
Distributed Component-Centered Design as Agent-Based Distributed
Constraint Optimization

Van Parunakt, AI Ward,, MAtch Fleischert, John Sautert, and Tzyy.Chuh Chang,

tIndustrial Technology Institute
PO Box 1485

Ann Arbor, MI 48106
{van, john, mitch} @iti.org

$Ward Synthesis
3446 Gettysburg Rd.

Ann Arbor, M148105
{award@, shuh@alumni. }engin.umich.edu

Abstract

Many manufactured systems (both consumer goods and
manufacturing systems) consist of a number of discrete
subsystems and components that interact with one another
through various interfaces to provide the required
functionality. Designing such a system requires finding
values for interface variables that are compatible among
the various components, and is analogous to the constraint
optimization problem, with subsystems and components
playing the role of constraints among the variables.
Today’s business environment requires design to be done
by distributed teams of engineers, so the analogy can be
extended to distributed constraint optimization (DCOP).
This paper develops the parallel between distributed
component-centered design (DCCD) and DCOP, discusses
the particular flavor that industrial requirements impart to
the mapping, and reports how this parallel is being
exploited in the RAPPID system for agent-based
distributed design,

1. Introduction

Constraint satisfaction has been an extraordinarily fertile
paradigm in Artificial Intelligence, providing a common
vocabulary and structure for a wide range of problems.
The basic problem structure [Mackworth 1992] has three
components: a set of variables X = [xj, x~ x J, a set of
corresponding domains, one per variable, D = [dp d~,
d J, and a set of constraints C = {c~ c~ cd, each a
relation (in some refinements, a function) over a subset
the Cartesian space spanned by D. The problem is to
assign values to the variables that satisfy the constraints.
Section 2 describes how previous research has extended
this basic pattern to distributed domains.

This paper grows out of the RAPPID1 project, which is
developing an agent-based environment to support the
collaboration of a distributed team of designers, each
responsible for a different component or subsystem of the
entire product. RAPPID represents each component and
subsystem by an agent, which negotiates with other
components in a marketplace over assignments to shared
variables. This form of design organization is increasingly

Responsible Agents for Product-Process Integrated
Design, (www, iti.org/cearappid).

common as manufacturers of end products purchase more
and more components of their products from suppliers,
and expect those suppliers to participate in the design of
the subsystems that they supply and thus of the overall
producL For example, the Big Three US automotive
manufacturers purchase many of their seating systems
from suppliers, who in turn acquire the necessary
components and subassemblies from supply chains made
up of a dozen or more different companies [Hoy 1996,
Fleischer & Liker 1997]. Section 3 draws a parallel
between the distributed design of a component-centered
artifact (Distributed Component-Centered Design, or
DCCP) and DCOP. Section 4 highlights some important
distinctions between DCCP and current DCOP
technology, and discusses how RAPPID is modifying the
DCOP paradigm to support these distinctions. Section 5
summarizes current and upcoming activities in RAPPID
that exploit and extend the application of DCOP to
DCCD.

2. A Brief History of Distributed Constraint
Satisfaction and Optimization

The classic constraint satisfaction problem (CSP) seeks
assignments to a set of variables X ffi {xp x~ xJ from
a set of corresponding domains, one per variable, D = {d~,
d= d,}, that satisfy a set C = {cj, c= cJ of relations
over subsets of the Cartesian space spanned by D. CSP is
a binary problem. A set of assignments to the variables X
either satisfies the constraints or it does not. Many
applications are not Boolean, but permit varying degrees
of satisfaction, leading to the constraint optimization
problem (COP), which may be modeled in different ways.
Sometimes the constraints are partitioned into hard and
soft categories, and soft categories are relaxed until an
overall figure of merit is maximized. In another
approach, the constraints are non-Boolean functions over
the space spanned by D and the problem is to maximize a
weighted sum of their values.

