
Combining Constraint

Abstract

We describe an agent-based approach for en-
gineering problems in which the constraints
and general control of problem solving are dis-
tributed. In order to overcome previous problems
with engineering constraint solvers, we divide
responsibilities between domain-specific agents,
which control the overall problem solving, and
generic, reusable agents. One of these generic
agents is Reduxt, which provides general prob-
lem solving bookkeeping services. Another is a
Constraint Manager, which provides constraint
consistency services. We demonstrate the utility
of this approach on a previously-defined simple,
but difficult, distributed constraint problem.

This work was funded by Navy contract SHARE
N00014-92-J-1833 under the US DARPA RaDEO pro-
gram.

An Engineering Constraint Manager
Agent

Constraint solving is a common function in engineering
projects. As distributed and concurrent engineering
become more common, the requirement to solve vari-
ous kinds of constraints spanning disciplines becomes
more important. The difficulty of this requirement is
increased when the participants are not co-located and
when constraint solving must be interleaved with gen-
etal design and project management.

We are exploring one obvious approach: KQML-
based agents. With this technology, one can "wrap"
l(~gacy ~ools (e.g., CAD systems) with software, usu-
ally ca.lled Application Program Interfaces (APIs), that
allow them t,o communica£e via a common agent pro-
(,ocol, in this case, KQML(Finin et al. 1992). We
a£tcmpting to define reusable, generic KQML-agents
uscful for engineering design. We call the whole frame-

Propagation and Backtracking for Distributed
Engineering

Charles Petrie
Heecheol Jeon

Mark R. Cutkosky
Center for Design Research

Stanford University
560 Panama Street

Stanford, CA 94305-2232
petrie~cdr.stanfor~l.eqlu .,

wor~ ox reusame messages and agents Process-Linkt

The core generic agent is Redux’(Petrie 1993), which
assumes a particular model of the design process in
which design decisions are to divide an issue or a task
into subissues or subtasks, and/or to make statements
about the design. Thus we say a decision consists min-
imally of a goal (the issue or task), and results, consist-
ing of at least one subgoal or at least one assignment (a
statement about the design). Constraints may be vio-
lated by some set of assignments. Constraint violations
are resolved by problem solvers rejecting/changing de-
cisions that resulted in conflicting assignments.

This model is consistent with the generate-and-test
model of design. A decision is made, assignments gen-
erated, and a test made to see ff the assignment is
consistent with the set of known active constraints. If
not, the user may choose to leave the design inconsis-
tent, or, at any time, may reject one or more of the
decisions that led to the inconsistency. One important
function of Redux’ is to remember that the rationale for
one decision might be the rejection of another, and, in
turn, the reasons for the rejection. This detail has been
documented elsewhere(Petrie et. ai 1995) and is out-
side the scope of this paper, but the basic functionality
is dependency-directed backtracking (DDB)(Stallman
and Sussman 1976).

Generate-and-test with DDB allows for incremental
rejection of design decisions, and thus the maintenance
of rejection reasons useful for design. But generate-
and-test is much less efficient than constraint prop-
agation for many engineering problems. Thus, some
constraint solver should be combined with ReduxL A
major challenge is to be able to combine DDB with
constraint propagation and generate rejection reasons
as needed.

Another issue is that there are many different kinds
of constraints; e.g., algebraic with continuous do-

1This is documented at
ht~p://cdr.stanford.edu/ProcessLink//on the WWW.

76

From: AAAI Technical Report WS-97-05. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

mains, symbolic with discrete domains, etc. And there
are many different extant constraint satisfaction sys-
tems. Our goal, therefore, was to construct a generic
Constraint Manager (CM) that would allow different
solvers to "plug and play", route constraint solving
requests to appropriate solvers, and send not only
consistency information, but also rejection reasons as
needed to requesters. And the messages exchanged be-
tween the CM,Redux’, solvers, and requesters should
be domain-independent.

We also noted that the basic constraint formalism
of variables is not sufficiently structured for engineers
who want to reason about which type of object to use
in an assembly based upon its features and problem
requirements. Thus the CM had to not only translate
among solvers but also to include a better engineering
formalism.

While we have made substantial progress on these
last two issues with the CM, they are mentioned only
for context as this paper reports only on the fundamen-
tal issues of control of problem solving and combining
constraint propagation and DDB.

