-
mand higher coupling or more behaviors or more com-
plex environment. Visiting Herbert Simon’s conjec-
ture that behaviors look complex because they occur
in a complex environment, we conclude that complex-
ity of an environment is also related to complexity of
goals being fulfilled and in fact, an environment be-
comes more complex as one tries to externalize inter-
hal state with markers. Warning that global effects
of adding markers need to be analyzed, we show that
behaviors with longer stimuli have the potential to
make environments more complex. These results en-
able us to identify agent-environment-goal tradeoffs.
We use these constraints to obtain a specification of
multi-agent systems. These architecture independent
constraints provide a useful tool for automated agent
design.

1 Introduction
Artificial Intelligence paradigms today are moving to-
wards a more distributed agent-based architecture.
According to a recent report, the charter for AI in
the twenty-first century is to build such agents for
use in simulation, human assistance, robot interaction
etc. [2]. These agents are typically reactive, treating
the world as an external memory from which knowl-
edge can be retrieved just by perception. It is argued
that when intelligence is approached in such an incre-
mental manner, reliance on representation disappears
[1]. Ideas of [1] lead researchers to build multi-agent
systems without global representations and hierarchy.
Agents in such systems communicate though the world
by making changes to it that other agents can perceive.

It is also assumed that behavior emerges from interac-
tion of these "situated" agents with the world.

Much of the previous research on multi-agent sys-
tems has concentrated more on awareness of actions
of other team members, performance of the systems
with change in size of the population and synchroniz-
ing agents through communication and less on interac-
tions among complexities of agent systems, goals and
the environments. Like us, [4] claims that though reac-
tive agent architectures have been proposed as an alter-
native to traditional AI, their theoretical foundations
are less developed. Externalizing internal states will
be indispensable if an agent is to respond in a limited
time and if such responses can be obtained faster by
extracting information through external world rather
than internal states. Some internal states have to be
updated whenever external world changes and exter-
nalizing states eliminates such updates since most re-
cent information is available in the world itself. Hence
there are reasons for an agent to be more and more
reactive.

In this paper, we formally probe into the tradeoffs
among the dependency within a reactive multi-agent
system (defined in terms of coupling discussed in sec-
tion 2), goals that can be fulfilled by it and the com-
plexity of its environment. Making a system more
reactive essentially means transforming internal state
into external state that can be extracted through per-
ception. Humans do this very often, e.g. instead of
memorizing schedules, generally we maintain a copy
of them that can be looked up to react appropriately.
We discuss the mechanisms of externalizing internal
states that enhance reactivity. Then we analyze the
effects of increasing the degree of reactivity and show
how that affects complexity of an environment. We
show how increase in the complexity of goals affects a
multi-agent system and its environment. These results
indicate the tradeoffs involved in the design of reactive
multi-agent systems. In section 2, we develop a for-
mal model of reactive multi-agent systems. In Section
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3 We report our results that throw light on the trade-
offs among complexities of goals, multi-agent systems
and environments. We propose constraint-based spec-
ification of reactive multi-agent systems in section 4.
Section 5 presents our conclusions.
2 A Formal Model of Reactive Agency
Here we develop a formal model of multi-agent systems
and use it in section 3 to prove our results. First order
logic used here is intended to be only an abstract rep-
resentation that can be used to expose certain trade-
offs. We do not assume that all real world systems are
built with first order logic as their representation. But
differences in representations do not affect the appli-
cability of our conclusions to real world systems. It is
assumed that a multi-agent system contains n agents
and the number of behaviors of agent i is denoted by
bi.

¯ Behavior - A behavior f~j is jth behavior of
ith agent, where 1 ~ j _< bi, modeled as a 2 tuple
< sij, cij > and defined as a mapping from stimulus
8ij to consequence cij.