For a number of years the distributed artificial
intelligence (DAI) community has explored ways to
distribute constraint problems. One fundamental question
in such an effort is hOW to partition the domain among the
agents. In general, one wants this partitioning to reflect

93

From: AAAI Technical Report WS-97-05. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

the natural structure of the domain, so that each agent can
perform significant amounts of work autonomously,
without the need for excessive coordination with other
agents. The natural options for distributing the constraint
model are to represent the variables X, the constraints C,
or both, as agents. Early work focused on distributed
constraint satisfaction, and modeled subsets of X as agents
[Sycara et al. 1991], [Yokoo et al. 1992], each of which
must monitor all the constraints in which it is involved. In
many domains it makes more sense to assign
computational ability to constraints rather than to
variables, an approach taken in [Liu & Sycara 1995a],
where subsets of related constraints are assigned
agenthood.

This early work focused on distributed constraint
satisfaction (DCSP). [Liu & Sycara 1995b] extend the
application of constraint agents from constraint
satisfaction to constraint optimization (DCOP). They
classify constraints as either hard and soft and relax soft
constraints as necessary to maximize some overall
objective function. Monitoring a global objective function
is difficult in a distributed system, but in some problems
the constraints vary greatly in the degree to which they
impact the value of that function. Such domains are
characterized by high disparity metrics, which can be
used to identify anchor constraints whose local costs are a
reasonable estimator of the global costs. A showcase
example of such a domain is shop floor scheduling, in
which utilization levels at bottleneck workstations have
much higher impact on manufacturing costs than do
utilization levels at other workstations. The agent
representing an anchor constraint takes a leadership role
among other agents interested in the same variables, and
uses its local costs to guide its decisions (and thus theirs
as well).

3. How is DCCD Like DCOP?

Component-centered products depend for their effective
functioning on the interactions of their components and
subsystems. These interactions are typically dominated by
different design variables.2 For example, Figure 1 shows
some components in a simple power transmission system
and some of the variables through which they interact. If
design for such a system were being done across a supply
chain, the end-product manufacturer would be represented
by an agent at the "System" node, while the other three
nodes would be occupied by the suppliers responsible for
boxes, motors, and transmissions, respectively. RAPPID
provides mechanisms to enable these agents to

2 In the jargon of the RAPPID project, the variables that
describe components and subsystems are termed
"characteristics," to distinguish them from other variables
in the RAPPID system. In this paper, we use the term
"variable" to emphasize the parallel between DCCD and
DCOP.

Motor W

I uot,, /

T - Torque
S- Speed

X,Y,Z. Dimensions
W - Weight

Figure 1: Components and Variables in a Simple
System

communicate effectively about the constraints they
impose on shared variables.

The fundamental insight behind RAPPID’s application
of DCOP to design is that the agent responsible for a
component or subsystem of a complex mechanism may be
viewed per se as a constraint (or set of related constraints)
among the variables associated with that component. For
example, the Motor designer in our simple system
constrains the dimension variables of the space that it
needs from the Box, the horsepower, torque, and
rotational speed it provides to the Transmission, and the
weight it contributes to the complete system, and it is the
locus that determines how changes in any of these
variables affect the others. Sometimes the constraints
embodied in an agent are explicit (as when the various
permitted sets of aitematives for size, weight, and power
are catalogued). In other cases they are implicit in the
designer’s expertise and professional experience. As in
the classical [3COP formulation, these constraints are
linked into a network by shared variables. In our case, for
instance, the Box designer must provide enough space for
the motor and the transmission, and so is just as much
concerned with the dimensions of the Motor and the
Transmission as those designers are.

The parallel between DCCD and DCOP is not only
structural, but also dynamic. Two broad categories of
solving constraint problems are backtracking (in which
candidate assignments to variables are tried one at a time,
with various recovery strategies) and consistency
algorithms (in which the elements of D are concurrently
shrunk by ruling out impossible assignments to the
variables). These two approaches correspond to two
general approaches to design, which we call "point-based
design" and "set-based design," respectively.

94

appropriately, the monotonicity implicit in shrinking the
design space drives the team to convergence.