Control of Constraint Solving Issues
hi developing the CM for engineering applications, we
have addressed the following problems:

* Constraints and variable domains change during
problem solving. A constraint or variable may be
the result of a specific design decision, which may
later be rejected in favor of another decision. This
revision is unlimited. For example, as engineers de-
cide to use a part, new variables corresponding to
its features come into play. If the part is discarded
(perhaps only temporarily) from the design, so are
those variables and associated constraints.

* Especially in collective problem solving, incremen-
tal reasoning is important in engineering design. If
the constraints or domains change, it is inefficient
to start from scratch and resolve the whole prob-
lem each time. Perhaps more important to the user,
the resulting answers may be very different from the
current context of problem solving(Dhar and Ra-
ganathan 1990).

. Engineers want control over problem solving. They
don’t want a constraint satisfaction system to give
them the answer; they want information about con-
sistent alternatives(Park et al. 1994). They may
even prefer to live with some inconsistencies for a
period of problem solving.

¯ Since nmst constraint propagation algorithms do not
ensure global consistency, backtracking is necessary.

This is also true for overconstrained problems and
for many situations where generate and test is an
appropriate problem solving strategy. In these cases,
engineers want to know the constraints, domains,
and decisions that might be changed to remove the
inconsistency(Park et al. 1994).

In distributed collective design, changes in cow
straints, variables, domains, and assigned values
have various effects on design decisions by different
engineers. These effects should be noted.

Task Decomposition

Many have noted that constraint propagation should
be used as a filter for a distinct preproceasing task.
Dechter and Pearl(Dechter and Pearl 1989) and Mack-
worth (Maekworth 1988) all refer to constraint prop-
agation as "preprocessing". One generic model of
configuration design problem solving refers to ruling
out infeasible boolean expressions prior to selection
of design extensions(Balkany et al. 1993). Gaertner
and Mitsch(Gaertner and Miksch 1995) identify those
points in scheduling at which the problem solver should
intervene to improve the tractability of constraint sat-
isfaction. This is in contrast to approaches that ap-
proach design problem solving completely as a con-
straint solving task(Bowen and Bahler 1992).

Separating problem solving from constraint propaga-
tion allows more control over problem solving. We ex-
tend this notion to say that there is a general service of
consistency management that includes constraint prop-
agation before decision making and consistency check-
ing afterwards2.

We extend further this decomposition in identify-
ing a separate task of dependency-directed backtrack-
ing(DDB) bookkeeping that is especially important for
incremental revision by multiple problem solvers with
dynamic constraints and domains. In order to deter-
mine the incremental effects of changing conditions,
more DDB support is required than is provided by
strictly constraint-based approaches such as Dechter’s
dynamic constraints (Dechter and Dechter 1988)
even the backtracking of (Mittal and Falkenhainer
1990).

The problem solver can not only make choices of
values to be assigned to variables, but can also reject
these assignments at will. This may occur in response
to a constraint violation. DDB support provides the
problem solver, upon request, with the AND/OR tree
of assignments responsible for the conflict. Given a set

~Also included is the matching of constraint types to
constraint solvers and the translation of constraints and
results among them.

77

of assignments to reject, the reasons for the rejection
should be noted in order to 1) avoid thrashing and 2)
determine when the rejection is no longer necessary.

This bookkeeping is especially desirable if con-
straints and variable domains can Change. Part of this
task is to determine the effect of these changes on the
current solution and inform the affected agents. For
insta,lce, the deletion of a constraint may mean that
a known conflict is no longer the case and an earlier
preferable solution may be possible(Petrie et. ai 1995).
Not only variable assignment values, constraints, and
domains, but also choices about goal composition may
be revised in response to constraint violations. The
DDB bookkeeping must be done in all cases. In par-
ticular, we say that a goal, variable value assignment,
constraint, variable domain definition, or rejection is
valid or invalid depending upon conditions determined
by the problem solvers

Consideration of the DDB bookkeeping task sug-
gests more work for the consistency management task.
Constraint propagation and DDB are dissimilar con-
stra.iut satisfaction techniques. The former filters out
some inconsistent values prior to a choice. The latter is
used when further inconsistencies necessitate rejection
ol’ choices. But overconstrained problems are common.
In these cases, DDB needs to consider constraints and
choice of domains as well as assignments used to filter
choices during constraint propagation. Then consis-
tency management must perform some K-consistency
algorithm(Freuder 1978) to generate rejection reasons
that include these constraints and domains for use by
the DDB bookkeeping function.