¯ Behavior space - It is the set of all behaviors of
all agents. It is denoted by B = (f~ij I 1 < i < n, 1 
j _< bi) and I Blis

?%

Zbi
i----1

If there are four agents in a system with two,
three, two and four behaviors respectively, B =

(f~11, ~12, ]~21, ~22, ~23, ~31, )~32, ~41, f~42, f~43, ~44}"

¯ Stimulus length - It is assumed that stimuli of
all behaviors of all agents are expressed-in conjunctive
normal form (CNF). It is assumed that each literal 
a stimulus corresponds to a number of sensor readings,
i.e. sensor readings are processed to extract meaning
out of t.hem and there may be a literal to which this
meaning is mapped. For example, if readings of 10
sonars are all less than a certain limit, it may indicate
presence of a wall or a big obstacle. The literal in stim-
ulus for avoid_obstacle behavior will then correspond
to presence of an obstacle, it will not always have sen-
sor readings as arguments. Not every distinct set of
sensor readings corresponds to different stimulus. If
there are p sensors, each of which can have m distinct
readings, we do not consider them to be mp distinct
stimuli since all these readings can be mapped to fewer
literals. Only those predicates that are required for ex-
ecution of a behavior are listed in stimulus. Universal
truths which are also required for execution of the be-
havior are not listed since such list can be arbitrarily
long. The universe is a conjunction of predicates de-
noted by U. Hence many times when we say that a
stimulus is si~, we mean that it is (sijAX), where
(U =~ X), X being a part of the universe, e.g. to pick

up a can, it is necessary for a robot to have a gripper
in a good condition, but this is not listed in stimulus
of the behavior pick_up_can.

The total number of literals occurring in a stimu-
lus (obtained by counting repeated literals only once
and neglecting negated literals if their unnegated ver-
sions are present) is defined as stimulus length, de-
noted by I sij I, where sij is stimulus of jth behavior
of ith agent. The stimulus sij is defined to be at least
as strong as stimulus sxu if (s~j =~ sxu) and longer 
([ sij I>1 sx~ I)" For example, s~i = aA(bVc)Ad
is stronger than sxy = (bVc), it is also longer since

I sij I= 4 and I sxy I= 2. Stimuli for default behaviors
like "wander" that are executed when no other stimu-
lus that can trigger a more important or useful behav-
ior is available are an empty formula ~b. Such stimuli
are considered to be the weakest and the shortest. If
s~j ----- ¢, then ] sij ]= 0.

¯ Consequence length - It is assumed that con-
sequences of all behaviors of all agents are expressed
in conjunctive normal form (CNF). The total num-
ber of literals occurring in a consequence is defined
as consequence length, denoted by I cij I where c/j
is consequence of jth behavior of ith agent (obtained
by counting repeated literals only once and neglect-
ing negated literals if their unnegated versions are
present). Only those predicates whose truth changes
as a result of execution of a behavior are listed in its
consequence. Hence when we say that consequence
of a behavior ]~ij is c/j, we mean that it is actually
(cij A Y), (U =~ Y). Y can be arbitrarily long 
hence is not listed. The consequence ciI is defined to
be at least as strong as consequence cxu if (cij =~ cz~)
and longer if (I cij I>1 cxu [). State of an object is
represented by a conjunction of literals that appear in
stimuli and/or consequences of one or more behaviors
~j eB.

¯ Behavior chain - Complex behavior occurs be-
cause a number of primitive behaviors (e.g. f3ij) op-
erate sequentially and/or concurrently. Here we fo-
cus on the temporal sequencing mechanism that gives
rise to a complex behavior. A behavior chain C~ is a
temporal sequence of behaviors, {~lj, :/~i2j2 : ~i~s :

¯ .. : f~i~}, where 1 <_ im ~_ n, 1 < jm ~_ bi,~ and
1 < m _ k, where ~i~,, : ~i~+~+~ is used to denote
that these two behaviors are contiguous and occur im-
mediately next to each other in time, with the former
behavior preceding the latter (this notation is similar
to the notation in our previous work [3]). Such a chain
is said to be composable from the behavior space B
(denoted by C <3 B) if behaviors in the chain are ele-
ments of B.