The use of constraints in design is not new. More than a
decade ago, the PRIDE system [Mittal et al. 1986]
associated design constraints with design goals in a
planning-based approach to design, and the design
community has devoted considerable effort to
understanding the nature and valid manipulation of design
constraints [Ward 1989, Finch & Ward 1996]. However,
these constraints have usually been manipulated within a

Figure 2: Point-Based Design
Most design in industry today follows a point-based

approach, in which the participating designers repeatedly
propose specific solutions to their component or
subsystem. This approach is typically associated with a
chief engineer who is expected to envision the final
product at the outset, specifying to the designers what
volume in design space it should occupy and challenging
them to fit something into that space. Inevitably, as
illustrated in Figure 2, some of the chief engineer’s
assumptions turn out to be wrong, requiring designers to
reconsider previous decisions and compromise the
original vision. When viewed in the context of a network
of components and subsystems mediated by variables, this
approach is analogous to constraint optimization by
backtracking. Because mechanisms for disciplined
backtracking are not well developed in design
methodology, this approach usually terminates through
fatigue or the arrival of a critical market deadline, rather
than through convergence to an optimal solution.

Toyota has pioneered another approach, set-based
design [Ward et al. 1995]. In this approach, illustrated in
Figure 3, the task of the chief engineer is not to guess the
product’s location in design space in advance, but to
guide the design team in a process of progressively
shrinking the design space until it collapses around the
product. Each designer shrinks the space of options for
one component in concert with the other members of the
team, all the while communicating about their interfaces
with one another. This approach directly reflects
consistency algorithms for solving constraint problems. If
the communications among team members are managed

monolithic program, or internally to agents whose
organization does not reflect the structure of the
constraint network.

[Dart & Birmingham 1996] share several features of
the RAPPID vision, including agent communities whose
connectivity reflects the constraint structure of a problem
and a recognition of the value of set-based design, in the
restricted domain of catalog-based design. However, they
do not exploit the part-as-constraint insight of RAPPID,
instead viewing catalogs of parts as the variables to be
instantiated (by selecting a single part from the catalog),
and manipulating a separate, abstract set of constraints.
RAPPID’s approach of recognizing the part or subsystem
as the constraint has the advantage of dexentralizing the
task of defining constraints. Each part’s designer is
responsible for defining and managing the constraints on
variables associated with that part, and there is no need
for a centralized knowledge engineering task to define a
separate set of constraints.

4. How is DCCD Distinctive?

On the basis of these parallels, the RAPPID team is
drawing on DCOP for techniques that are useful in
DCCD. At the same time, distinctive features of the
DCCD domain require us to develop special techniques
for DCOP in design, techniques that may be useful in
other domains as well. This section highlights four
requirements that we are addressing: different kinds of
variables, dynamic implicit constraints, managing global
utility in a distributed system, and the high cost of
measuring utility. A forthcoming paper will detail the

1. Initial Large
Design Space

2. Space Shrinks
Incrementally

3. Design Emerges
from Shrinking Space

Figure 3: Set-Based Design

techniques we have developed to
address them.

4.1. Kinds of Variables
Not all design variables are created
equal. A given variable may be
meaningful only internally to a single
component, as an interface between
selected components, or over the
entire system. Table 1 summarizes
some of the distinctions between
interface and system variables.

An internal variable is meaningful
only within a component, and it is
defined entirely by the designer or

95

Table 1: Classes of Design Variables
System (Additive), System’iNon.Additive) Interface (Non.Additive)

Examples Weight, Power Consumption Volumer Resonance Torquep RPM
Main info mvmt Vertical (.- H~n~
Major constraints Among components (e.g., weight) (.- ...> Among variables (e.g., torque and

Problem to be Allocation of scarce vadable (- Compatibility of variables between
solved among competing components cooperating components
Quantitative Total amount of vadable across (-- (not accessible as a sum) The amount of vadable between
constraints (min, the system (sum of values for mating components
max, range) con ents)
Interested All components in a system or (.- Only components that interface
components s~stem directly with one another.

design team responsible for that component. If the
component is atomic (that is, with no further
decomposition and assignment to lower-level design
teams), RAPPID plays no role in the management of its
variables. However, if the component is at some higher
level of the product decomposition tree, variables that are
internal to it may be either interface or system variables
among its sub-components.