Agent Responsibilities and Interactions.
Agent technology provides a good structure for sep-
arating tasks and making generic functionality easily
available. The constraint ma~mgement task divisions of
Section suggest agent responsibilities and interactions.
The problem solving is performed by domain-specific
agents, DDB bookkeeping by Redux’, and consistency
mauagemeat by the Constraint Manager, as illustrated
in Figure 1, which also suggest some of the messages
tha.t must be passed among such agents.

Definition of the messages to be exchanged and the
functional responsibilities of the agents is a major tech-
nical challenge. We describe here the overall princi-
ples omitting implementation. A full description of the
I(Qh4L messages that the current implementation ex-
changes is beyond the scope of this paper and may only
be one way of implementing this functionality. The

3 Validity in the Redux model is analogous to the clas-
sic~ll logical scnse of bei,g a valid consequence, usually de-
noted by the cntailmeut symbol ~.

..................... ~i iiii .!:ii~:i~:iii:~i::ii!~’F’’i!i::!i::i~.~i~hl,..’;,~i:~:,;:’..’..’..:~,;~:

......... .’".- :!:: ::[:::i!!~ii ~ ~: ~< ~ ~: ~:~ ¢~’ ’ k ~ ~ :: -’~-’.’-’.i: !~i ~ :~i.".’i: i~i!~, ~il!!!!~ii!iiiil:i~.~~

I, ~...’.:’. ~

~.:,.

"~:’~t

~:::!:!~:k~.’:.:.:.%~.’,S~.x.’.i:!.S~:~:[~:~:.~>.~.S!:~:..’..~::~,:::m!: ::!: .::: : :: :?’"?"? " ̄ .~":" "?" "’~1

~::~::::’:" ::I~ 1 :!:ii!:~’~i:i~i~iii!i;ii:’"iii:i~i~i~’~ii~ ~ii~i!f~;~:!ii :! !!~’ ili(~ ~i~ i~ ~!::i:i,:i.: :.~,~:~:- .. ~.....~,.. ::::.- ~:
::~:~:::::":":"""’~’:’::-::":" """~:’""~:’:::~::’::::~;::: .S:"’;’:"~":’"::’":’.:":::;:::~.’.:.::::::::::::::.::i:~i:.-’~:~i:: :i~-’::~i:i. :~]~: i:~:;:i~:::~:.".~: i

Figure 1: Constraint Solving Tasks and Agents

types of messages exchanged between a problem solver
and Red,z~’ are covered in (Petrie et. al 1995). The
basic messages from the problem solver to the CM are
requests for elimination of variable domain choices via
constraint propagation. The CM will return the con-
sistent vs inconsistent choices prior to decision making,
using constraint propagation. The CM also performs
automatic consistency checking as variable value as-
signments are made by decisions. The CM remembers
consistency requests and replies and will later initi-
ate a message if changes, such as a domain change
or an assignment being made, would cause a differ-
ent response, including an overconstrained condition
in which no choices are any longer consistent4.

For interaction with the CM, we allow variable do-
main definitions to be a special case of assignments.
Thus, a decision might result in the assignment
Domain-Definition (section-modulus beam-l)
E3-15], which may be changed later in problem soh,-
ing.

Addition or relaxation of a constraint, a change in
a domain definition, or the addition or invalidity of an
assignment may mean that a reply by the CM to an
earlier consistency question needs revision. Redu~’ will
always inform the CM of changes in variable domain
and constraint definitions or addition/deletion. The
CM keeps a record of variable consistency requests and
replies for the duration of a project. If the current
change involves one of these variables, the CM will
recompute consistency and inform the requesting agent
if the new consistent domain is different from the old
one. The domain-specific agent may in turn decide to
revise its design decision, causing further incremental

4At "http://cdr’stanf°rd’edu/Pr°cessLink/"’ see
"protocol/EPL-syntax.html" and "ConstraintMaaager/"
for details.