A complex behavior in which behaviors execute con-
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currently can be decomposed into individual chains, if
there are no interactions between them affecting truths
of literals in stimuli and consequences of their behav-
iors. If/311 precedes/32T and/334, both of which op-
erate concurrently and/347 succeeds these concurrent
behaviors, then this is decomposed into two chains,

(/311 " /327 " /347) and (/311 : /334 " /347). If this chain
is to execute from the initial world state I, it is neces-
sary that (I =~ sit). In the chaining mechanism, the
action of an earlier behavior changes the situation in
such a way that the newly changed part of the situa-
tion in conjunction with the universe U implies stim-
ulus for the next behavior in the chain. Behaviors can
be chained together to generate action-streams such as
trajectories for a robot, question sequences in coach-
ing, etc. Behavior chains are responsible for fulfilling
tasks (defined in the discussion on system task space in
this section).

¯ Complexity of a goal - A primitive goal gi to
be fulfilled by the multi-agent system is considered to
be specified as a 2-tuple < I~, F~ >, where Ii and Fi
denote initial and final states of object i respectively,
which are assumed to be expressed in conjunctive form
(An object is an entity manipulated by one or more
agents). Effort required to achieve a goal depends not
only on final state but on initial state as well. Hence
initial state is included in the definition of a goal here.
This definition of goal should not be viewed as more
restrictive than the conventional definition (desired fi-
nal state). If one does not want to separately compute
and specify Ii for each goal 9i, one can just replace each
Ii by the current world state or some other arbitrary
initial state that one prefers to specify.

The complexity of a primitive goal Yi, denoted by
c(gi ) is defined as the minimum number of behaviors
required to fulfill it, starting from Ii, with multiple oc-
currences of behaviors counted separately (this is es-
sentially the length of shortest chain that can execute
from Ii and lead to Fi). A non-primitive goal con-
sists of a set of such primitive goals. The complexity
of a non-primitive goal G, denoted by C(G) is defined
as the sum of complexities of the individual primitive
goals. The goals in G may be interfering, (if one goal
is subgoal of another, fulfilling one may mean fulfill-
ing another), however for the purpose of computing
complexity, it is assumed that each goal is fulfilled in-
dependent of other goals. When all goals from a set
are fulfilled independently from their respective initial
states, the minimum number of actions to fulfill all of
them will be no less than the sum of complexities of
individual goals. Hence the complexity of a goal set is
defined as the sum of complexities of individual goals.
It does not make sense to take into account lengths of

longest chains while computing goal complexities be-
causes one can construct goal fulfilling chains that are
arbitrarily long because of redundant actions (e.g. cy-
cles). A set of goals ~ i s defined t o be more complex
than a set G if G~ is obtained from G by replacing one
or more goals 9i E G by more complex goals and/or
adding more goals to G. < Ii, Fi > notation can rep-
resent both goals of achievement and goals of mainte-
nance (e.g. keep the battery charged, for this initial
and final values of battery voltage will be the same).
The number of maintenance goals is considered to be
constant in our analysis.

¯ System task space - We are interested in defin-
ing a measure of the number of tasks that are poten-
tially fulfillable by the system. These correspond to
all possible temporal chains of behaviors. Where this
is achieved by executing behaviors in a temporal se-
quence, tasks can be enumerated by the total number
of chain fragments that are possible. Thus the chain