Interface variables enable the functional interaction of
the components within a system. Only components that
directly interface with one another manage a given set of
interface variables. Little or no vertical information
movement (that is, between components and their system)
is needed to determine interface variables. Mating
components need only to agree on the required interface
variables mid to instantiate those variables to mutually
satisfactory assignments. Not all interface variables need
to match exactly on both sides of an interface, since
sometimes one component in the interface simply requires
that a variable be within a certain range.

A system variable must be shared among all sub-
components of some component. Thus all components in
a system are potentially interested in the system variables
for that system. The overall budget of a system variable
for a system component is set by the parent component
(the "system"), which may be represented either directly
by the customer, or by the chief engineer acting as
surrogate for the customer. In a complex product with
several layers to the product tree, transactions concerning
system variables have a strongly vertical flavor. Although
peer components do reason about system variables, the
constraints on these variables are imposed from above,
and components pass them on to lower-level sub-
components. Some system variables (like weight or power
consumption) are additive. For instance, overall system
weight is equal to the sum of the weights of the
components. Others, like volume or vibration modes, are
not.

These differences in the scope and behavior of different
variables mean that RAPPID must attach some reasoning
capability to variables as well as to constraints. In
RAPPID’s market model, interface variables are best

supported by extended transactions that resemble the
haggling in an oriental souq, while system variables offer
the potential for markets that close repeatedly at frequent
intervals, comparable to a stock market or commodity
exchange. The main function of agents that represent
variables in RAPPID is to maintain the market protocols
appropriate to the given variable.

4.2. Dynamic Implicit Constraints and Carbon
Agents
A major difference between design and some other
domains that have been modeled as DCOP is that the
constraints represented by the designer of a component
are often neither explicit nor static.

Traditional approaches to DCOP rely on explicit
representation of constraints in forms such as tables,
analytic functions, algorithms, or rule sets, but one of the
reasons that haman designers have not been replaced
completely by automated tools is that many important
design decisions are still a matter of art and experience.
One might argue whether or not all design constraints can
in principle be represented explicitly. As a matter of fact,
they have not been, and in building a system that will
support real design activities in today’s industry, we must
support implicit as well as explicit constraints. The
implication of this observation for RAPPID is that our
approach to DCOP must include ways to coordinate the
inferences of carbon agents (haman designers), rather
than simply to replace them with silicon agents. Our
experiments suggest that a market-based interface can
provide most of the bandwidth needed to coordinate
design decisions among agents. It is simple enough to be
implemented on automated agents that handle explicit
constraints, and intuitive enough that haman designers
can quickly learn to express their needs through it.

Traditional DCOP also assumes that constraints are
static, defined at the outset of the problem and invuriant
from that point on. Practical design experiences often
result in the discovery of new constraints or the relaxation
of earlier ones in the course of the process. Again,
theoretically one could argue that with sufficient foresight
one should be able to define the appropriate set of

96

constraints at the outset, but foresight is rarely sufficient.
A real tool must permit designers to vary the importance
they assign to a variable and to communicate this shifting
importance to their peers as the process moves forward.
RAPPID’s design marketplace can reflect these changing
priorities through price signals.

The dynamic implicit nature of constraints in design is
symptomatic of a more fundamental issue in AI research.
Many of AI’s most powerful techniques require a model
of the environment that will remain accurate long enough
for a reasoning engine to conclude something about it.
Constructing such a model requires that the environment
not change unexpectedly, and that changes initiated by
the computer lead to a well-defined steady state. Some
common objectives of computerized systems, such as
prediction, optimization, and automation, make sense
only in such a context.
¯ Prediction is clearly impossible if changes in the

environment invalidate the assumptions on which the
prediction was based. It may also be impossible for a
stable but nonlinear environment, for then changes
made by the computer may move the system into an
unstable regime.

