
Suggestion Strategies for Constraint-Based Matchmaker Agents

Eugene C. Freuder and Richard J. Wallace
Department of Computer Science

University of New Hampshire
Durham, NH 03824
ecf, rjw~cs.unh.edu

Abstract

In this paper we describe a paradigm for content-
focused matchmaking, based on a recently proposed
model for constraint acquisition-and-satisfaction.
Matchmaking agents are conceived as constraint-
based solvers that interact with other, possibly hu-
man, agents (Clients or Customers). The Matchmaker
provides potentiM solutions ("suggestions") based on
partial knowledge, while gaining further information
about the problem itself from the other agent through
the latter’s evaluation of these suggestions. The di-
alog between Matchmaker and Customer results in
iterative improvement of solution quality, as demon-
strated in simple simulations. We also show empiri-
cMly that this paradigm supports "suggestion strate-
gies" for finding acceptable solutions more efficiently
or for increasing the amount of information obtained
from the Customer. This work also indicates some
ways in which the tradeoff between these two metrics
for evaluating performance can be handled.

Introduction
Intelligent matchmakers can be regarded as a third
generation tool for Internet accessibility, where hyper-
text constitutes the first generation, and search engines
the second. "Content-focused matchmaker" agents can
provide advice to internet consumers (people or other
agents) about complex products (Gomez et al. 1996).
The reigning paradigm for such agents is the "deep in-
terview", as embodied in the forthcoming Consumer’s
Edge website (Krantz 1997), where the primary mode
of interaction is the query, made by the Customer
to the Matchmaker. We propose a constraint-based
paradigm, with a very different form of interaction.

In this paradigm, the primary mode of interaction
is the "suggestion", made by the Matchmaker to the
Customer. The Matchmaker suggests a product to the
Customer. The secondary mode of communication is
the "correction", made by the Customer to the Match-
maker, indicating how the suggestion fails to meets the
Customer’s needs. We believe this form of interaction
is more natural and shifts more of the burden from the
Customer (who may well be a person) to the Match-
maker.

A small example will motivate and illustrate the ba-
sic paradigm. Suppose we are a matchmaker agent
for an interior decorating firm, and we are planning a
living room decor for a customer. As part of this ex-
ercise we propose that two chairs and a sofa be placed
along one wall of the living room. The customer re-
monstrates; he wants a lamp next to the sofa. We add
a constraint to our living room representation to limit
the objects that may be placed beside the sofa. Solv-
ing the new problem, we propose a sofa with a lamp on
one side and a chair on the other. We add that the sofa
and the chair are both blue. At this point the customer
objects to having two pieces of furniture side by side
of the same color. Therefore, we add a color constraint
to the representation and solve the new problem. Now
we propose a sofa with a lamp on one side and a chair
on the other; the sofa is blue and the chair coral, a
solution the customer finds satisfactory.

The Matchmaker could be an impartial matchmaker
or a vendor. The product could be a physical product,
e.g. a car, or an information source, e.g. a web page.
The Customer could also be a computer agent, and in-
deed in our experiments we use a computer agent to
simulate a Customer. In future work on multi-agent
systems we envision Matchmakers playing the role of
Customer with other Matchmakers to procure informa-
tion for their clients, and Matchmakers seeking com-
promise solutions for multiple clients.

We model the intelligent matchmaker paradigm us-
ing formal methods drawn from the study of con-
straint satisfaction problems (CSPs). The Match-
maker’s knowledge base and the Customer’s needs are
both modeled as a network of constraints. A "sugges-
tion" corresponds to a solution of a CSP. A "correc-
tion" specifies the Customer constraints that the pro-
posed solution violates. Repeating the cycle of sugges-
tion and correction allows the Matchmaker to improve
its picture of the Customer’s problem until a sugges-
tion constitutes a satisfactory solution. The problem
of both acquiring and solving a CSP has been termed
the "constraint acquisition and satisfaction problem"
(CASP) in (Freuder 1995), where the basic sugges-
tion/correction model was suggested but not imple-

105

From: AAAI Technical Report WS-97-05. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

mented.
The constraint network representation supports the

computation of suggestions and easily incorporates
corrections. In computing suggestions the constraint
solving process infers the implications of corrections in
a manner which avoids the need to make all constraints
explicit. We believe that this form of model-based rep-
resentation will be easier to build and maintain than
than the rule or decision tree based representation that
presumably underlies a deep interview matchmaker.