(/3xx : /3~2 : /333} fulfills a task that is different from
{/31x :/322}. The chains executable from a given world
state W can be represented by a tree, the root of which
is W. Here we are interested in computing the upper
bound on the number of tasks fulfillable when the num-
ber of occurrences of each behavior is bounded. In the
best case, initial state I would imply stimuli of all be-
haviors of all agents. One can form separate behavior
trees with each behavior as their root. Let us assume
that a tree can have at most m levels. In the best case
(when size of behavior tree of the multi-agent system is
maximum), all behaviors of all agents will occur after
all nodes (which are behaviors), at all levels in the tree.
Since there are t B I trees like this, the total number
of chains is

m

I B I (1 + I B I (i - 1))
i=2

This number is defined to be the system task space.
Actual number is likely to be less than this since not
all behaviors are likely to succeed all nodes due to ab-
sence of stimuli resulting from interactions among the
chains. There will be a number of chains that are re-
peated within a tree and among trees, however the
chains that precede them are different (since each tree
has a different root) and hence they may not fufill the
same tasks. To fulfill a goal, one or more tasks have to
be fulfilled.

¯ Degree of reactivity - Here we are interested
in reactivity along spatial dimension, the amount of
internal state rather than the response time. Let the
number of literals occurring in stimulus sij of a behav-
ior/3ij whose truth value is decided by the agent i based
on external information gathered by sensors be I s~j I,
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then degree of reactivity of the behavior, rij is defined

as the ratio ,0 _< r~j < 1 (where s~j is derived from
sij by dropping literals whose truth is not determined
based on external information gathered by sensors). If
8ij ---- (al V a2) A(bl V 52 V ba) A(Cl V C2 V -~al) 

and truth of only al, bl, dl is determined based on ex-
ternal information gathered by sensors, rij = 3/8 since
s~j = al A bl/~ -~al A dl. rij allows us to capture im-
pact of externalization of state on reactivity. The de-
gree of reactivity of an agent is defined as an average of
of the degrees of reactivity of its behaviors. The degree
of reactivity (R) of a multi-agent system is defined 
an average of the degrees of reactivities of its agents.

¯ Degree of deliberation - The degree of delib-
eration of a behavior/~ij denoted by dij is defined as
(1 - rij). This definition is extended to define the de-
gree of deliberation of an agent and degree of deliber-
ation of a multi-agent system (D) in the same way 
the definition of degree of reactivity.

¯ Marker - It is a percept denoted by Mi
and is described by a pure conjunction of its fea-
tures. For example, a colored cube kept on a
fiat surface can serve as a marker and be de-
scribed as cube(x) A is_face_of(x, Yl) A color(yl, red)

/~ is_face_of(x, Y2) A color ( yu , green)
A is_face_of(x, Y3) A color(y3, yellow)
h is_face_of(x, y4) h colo.(y4, o ange)
A is_face_of(x, Yb) A color(yb,purple). The length of
this conjunction (here 11) is the strength of a marker,
denoted by [ Mi [. The strength of a marker captures
the extent to which one can exploit the marker in ex-
ternalizing state.

A marker Mi is at least as strong as a marker Mj
if (Mi =~ Mj), it is stronger if in addition to this,
[ Mi [>[ Mj [. The strength of a set of z markers is
defined as the sum of their individual strengths,

z

El-,I
i----1

The strength of a set of markers present in an envi-
ronment is a direct measure of their contribution to
complexity of the environment. An environment E’ is
defined to be more complex than an environment E if
E~ is obtained from E by adding one or more mark-
ers to E or replacing existing markers by stronger ones.
The complexity of an environment E is denoted by Ec.
If E’ is derived from E by adding a set of z markers
Mi to E, then,

z

i=1

If z existing markers Mi from E are replaced by M~,

then
Z

E’c----Ec+ ZIM~I-Z[M~I.
i=1 i=1

The markers need not be physical entities in an envi-
ronment, e.g. an electronic mail with a certain title
can serve as a marker to which softbots react.