78

changes to the design state.
A special case involves the "activation" of con-

straints by the CM. If a variable domain definition is
removed by the rejection of a decision, and not re-
placed by a new one, then the variable is not cur-
rently important for problem solving. For instance, if
there is no valid assignment of a value to the variable
(section-modulus. beam-l) and no valid domain def-
inition for this variable, then Reduz’ notifies the CM,
which Omits constraints with this variable from fur-
ther consistency checking or propagation, even if the
constraint is valid.

The problem solver may also request rejection rea-
sons. Suppose that the CM tells an agent that no val-
ues in the domain of a variable are consistent. The
agent would then like to krmw why. Doing so requires
that the Redux’ agent and the CM work together to
generate rejection reasons sufficient for control of prob-
lem solving’~.

In the ease where all possible variable values are
ruled out by constraint propagation, upon request, the
CM will use a K-consistency algorithm(Freuder 1978)
to generate the variable assignments and domains and
constraints that directly caused the inconsistency6.

The CM furnishes this information to the Redux’
agent, which then determines which decisions by which
agents were responsible for these assignments, do-
mains, and constraints 7. Obviously, this is an ex-
pensive computation and is the tradeoff to performing
tractable but fallible constraint propagation.

The Secretaries’ Nightmare

While the preceding section outlined the agent interac-
tions, a scenario will illustrate in more detail the kind
of messages that should be exchanged to provide the
stated functionality.

In 1993, one of us, Petrie, organized a workshop in
which researchers presented papers on how their ap-
proaches would relate to a simple scheduling problem,
called "The Secretaries’ Nightmare’’s No one paper

~Redux~ actually does more than is what is commonly
referred to as "dependency-directed backtracking" in many
systems, such as those analyzed in (Balkany etal. 1993).
The latter only identify the "nogoods" and allow the search
to be recontinued at any one of the choices responsible for
the conflict, without affecting the others. Redu~~ addition-
ally tracks the reasons for the conflict and ensures that the
search will not thrash, as noted in (Petrie et. al 1995).

6This idea was first suggested by Juergen Paulokat in
1995 in work on his dissertation.

ran AND/OR tree of resolution possibilities is gener-
ated since more than one decision can result in the same
variable assignment.

SThis was the ~rorkshop on Distributed Scheduling at
the 1993 IEEE CAIA. The original CFP, including the full

solved the whole problem, nor was any expected to do
so. However, some aspects of the problem were partic-
ularly problematic and can be used to illustrate how
the CM and Red~r~ work with problem solving agents
within the Process-Link framework.

The problem can be summarized as follows:
Constraints: all-day meetings on weekdays in April;

first meeting includes Axel, Brigitt, Dirk; second meet-
ing includes Axel, Brigitt, Carl; if these two meetings
are not held back-to-back, a third meeting, in between
these two, must be held between Carl and Dirk; Carl
is not to attend the first meeting.

Preferences:. Back-to-back meetings and earlier
dates.

Conditions: No central organizer, each person is free
to change published availability dates as convenient.
As examples, Dirk and Carl can change the third meet-
ing constraint; anyone can propose or reject dates.

Domains: Axel is available in April the week of the
4th, the 18th and 19th, and the 25th and 26th. Brigitt
is available the 7th, 8th, 19th, and the week of the
25th. Carl is available on the 7th, 19th and 26th. Dirk
is available on the ?th, 8th, 18th, and 25th.

Modeling:. Our method does not take into account
how agents come to agree upon variable names, goals,
etc. We assume that theagents propose common vari-
ables, domains, and constraints. Let Axel’s meetings
be A-M1, A-M2, A-M3, with similar notation for the
others. The constraints are sent to Reduz~ by any one
of the participant agents in
Constraint-De[statements that include a constraint
name, expression, and list of variables. We list the
constraints here in the form <name>: <expression>

C-I: (> Date.Ml Date.M2),
C-2: (ffi Date.A-Ml Date.B-M1Date.D-Ml
Date. M1),
C-3: (= Date.A-M2 Date.B-M2 Date.C-M2
Date. M2),
C-4: (= Date.C-M3 Date.D-M3 Date.M3),
C-5: (AND (> Date.M2 Date.M3) (> Date.M3
Date.Ml))
C-6: (= Date.M2 (+ 1 Date.M1))

There axe various ways the agents could model their
Redux’ decisions. One we will use will be to make
the scheduling strategies explicit. So, we say there is
a top-level (root) goal of, say, "Assign Meeting Dates
/or M-1 and M-Z", called Schedule-Meetings. There

description of the scheduling problem, and the presented
papers are available st
http: / /cdr.stanford.edu/html/people/petrie/eaia.html.