¯ Optimization seeks to identify the assignments to a set
of accessible control variables that will yield the best
assignment to some dependent variable, given
specific assignments to inaccessible state variables
(the "environment"). It is meaningful only with
respect to that state of the environment, and further
assumes that any transients in the system have died
out. If the environment changes unexpectedly, or if
the dynamics of the system do not have a fLxed point,
many optimization objectives are not well defined.

¯ Automation seeks to replace detailed human
supervision of a process over time with a predefined
computer program. It is often preceded by an
optimization activity that identifies desirable
assignments to control variables, and the validity of
the adjustments that it is programmed to make
depend on the predictability of the system. When
environmental changes or system nonlinearities
invalidate prediction and optimization, automation is
also jeopardized.

The real world is overwhelmingly nonlinear, and it holds
still only over very short periods of time. Things continue
to work because people have the ability to detect
unexpected variations and the creativity to take
unanticipated steps to deal with them. Computerized
systems work best when they are closely integrated with
these human capabilities. Algorithms for prediction,
optimization, and automation can greatly increase
productivity as long as the environment behaves itself, but
a human is the best mechanism currently available to
keep watch over the environment, and effective computer
systems provide for close coupling between the human
and the machine. An important contribution of DCCP to
the broader constraint optimization community is an
example of how humans can participate in the dynamics

of an optimization problem, rather than turning it loose on
its own and coming back later to see what it has
produced.

4.3. Managing Global Utility in a Distributed
System
A fundamental tension in any distributed optimization
system is balancing the need for a global figure of merit
against the desire for local autonomy in decision-nmking.
In some domains, a few constraints may dominate the
overall system behavior, and techniques exist to identify
them so that they can anchor the decision-making process
by using local utility measures to estimate system
performance [Liu & Sycara 1995b]. In design, even ff
one component turns out to dominate system
performance, it may be impossible to identify it during
the design process.

It is a misnomer to speak of "optimization" in the
current practice of distributed industrial design. The
coordination mechanisms in common use do not even
provably converge, let alone yield a guaranteed optimum.
Designer fatigue, budget depletion, or the arrival of a
deadline determines the completion of a design project
more often than does convergence on a true optimum. In
this context, RAPPID brings value to its users by
providing a disciplined coordination mechanism, even
though we do not yet have an explicit proof of general
optimality. However, its underlying mechanisms draw on
market dynamics that are known to be optimal in specific
settings, and that have been found empirically to perform
better than other robust distributed coordination schemes.

Following its supply chain orientation, RAPPID views
design as a process of mediating between a set of
suppliers (either distributors of catalog parts or custom
fabricators) and a set of customers (whose needs the
product under design must satisfy). Customers determine
the utility of the overall design in the context of their
needs, while suppliers determine the cost of its
components, and a good design is one that maximizes the
difference between customer utility and supplier cost.

A large body of economic theory and practical
experience suggests that market mechanisms are an
effective way to balance the relative valuations of
customers and suppliers through a network of
intermediaries. RAPPID’s market mechanisms perform
this same mediation in distributed design. Designers in
RAPPID do not simply compare potential assignments to
design variables to find jointly acceptable assignments.
They bid for different assignments in a neutral currency.
The existence of customers (who buy specific
assignments to design variables but do not sell them) and
suppliers (who sell specific assignments of variables but
do not buy them) imposes a directionality to the constraint
network that current DCOP mechanisms do not exploit.
The market transactions of a designer with suppliers
provide cost information about specific design options,
while transactions with customers provide utility

97

information. The individual designer seeks to maximize
the difference between utility and cost.

A major configuration decision in setting up the
network is identifying which variables a given constraint
buys and which it sells. The general rule is that a
constraint sells any variables in which its part plays a
causal role, while a constraint buys any variables in which
its part has an interest but whose value it does not cause.
For example, a motor sells its output torque, and a
transmission buys its input torque. We have found that
designers are more comfortable with the system if we
reverse the roles of buying and selling for variables whose
price would be negative under the causal rule (for
example, weight in an airframe), and RAPPID can handle
this reversal without any problem.