The objective here is to model a situation in which
Customers do not enter the interaction with a fully
explicit description of their needs. They may be unfa-
miliar with what is available in the marketplace. They
recognize their constraints during the interaction with
the Matchmaker. They cannot list all their require-
meats up front, but they can recognize what they do
not want when they see it. We believe this to be a
common form of customer conduct. (Picture yourself
browsing through a store or a catalogue, or interacting
with a salesclerk.)

The Matchmaker can facilitate this process by an
appropriate choice of suggestions (tentative solutions).
For example, some suggestion strategies may lead
to a satisfactory solution more easily for the user
than others, e.g. with fewer iterations of the sugges-
tion/correction cycle. In this paper we present experi-
ments that provide empirical evaluation of some simple
suggestion strategies.

Ease of use is not the only evaluation criteria. In an
environment in which the Matchmaker has an ongoing
relationship with the Customer, it can be desirable for
the Matchmaker to learn as much as possible about
the Customer’s constraints, to facilitate future inter-
actions. In our implementation it is poss!ble, in fact it
proves experimentally the norm, for the Matchmaker
to come up with a satisfactory solution before acquiring
all of the Customer constraints. (Some constraints will
be fortuitously satisfied by the suggestion.) Thus we
use the number of Customer constraints acquired by
the Matchmaker as another performance metric when
comparing suggestion strategies.

Notice that this latter metric is somewhat antithet-
ical to the ease of use criteria. Acquiring many Cus-
tomer constraints can be viewed as good, because it
facilitates future interaction; however, it also might be
viewed as bad, because it requires more Customer ef-
fort (in the form of corrections). There is a similarly
double-edged situation, analogous to one encountered
in the classical information-retrieval literature, that we
plan to pursue in future research: we would like to
model the situation in which some suggestions lead to
a satisfactory solution quickly, while others lead to a
more satisfactory solution, but at greater "cost" to the
Customer. However, even with our simple initial model
of the matchmaker process we encounter some interest-
ing empirical behavior.

The contributions of this paper are:

¯ A new matchmaker agent paradigm.

¯ A constraint-based implementation of this
paradigm.

¯ Basic suggestion strategies for complete and stochas-
tic matchmakers.

¯ Basic metrics for strategy evaluation.

¯ Experimental evaluation of suggestion strategies.

Background: CSPs and CASPs

A constraint satisfaction problem (CSP) involves as-
signing values to variables that satisfy a set of con-
straints. Each constraint is a relation based on the
Cartesian product of the domains, or allowable assign-
ments, of a subset of variables. In the present work
all constraints are binary, i.e., they are based on the
domains of two variables. A binary CSP is associated
with a constraint graph whose nodes represent vari-
ables and arcs represent constraints.

CSPs have four basic types of parameter: number
of variables, number of values in a domain or domain
size, number of constraints, and number of value tuples
in a constraint. In practice, if the domain size is the
same for all variables, we refer to it as the value of a
single domain size parameter. Otherwise, we often use
an aggregate measure like the mean as a representa-
tive parameter value. Number of constraints is usually
expressed in relation to the total number of possible
constraints in a graph of n variables and is referred to
as problem density. The number of tuples in a con-
straint may refer to the number of acceptable tuples.
More often constraint sizes are expressed in a comple-
mentary way, as the (relative) number of unacceptable
tuples, or tightness of a constraint. Again, if tightness
varies among constraints, we refer to average tightness
as a representative value.

In a constraint acquisition and satisfaction problem
(CASP) the constraint solver must acquire information
about the constraints before it can solve the problem.
The situation can be conceptualized by assuming some
universe of constraints, i.e., all the constraints which
can possibly be part of the CASP. (In the extreme
case, this would be the complete graph based on the
known variables.) A certain set of constraints within
this universe forms the current problem, P. The CSP
solver (here the Matchmaker) knows a subset of the
constraints in P at the outset, call it K, but it must
in fact solve problem P. It will, therefore, have to ac-
quire knowledge about the remaining constraints in P
before it can find a satisfactory solution in a reasonable
amount of time.

CASPs, Agents, and Matchmaking

Matchmaking based on the CASP paradigm involves
two agents, the CASP Solver and the Customer. In
this situation, the Customer ’knows’ the problem to
be solved, but not so explicitly that it can tell the

106

Solver outright. The Solver elicits some of this Cus-
tomer knowledge by suggesting a solution based on
the constraints that it (the Solver) knows about. The
Customer then evaluates the solution to determine
whether there are constraints of concern that are vi-
olated. These violations are communicated to the
Solver, which incorporates this information as con-
straints between the variables involved in each viola-
tion. The Solver then solves the new CSP and presents
this solution as a new suggestion to the Customer.
This communication cycle is repeated until the solu-
tion is fully satisfactory to the Customer, i.e., none of
the latter’s constraints are violated.

universe

P = Customer

K = Solver

Figure 1: This figure shows the three classes of con-
straints that set the scene for a Matchmaking dia-
log: those initially known to both Solver and Cus-
tomer (K), those known (perhaps implicitly) to
Customer (P), and the universal set of constraints,
which includes all those that might have been part of
the current problem.