The term marker is used in this paper to refer to
(a) objects introduced in an environment or (b) 
features added to current objects in an environment
or (c) those features of current objects that were not
used before but used later, with the intention of exter-
nalizing internal state of a behavior (we consider these
as the primary mechanisms of externalizing internal
state), e.g. if a robot is supposed to collect all tennis
balls except those near a cupboard, one way to design
this behavior is to store absolute location of the cup-
board in the form of internal state and design pickup
behavior of the robot not to pick up balls within some
radius around that location. However one can install
a red pole near the cupboard and replace the abso-
lute location of the cupboard in the stimulus of the
behavior by presence of red pole that can be sensed by
vision. The red pole is a marker. Markers can serve
other important purpose besides externalizing internal
state, e.g. as a tool for dealing with noisy sensors, if a
sensor Sl is noisy and sensor s2 delivers more accurate
readings, one can create a marker that s2 can sense and
then s2 can be used instead of Sl. Markers can also
be used to reduce perceptual computations but these
uses of markers are not considered here.

¯ Coupling - Coupling cijmq is said to exist between
two behaviors f~ij and/~,nq if values of some variables in
some literals in 8mq are set by conditions of the form
(A =~ B) (explained later here) in sij or vice versa
and is defined as the sum (k + u) where k is the num-
ber of literals in smq, one or more variables of which
are assigned values by conditions in sij and u is the
number of literals in the corresponding conditions in
sij, e.g. if an agent is to place painting brushes near
any window, then there will be no coupling between
behavior that picks up a painting brush (say/~11) and
the behavior that puts it near a window (say 822), 
that case 811 ~- graspable(x)A brush(x) and 822 -~
in_hand(x) A brushCx) h agent_at(y) h window(y). If
it is decided that big brushes should be kept near big
windows and small brushes near small windows, the
stimuli are modified
to be sll = graspable(x) A brush(x) A(small(z) 
assign(Y, sin))A(big(x) :* assign(Y, whereit is
assumed that in evaluating truth of a wff of form
(A ~ B) (where A is expressed in CNF and B 
an atomic formula or a conjunction of atomic formu-
las of arity 2, introduced for the purpose of mak-
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ing assignments), B is evaluated to be true if 
is true and assign(x,a) sets value of the variable
x to a. The other stimulus s22 is modified to be
(in_hand(x) A ~ush(z) A agent_at(z)/~ window(z)

A size(z, Y)). For the purpose of computing u in the
coupling, wffs of the form (A =~ B) are converted 
(-,A V B). Here ~xl and 822 are behaviors that are
coupled. The clauses involved in coupling here are
(small(x) =~ assign(Y, sin)), (big(z) assign(Y, bg)
and size(z,Y). Hence the actual coupling e1122 is 5
(2 + 2 + 1). The coupling of an agent is computed
as sum of the couplings between pairs of its behaviors
and the couplings between its behaviors and behaviors
of other agents. The coupling of a multi-agent sys-
tem is computed as the sum of the couplings between
distinct behavior pairs from B. Clearly, coupling be-
tween behaviors of different agents makes agents less
autonomous and requires explicit parameter passing.
Coupling is different from the causal connectivity be-
tween the neighbors of a behavior chain (by causal con-
nectivity between neighbors, we mean consequence cij
of a behavior ~ij providing literals needed to be true
for stimulus sgh of next behavior 19gh in same behavior
chain to be true. In such a case, ~ij : ~gn will be a part
of that chain). The coupling defined here captures de-
pendency among stimuli of behaviors that is forced to
occur to fulfill specified goal. The stimuli are assumed
to be modified by a human to handle the dependency
(an agent is not considered to be autonomous enough
to modify the stimuli of its behaviors on its own). The
coupling can be used to define autonomy of an agent
and a multi-agent system. The higher the coupling,
the lower is the autonomy and modularity.
3 Results
In this section, we discuss our results on interactions
between complexity of goals, coupling and degree of
reactivity of a multi-agent system.
Theorem 1. As the complexity of a goal set increases,
the coupling of the multi-agent system changes from C
to C’ where C’ _> C, when ] B I is kept constant.
Proof - Let the goal set G’ be derived from the goal
G by adding m tuples of the form < I~, Fi > to G (so
that