79

Figure 2: Two Possible Initial Decisions

~u’e two possible decisions to be made, according to the
preferences. One is to schedule back-to-back and the
other is to schedule three meetings. Let us call the first
decision Back-to-Back and the second Three-Meetings.
Both decisions have goal Schedule-Meetings and, as re-
sults, subgoais Choose-M1: Choose Date for M1 and
Choose-M2: Choose Date for Mg. However, these de-
cisions differ in that Three-Meetings posts a third sub-
goal of Choose-M3: Choose Date for M3. We also ex-
tend the Redux model by allowing a new constraint to
depend for its validity on a decision. In this case, were
the decision Back-to-Back to be made, Redux’ would
inform tile CM of the constraint C6 : (= Date.M2 (+
1 Date.Mill. The
Three-Meetings decision results in the constraint C-5:
(AND (>
Date.M2 Date.M3) (> Date. M3 Date.Mill . These
two possible decisions for goal Schedule-Meetings are
illustrated in Figure 2 with goals as ovals and decisions
as triangles.

The problem solving scenario can be organized in
steps. For each step, we explain how the Process-Link
agents would interact. Each of the meeting partici-
pants is an agent.

Step 0: Each agent publishes a domain definition;
e.g. Domain-Dcf Date.A-MI {~,5, 6, 7,8,18,g5,26} and
Domain-Def Date.A-M2 { ~,5,6, 7,8,18,25,26}.

I.~’sue: Like constraint definitions, domain defini-
tions are first sent to Redux’. Redux~ always forwards
constraint and domain definitions to the CM because
these definitions may depend upon design decisions.
Agents make changes to constraints and domains ei-
ther directly, or indirectly through decision revision,
m~d Redux’ informs the CM of such changes.

Step 1: Upon requests by Axel, Bridget, and Dirk,
the CM indicates two consistent solutions for the two
meetings: [7, 19] and [25, 26]. Axel proposes that
the earlier preference overrides the back-to-back meet-
ing preference, makes decision Three-Meetings, and
goes on to make decisions for Choose-M1 and Choose-
MZ resulting in the assignments Date.M1 :-- 7 and
Date.M2 :-- 19, respectively. Redu~’ communicates
these assignments to the CM. All the agents have reg-
istered an interest in such assignments, so they are
notified as wells.

Step 2: The requirement for a third meeting to be
scheduled is only now introduced as the goal Choose-
M3. The addition of C-5 causes the CM to request
domain definitions for Date.M3. Carl and Dirk send
these. Immediately, the CM detects that the problem
is now overconstrained. The CM determines that the
reasons are constraint C-5, the assignments Date.M1
:-- 7 and Date.M2 :-- 19, and the domains for
Date.C-M3 and Date.D-M3.

Issue: The issue here is the "activation" of con-
straint C-5. In order to simulate backtracking func-
tionality as well as to illustrate control of constraint
solving, this constraint should not to be considered
initially. We choose to make the constraint depend
directly upon the decisionBack-to-Back, rather than
add conditions to the constraint. This has the advan-
tage that as the Three-Meetings decision is made and
rejected, constraint C-5 comes and goes, and is con-
sidered by the CM only when appropriate. Constraint
C-6 is modeled similarly.

A notice of the conflict is sent by Redux~ to all of the
participants, as all of their domain definitions are im-
plicated. Axel asks Redux/for the reasons and Redu~’,
based on information from the CM, includes the de-
cision Three-Meetings as one of the causes. Axe] re-
sponds by changing the decision to Back-to-Back, re-
sulting in deactivation of C-5 and activation of C-6.
Variables Date.C-M3 and Date.D-M3 are no longer
considered. After making a consistency request to the
CM, Axe] assigns Date.M1 :-- 25 and Date.M2 :--
26.

Step 3: However, now Dirk objects to the scheduled
meeting as being too late and rejects Date.M1 :-- 25.
The CM reports the problem is now o~erconstrained.
All participants are notified as their domain definitions
are implicated. Someone must expand their domain.