The current RAPPID protocols do not require an actual
flow of currency, just the propagation of a cost field
(grounded in the suppliers) and a utility field (grounded
the customers) through the network of designers. Thus
there is no need for an initial allocation of currency.
Constraints communicate over sets of variables rather
than over point assignments, and the bids they offer to
one another change as the various assignment ranges
shrink. The design is complete when all assignments have
converged to point values. If money were to change
hands, it would do so at this point. Changes in the net
worth of individual designers as the result of such
"closing dynamics" may have value in organizing the
behavior of a design team across multiple design projects,
but we have not exploited it in our current scenarios.

At any moment in time, a constraint (representing the
designer of a part) sees a range of costs over the range of
potential assignments that it is considering for variables
that it buys, and a range of utilities over the range of
possible assignments that it is considering for variables
that it sells. It computes the prices it is willing to pay (to
buy a variable assigmnen0 or accept (to sell one) based
on the relative costs and utilities that it sees. The function
that generates a constraint’s bids is altruistic, in the sense
that it passes on as much utility as possible to sellers and
as little cost as possible to buyers. We can show that when
a system using this function converges, the added utility
resulting from local decisions by individual designers can
be rolled up in a straightforward way to represent the
overall utility of the design. This formal result is the basis
of ongoing work to explore the degree to which our
mechanisms can support true optimization.

RAPPID draws from the growing body of work in
nontraditional applications of market mechanisms to
multi-agent coordination [Clearwater 1996], and extends
the point-based catalog design marketplace of [Wellman
1995] to a set-based methodology that supports implicit as
well as explicit constraints. By keeping cost and utility
distinct rather than merging them into a single figure of
merit, RAPPID addresses the growing demand for explicit
cost management in design highlighted in such strategies
as Target Costing and Cost as an Independent Variable
(CArV).

4.4. High Cost of Measuring Utility
The utilities of individual parts, not to mention the entire
product, are often very expensive to evaluate at a single
point. A finite-element model may consume hours of
supercomputer time; some design parameters can be
evaluated only by building a prototype and testing it
destructively. Thus optimization schemes that depend on
frequent repetitive computation of point utility as search
proceeds will incur excessive cost. Some systems to
support designers avoid this problem by selecting
components from pre-compiled catalogs [Dart &
Birmingham 1996; Wellman 1995]. RAPPID handles this
problem by using carbon-based agents (human designers)
and a market economy. Designers can often estimate the
marginal gain in utility available over a range of possible
assignments to a variable, even though locating the exact
optimum may be expensive. RAPPID’s set-based market
mechanisms permit designers to narrow the intervals of
interest considerably before making expensive
evaluations. Then the estimates of marginal utility
available within the interval can guide a decision of
whether the additional information from a point
evaluation is worth the cost.

5. Summary and Prognosis
Modern design of component-centered products is often
distributed across many different companies, reflecting
the increased tendency of manufacturers to purchase,
rather than make, much of the content of their products.
Agents representing the different participants in such a
design system correspond to the components being
designed, and thus to implicit and explicit constraints
imposed by those components. Perception of the strong
parallel between such a network of designers and a
traditional constraint network permits us to leverage
insights from DCOP into distributed design, and also to
identify distinctive features of the DCCP domain that
suggest mechanisms (such as market dynamics) that may
be useful in other DCOP applications.

The RAPPID environment has applied these techniques
to support successful experimental design sessions with
human designers. In one experiment on a catalog-based
power transmission system, a distributed team of
designers without central coordination achieved a design
that corresponded to the optimal as identified by
exhaustive search over the space of alternatives. In a
future experiment RAPPID will be used with a major
subsystem for a military vehicle using actual subsystem
designers and engineers. Another experiment in the
works will involve design of a subsystem for a military
missile at the missile contractor’s site. Both of these
experiments will involve many more design variables and
designers than the power transmission experiment, and
will provide critical insight into the ability of RAPPID
(and by extension, DCOP in general) to be applied
highly complex situations.