C(G’) = CCG) + cCg,),
i=1

leading to C(G’) C(G)) orreplacing exi sting tup les
C ’by more complex goals ((g~) C(gi)), sothat G’ is

more complex than G. These tuples specify goals of
achievement since goals of maintenance are assumed
to be invariant. When t B I is kept constant and it is
desired that goals not currently fulfilled by the system
should be fulfilled, the only option is to modify stim-
uli and/or consequences of behaviors so that existing

behaviors are chained in a certain way to fulfill the
more complex goal set. We consider how the stimuli
of behaviors in the current multi-agent system can be
modified to fulfill all goals g E (G~ - G), without drop-
ping any literal I from existing stimuli (since dropping
literals from existing stimuli to fulfill (G~ -G) may
result in some g~ E G not being fulfilled).

Case 1. Consider stimuli of two behaviors ~j and
~mq where sij contains conditions that assign val-
ues to variables in literals in Smq. One can modify
the values that are being assigned or negate predi-
cates making assignments (e.g. assign(x, a)) to ful-
fill elements of (G~ - G) or rearrange existing liter-
als, e.g. if instead of dropping big brushes at big
windows and small brushes at small windows, it is
desired that big brushes should be dropped at small
windows and small brushes should be dropped at
big windows, ’ the assignment conditions (small(x) 
assign(Y, sm)), (big(z) =#, assign(Y, in si j c an
be changed to (small(x) =~ assign(Y, bg)), (big(z) 
assign(Y, sm)). If it is desired that small brushes
should not be moved, sij can be changed to in-
clude (small(x) =~ assign(Y, sin)) A ~small(x) or
(small(x) =} assign(Y, nil) However these changes
leave k, u (as defined in the discussion on coupling in
previous section) unchanged, this argument can be re-
peated for other pairs of stimuli. Hence coupling of an
agent and the system does not change. Hence Ct -- C.

Case 2. Stimuli are changed by adding new condi-
tions to sij and/or increasing the number of literals
and/or variables in Smq that are assigned values. This
leads to an increase in k and/or u. Let k,u be in-
creased by k~ and u~ respectively. In that case, the new
coupling between the behaviors is (k + u + ~ +u~) >
(k + u). For example, if in the goal of moving brushes,
there is a third category of brushes and windows, say
medium, then an additional condition (medium(z) 
assign(Y, rod)) will be needed, here u is increased. If
it is required that brushes of a particular size should
be dropped at only those windows which also have a
cupboard of corresponding size near them, stimuli will
have to be modified, increasing both k and u. This ar-
gument can be extended to multiple pairs of behaviors.
Since coupling of at least one behavior pair increases,
C~ > C, hence the proof. []

Not having coupling between agents will make them
more autonomous but will prevent some concurrent be-
haviors from occurring. Keeping the coupling within
an agent in fact introduces some sequentiality, e.g. in
the example of moving brushes discussed above, same
agent is responsible for moving and dropping the brush
at desired location, once it picks up the brush. To
eliminate coupling, one will have to design multiple
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behaviors for picking and dropping, e.g. separate be-
haviors for picking brushes of different sizes with stim-
uli (small (x) A brush (x)), (big (x) A brush and
(medium (x) A brush (x)) and corresponding behav-
iors for dropping the brushes. This suggests another
dimension of analysis.
Theorem 2. If coupling of multi-agent system is
changed from C to C~, C~ < C, then fulfilling origi-
nal goals requires either B to be modified to B* such
that I B* I>l B [ or introduction ofm markers, m _> 1.
Proof - Since coupling of the system is reduced, there
exists a pair of behaviors,/3ij,~mq, such that the cou-
pling between the behaviors is reduced. This means
that either the number of literals in Smq, variables of
which were assigned values by conditions in sij were re-
duced and/or the number of conditions in s~j making
truth assignments and/or the number of assignment
predicates in sij were reduced. These changes will ei-
ther result in variables in literals in Sraq not having any
values assigned to them or variables that have some
fixed values assigned arbitrarily(these values are not
set by conditions in s~j, e.g. instead of letting a condi-
tion in sij set value of Y in at(Y) in Siq, one can force it
to some arbitrary value at(5) and reduce the coupling)
or variables that have incorrect values assigned, result-
ing in fewer goals fulfilled or an undesired behavior. In
such a case, one will have to add behaviors to B to
fulfill the unfulfilled goals, leading to I B~ [>[ B [, (as
discussed above in the case of moving brushes of differ-
ent sizes) or create markers that act as substitutes for
the values to be assigned, (e.g. one can write the size
of window near which a brush is to be dropped on the
brush itself and then modify the previously discussed
stimuli Sll = graspable(x) A brush(x) A(small(x) 
assign(Y, sm)) /\(big(x) =~ assign(Y, bg)), 
in-hand(x) A brush(x) A agent.at(y) A window(y)