Issues: The problem solvers are free to reject so-
lutions. If the problem becomes overconstrained, the
CM and Red~’ can state the reasons, including do-

’This is a Redu~~ feature called RequestFeature.

8O

main definitions.

Step 4: Brigitt offers to cancel another meeting and
be available on the 18th by sending a new domain def-
inition. Redux’ notices that the (overconstrained) con-
flict is potentially resolved and notifies the CM of the
change. Remembering previous consistency requests,
the CM notifies everyone that the two meetings can be
held on the 18th and 19th. Dirk chooses to keep the
Back-to-Back decision and remake the decisions about
the choice of meeting dates for M1 and M~, resulting
in the assignments Date.M1 := 18 and Date.M2 :=
19.

Issues: The CM notification is based on a change to
a previous response. Also, the context of scheduling
back-to-back meetings is maintained:

Step 5: Then Carl’s schedule changes so that he is
available on the 8th. This change in his domain causes
Redvx~ to send two messages: one to Axel suggesting
that the Three-Meetings decision, together with [7,19],
may be possible after all, and one to the CM, notifying
it of the domain change. The CM sends Axel, Brigitt,
and Dirk messages confirming that [7,19] is available
because the third meeting can be scheduled on the 8th.
Even better, the CM will note a back-to-back meeting
on [7,8] is now possible. Brigitt, in order to make the
18th free again, changes the date decisions to result in
the assignments Date,M1 :-- 7 and Date.M2 := 8.

Issues: Redu~~ volunteers information about a pos-
sible change to an earlier context. The CM volunteers
complementary information about variable value pos-
sibilities, based upon previous interest. Both mecha-
nisms are necessary to note all the possibilities.

Step 6: Axel objects saying that he has already
planned another meeting in Los Angeles on the 19th to
take advantage of his presence there. He takes up the
Red~d suggestion of Three-Meetings, reverts to this
decision and to the decision for
Date.M1 := 7". (The decision for Date.M2 := 19
is unchanged.) The goal to have a third meeting is
reinstated and satisfied with a decision that Date.M3
*~ 8,

Issues: Problem solvers are free to use the volun-
teered information at any time. If it were no longer
the case that this option was available, Redurd would
not let the decision be made. In this case, as soon as
the context changed, constraint C5 was in force, C6
was not, and the goal of choosing a value for M3 was
again valid.

Problem Summary:
Step Decision MI,MZ, M3 Next Event
1 Three-Meeting 7,19,x C5 Added, Violated
2 Back-to-Back 25,26 Reject MI,

Overconstrained
3 Back-to-Back xx,26 C6 Violated,

Domain Change
4 Back-to-Back 18,19 Domain Change
5 Back-to-Back 7,8 Reject M2
6 Three-Meeting 7,19,8 End

This problem shows that it is simple and yet difficult
to support formally. Further, the difficulty of follow-
ing even this simple example illustrates the need for
a bookkeeping and notification service. The problem
is representative of engineering projects in which do-
mains and constraints change as components are added
and deleted from the design and designers change their
preferences. In particular, it illustrates control of prob-
lem solving strategy by the users, interleaved with con-
straint propagation, dependency-directed backtrack-
ing, and interactions among the agents.

Conclusions
The major principle discussed here is the separation
of backtracking bookkeeping from consistency manage-
ment from problem solving. Indeed, separating consis-
tency management from problem solving requires sup-
port [or backtracking. Problem solvers need to be able
to work with inconsistencies and backtrack at will.
DDB allows problem solvers to be reminded o.f pre-
vious solutions and what is now wrong or right with
them. This preserves the history of collective problem
solving, facilitating incremental change.

Conversely, constraint propagation complements
DDB by eliminating the necessity to generate conflicts
in order to detect the effects of constraint deletion.

The backtracking bookkeeping also should prevent
problem solving thrashing. Though not illustrated, the
problem solvers are free to pick inconsistent solutions
and delay their resolution indefinitely. However, prob-
lem solvers are not allowed to rechoose a rejected de-
cision while the reasons for the rejection are still valid.
Moreover, these rejection reasons are used to warn
problem solvers if they may be entering in a cycle of
making and rejecting old decisions.