98

In addition to these design-specific experiments with
real designers, we are currently designing a set of
experiments in a simulated environment to quantify the
benefits that the enhancements inspired by the design
problem can bring to DCOP in general, and studying
analytically the relation between the local decisions made
by constraint agents and the global character of the
resulting solution.

Acknowledgments

RAPPID is sponsored by the Rapid Design Exploration
and Optimization (RaDEO) program (formerly MADE)
DARPA, directed by Kevin Lyons, and is administered
through the AF ManTech program at Wright Laboratories
under the direction of James Poindexter. In addition to the
authors, the project team includes Steve Clark, Mike
Davis, Bob Matthews (all ITI) and Mike Wellman
(University of Michigan)

References

Clearwater, S. H. ed. 1996. Market-Based Controk A
Paradigm for Distributed Resource Management.
Singapore: World Scientific.

Dart, T. P., and Birmingham, W. P. 1996. "An Attribute-
Space Representation and Algorithm for Concurrent
Engineering." AI EDAM 10:1, 21-35.

Finch, W. W., and Ward, A. C. 1996. "Quantified
Relations: A Class of Predicate Logic Design Constraints
Among Sets of manufacturing, Operating, and Other
Variations." Proceedings of the ~h International
Conference on Design Theory and Methodology.

Fleischer, M., and Liker, J. K. 1997. Concurrent
Engineering Effectiveness. Cincinnati, OH: Hanser-
Gardner.

Hoy, T. 1996. ’Whe Manufacturing Assembly Pilot
(MAP): A Breakthrough in Information System Design."
EDI Forum 10:1, 26-28.

Liu, J., and Sycara, K. 1995a. "Emergent Constraint
Satisfaction Through Multi-Agent Coordinated
Interaction." C.Castelfranchi and J.P.Mueller, eds., From
Reaction to Cognition: 5th European Workshop on

Modelling Autonomous Agents in a Multi-Agent World,
MAAMA W’93, Neuchatel, Switzerlan~ Lecture Notes in
Artificial Intelligence 957. Berlin: Springer, 107-121.

Liu, J., and Sycara, K. 1995b. "Exploiting Problem
Structure for Distributed Constraint Optimization."
V.Lesser, ed., ICMAS.95: Proceedings, First
International Conference on Multi-Agent Systems. Menlo
Park: AAAI, 246-253.

Mackworth, A. K. 1992. "Constraint Satisfaction."
S.C.Shapiro, ed., Encyclopedia of Artificial Intelligence.
New York: Wiley, 285-293.

Mittal, S., Dym, C. L., and Morjaria, M. 1986. "PRIDE:
An Expert System for the Design of Paper Handling
Systems." IEEE Computer 19:7 (July), 102-114.

Parunak, H.V.D. 1997. "’Go to the Ant’: Engineering
Principles from Natural Agent Systems." Annals of
Operations Research (forthcoming);
http:llwww.iti.orgl~vanlgotoant.ps.

Sycara, K., Roth, S., Sadch, N., and Fox, M. 1991.
"Distributed Constrained Heuristic Search." IEEE Trans.
Systems, Man, and Cybernetics 21:6 (Nov/Dev), 1446-
1461.

Ward, A. C. 1989. "A Theory of Quantitative Inference
for Artifact Sets, Applied to a Mechanical Design
Compiler." D.Sc. Dissertation, Dept. of Mechanical
Engineering, Massachusetts Institute of Technology.

Ward, A. C., Liker, J. K., Cristiano, J. J., and Sobek H, D.
K. 1995. ’~l’he Second Toyota Paradox: How Delaying
Decisions Can Make Better Cars Faster." Sloan
Management Review (Spring), 43-61.

Weliman, M. P. 1995. "A Computational Market Model
for Distributed Configuration Design." AI-EDAM:
Artificial Intelligence for Engineering Design, Analysis
and Manufacturing 9:2 (April), 125-34.

Yokoo, M., Durfee, E., Ishida, T., and Kuwabara, K.
1992. "Distributed Constraint Satisfaction for Formalizing
Distributed Problem Solving." Proceedings, 12th IEEE
International Conference on Distributed Computing
Systems, 614-621.

99