A size(y, Y) to sll =
graspable(x) A brush(x) A has_word(x) (has_word(x)
means that x has a word written on it) and s22 --
in_hand(x) A brush(x) A agent_at(y)

/~ window(y) on(x, z)A word(z) A siz e(y, z)) but
this introduces m > 0 markers (This also makes the
environment of the multi-agent system more complex),
hence the proof. []

Lemma 1. Adding a marker increases degree of re-
activity of a multi-agent system.
Proof- Since markers are added so that truth
of one or more literals in one or more stimuli
can be decided purely based on external infor-
mation gathered by sensors, when a marker Mx
is added, 3/~ij, l(in(sij, l) A -~in(s~j, A(Mx ~ / ))
which means that there exists a behavior such that
some literal from its stimulus whose truth was not de-

cided based on purely external information can now
be assigned truth value purely based on the external
information available in the form of marker that can
be sensed. In that case, rij increases by at least 1ETI"
Hence R increases. Hence the proof. []

When we transfer an internal state to external, we
are making that state publicly available and that may
be perceived by other agents. Hence evaluating the
effect of adding a marker on the task fulfilling capabil-
ities of the system is important. We now explore the
relation between length of stimulus of a behavior and
the change in environmental complexity that occurs
when we try to make a behavior more reactive.

Theorem 3. Given two behaviors of same degree of
reactivity, the one with longer stimulus makes an en-
vironment more complex than the one with a weaker
stimulus, when their degrees of reactivity are increased
to unity by introducing markers of unit strength.
Proof - Let us consider two behaviors f~j and f~nq, such
that sij is longer than snq. Hence [ slj I>1 snq I. If
the degrees of reactivity of the two behaviors are same

(rij rpq), Is~’l= ~ = ~ Using these two relations, it
can be inferred that (I sij I - I s~j I) > (I snq I - 

D, which means that the number of markers rn~Spq
required to raise r~j to unity is more than the number
of markers m" required to raise rnq to unity, since all
markers have unit strength. When an environment E
is changed to E~ to raise r~/ to one, E" = E¢ + m*.
When an environment E is changed to E" to raise rp¢
to one, E~~ = Ec+m". Since m’ > m", E~ > E~I.

Hence f~/ makes an environment more complex than
~pq. []
4 Constraint-based specification
The conclusions here have strong implications for all
kinds of agents, e.g. some search algorithms of a soft-
bot trying to retrieve data fulfilling certain character-
istics from a database, can be considered as its sensors
and markers can be introduced in the database to assist
the search algorithms in performing better. We con-
sider an agent system to be a situated software and pro-
pose that realistically, agents should be designed using
a specification of requirements, just like the conven-
tional software. Below we identify various constraints
involved in designing a multi-agent reactive system.
1. {rij E [lij,hij],l < i <_ n, 1 <_ j <_ bi}. Such
constraints specify that degree of reactivity of a be-
havior should fall within a certain range, lij, hij being
the lower and upper bounds. In practice, certain fea-
tures can be sensed faster, then reactive behaviors are
faster than deliberative. But too much reactivity can
lead to myopic behavior or infinite cycles. Hence such
constraints are needed.
2. (bi E [li, hi], 1 < i < n). These constraints limit the
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number of behaviors of agents to certain ranges.
3.