Further, consistency calculations must be based on
the current state of problem solving. This means the
CM needs to be notified by the bookkeeping agent
whenever the validity of a constraint, domain, or value
assignment changes, as well as of the addition of new
ones. In turn, the CM needs to remember previous

81

consistency requests by problem solvers, and notify the
requester later if the answer would be different given
the change of state detected by the bookkeeping agent.

What does the problem illustrate? First, notice that
the representation of C-5 can be very simple. It need
not have any conditions about whether the other two
meetings are back-to-back, as that is modeled in the
decision itself. There is no need for a exists relation,
which does not properly belong in constraints anyway.
The constraint comes into play only when appropri-
ate. While this condition could be modeled within the
constraint itself, it imposes more work on both the
constraint writer and the constraint solver, and such
conditions may not be easy to express in more compli-
cated engineering design problems.

Second, the need for backtracking is fundamental
ibr hard (read practical) problems. The revision and
notification illustrated could not be handled by any of
the systems at the workshop from which this example
w~ drawn and has caused problems in others.

We have presented a scenario that illustrates the fol-
lowing:

¯ management of constraint and variable domain
change,

¯ simplification of constraint definitions, as with C-5
and C-6,

¯ the CM and Redur,’ suggesting previous solutions,

¯ generation of the reasons for rejection of alternatives
in an overconstrained state, and

* the problem solving agents freely choosing and re-
jecting solutions based on arbitrary preferences.

The implementation status is that we have a proto-
type CM and message protocol implemented that can
solve the secretaries’ nightmare problem in conjunction
with Redux’ within the Process-Link agent framework.
The CM also works with the Next-Link electrical ca-
ble harness design application(Park et al. 1994) and
we are developing other applications within the me-
chanical engineering domain while refining the agent
message protocol, as well as the constraint notation
aald the ability to incorporate different types of con-
straint solvers.

References

Balkany, A., Birmingham, W.P., Tommelein, I.D.,
"All analysis of several configuration design sys-
tems,"Artificial Intelligence for Engineering Design,
Analysis and Manufacturing (AI/EDAM) 7:1, 1-18,
1993.

Bowen J. and Bahler D., "Task Coordination in Con-
current Engineering", Enterprise Inte~’ation Model-
ing, C. Petrie, ed., MIT Press, October, 1992.

Dhar V. and Raganathan N., "An Experiment in In-
teger Programming," Communications of the A CM,
March 1990.

Dechter Ih and Pearl J., "Tree clnstring for Con-
straint Networks," A138 353 - 366, 1989.

Dechter, It.J and Dechter, A., "Belief Maintenance in
Dynamic Constraint Networks, Proc. AAAI-88, 37-
42, St Paul MN, 1988.

Finin, T., Fritzson, R., & McKay, D., "A
Language and Protocol to Support Intelligent
Agent Interoperability," Prae. of the GE ?A CALS
’9~ Conf., Washington , June 1992. See also
http://wun~.cs.umbe, edu/kqml/ on the WWW.

Freuder, E.C., "Synthesizing Constraint Expres-
sions," Communications of the AGM, 21:11, 958 -
965, 1978.

Gaertner, J. and Miksch, S., "Shift Scheduling with
the Projections First Strategy," Oesterreichisches
Forschungsinstitut fiir Artificial Intelligence - OeFAI,
Technical Iteport, Vienna, 1995.

Mackworth, A., "Knowledge Structuring and Con-
straint Satisfaction:The Mapsee Approach," IEEE
PAMI, Nov. 1988.

Mittai, S. and Falkenhainer, B., "Dynamic Constraint
Satisfaction," Prac. AAAI-90, 25-32, MIT Press,
1990.

Park, H., Lee, S., and Cutkosky, M., Section 5 of "Aa
Agent-Based Approach to Concurrent Cable Harness
Design," AI/EDAM, 8: 1, 1994.

Petrie, C., "The Redux’ Server," Prac. Internal
Conf. on Intelligent and Cooperative Information Sys-
tems (IGICIS), Itotterdam, May, 1993.

Petrie, C., Webster, T., & Cutkosky, M., "Us-
ing Pareto Optimality to Coordinate Distributed
Agents," AI/EDAM, 9, 269-281, 1995.

Stallman, It. and Sussman, G., "Forward Reasoning
and Dependency-Directed Backtracking," Memo 380,
Massachusetts Institute of Technology, AI Lab., Sept.
1976.

82