n

bi E [/IBI, hIBI]
i----1

which limits the size of behavior space of the system.
4.{cijiq E [lijiq, hijiq]) which limit coupling between
behaviors of an agent where 1 _< j _< bi and 1 < q _<
bi,j ~ q.

k

e [t o, h c], 1 < k < n}

limits coupling of an agent.

n i

e [Lo, Hol
i-~1 p-~i

limits total coupling of the system. The coupling is
a measure of independence within aa agent’s behav-
ior library. Higher the coupling, lower is the indepen-
dence. This independence is related to autonomy of an
agent. Additional constraints expressing desired au-
tonomy can be developed.
5.

IGi
Vgi(gi ~ G =~ ]ulfills(B,g~)), ~-~ c(g~) [l o, hG]

i~1

which expresses that the system should have goal ful-
filling capability within a certain range.
6. Let the complexity of an environment E be denoted
by Ec. A constraint may be imposed on the environ-
mental complexity through Ec E [/E, hE]. This limits
the number of markers and hence the amount of exter-
nalization of state.
7. Constraints will have to be specified for the fulfill-
ment of individual goals. Such a constraint will spec-
ify that a chain of behaviors fulfilling that goal should
exist, qC~((C~ ,~ B) A(fulfills(C~, g))) specifies that
there should exist a chain Ci composable from B that
fulfills goal g.

This set of constraints leads to a constraint-based
specification of a multi-agent system. The set of con-
straints mentioned above can be encoded into proposi-
tional logic and the problem of designing aa agent sys-
tem can be cast as a propositional satisfiability prob-
lem. In particular, the problem of finding a model for
the encoding will correspond to the problem of design-
ing a multi-agent reactive system to satisfy the spec-
ified constraints. Using this framework to establish
the bounds on the size of the encoding and exploring
the utility of other types of encodings is our future

work. Though this may look impractical in the light of
complexity of real world, agents designed in this way
will provide aa approximation to agents that work in
the real world. Such approximations can be iteratively
refined by tuning some constraints, e.g. adding new
constraints to account for noise in sensors (sonars of
a robot, finger command of a softbot) and problems
in effectors (electric motors of robots, f~p command of
softbots).

5 Conclusion
It has argued that a behavior many times looks com-
plex because of the complexity of environment in which
it occurs [5]. However if we transfer internal state
to external world by creating markers, it makes the
the environment more complex. We have presented
only those constraints that are independent of archi-
tecture and representation. Even if one probes into
hybrid architectures that have a planner and a reac-
tor or planner, sequencer and a reactor and use rep-
resentations like fuzzy logic, potential fields and finite
state automata, our constraints continue to be rele-
vaat. Our results and formalism can be used to de-
rive a number of other specific tradeoffs, when specific
information about agents, environments and goals is
available. Such specific information will provide addi-
tional constraints. Constraints prohibiting occurrence
of an undesirable behavior can be added to the con-
straints we outlined here. An example of a system
that could be designed in this way is a set of soft-
ware agents that have behaviors for gathering infor-
mation, sending and forwarding e-mails and outlining
schedules for meetings. In bottom up approach, it is
not clear what set of behaviors to start with and the
scalability of this approach is questionable. Top down
decomposition-based approaches require knowledge in
the form of reduction schemas, and this is rarely com-
pletely available. Our approach provides a more ho-
mogeneous framework in which agents are viewed as
models of a set of constraints.
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