In the present work we simplify this Matchmaking
Dialog between Solver and Customer in the following
ways. We assume that both the Solver’s and the Cus-
tomer’s constraints are drawn from the same universe;
hence, when the Solver is apprised of a constraint vi-
olation it does not have to decide what the constraint
actually is, i.e., the set of acceptable tuples. Further,
constraints known to the Solver are assumed to be a
proper subset of the Customer’s (implicit) constraints
(Figure 1). In terms of the CASP definition in Section
2, the former is set K, and the latter can be identified
with P. (In an overall Customer-Solver Dialog, the
constraints in K might be determined by preliminary
questioning [what kinds of furniture are you looking
for?, how large is your living room?] before the first
solution is presented.) We also assume that on each
iteration of the communication cycle, the Customer
gives the Solver the complete set of constraints vio-
lated by the last solution.

Suggestion Strategies
Faced with a repeated cycle of communications be-
tween two agents, we would like to find ways to limit

the length of this dialog. One approach is to try to find
solutions that are more likely to satisfy constraints be-
tween variables, even though these constraints are not
presently in the Solver’s representation. This policy is,
therefore, one of maximizing satisfaction, specifically,
the number of satisfied constraints. An alternative and
possibly more perverse approach is to maximize con-
straint violations. Here, the policy is to find solutions
that violate as many constraints as possible so that
more constraints are incorporated into the Solver’s set
from the start.

Fortunately, fairly straightforward methods for find-
ing solutions under either policy can be derived from
current knowledge of constraint satisfaction. These
methods depend on the kind of procedure used in the
solution process. For algorithms that use complete or
exhaustive search, selecting values less likely to be in
conflict with values in other variables is a promising
method for maximizing satisfaction. For hill-climbing
or heuristic repair methods, a strategy in the same
spirit is solution reuse, i.e., starting each search with
the solution obtained earlier, after revising the infor-
mation about conflicts based on the last Customer
communication. A complete search strategy that con-
forms to the policy of maximizing violations is the con-
verse of the satisfaction strategy: choose values that
are most likely to be in conflict. A corresponding hill-
climbing strategy is to search each time from a new
location, i.e., with a new set of initial values.

As suggested earlier, a second goal of Matchmaking
that will sometimes be important is to learn as much
as possible about the Customer during an interaction.
Here, "learning about the Customer" means learning
the Customer’s constraints. Intuitively, maximization
strategies do not appear well-suited to this goal, but
violation strategies should serve this purpose at least
as well as that of maximizing efficiency.

We therefore have an important potential tradeoff
to consider - between efficiency in finding a satisfac-
tory solution and thoroughness in discovering Cus-
tomer constraints. It would appear that satisfaction
strategies would be subject to this tradeoff, while vio-
lation strategies might overcome it. But it is not clear
a priori which kind of strategy will be most efficient in
finding a satisfactory solution. If a satisfaction method
is much better than any others, then it may be neces-
sary to consider this tradeoff carefully. (This is not the
only possible tradeoff;- others were encountered in our
experimental work, as described in Section 5.2.)

Of course, our decisions will also reflect our overrid-
ing goals (as indicated in the Introduction). If we are
only interested in a solution to the present problem,
then efficiency may be our only concern, but if we are
also interested in learning as much as we can about the
Customer, we may want a procedure that can handle
both criteria effectively.

To better understand how different procedures cho-
sen with the above goals in mind will perform in prac-

107

rice and the degree to which the tradeoffs discussed
here are important, we now turn to empirical investi-
gations of suggestion strategies.

Experimental Evaluation of Suggestion

Strategies

Methods

Tests were made with random problems; for brevity,
we concentrate on one problem set and mention re-
suits for other sets of problems in passing. This set
included ten problems with 50 variables and a con-
stant domain size of 5. A fully connected graph of
constraints was obtained in all cases by first generating
a random spanning tree for the variable set. The den-
sity, in terms of edges added to the spanning tree, was
fixed at 0.25 (giving 343 constraints). Relative tight-
ness was allowed to vary, although there was a fixed
probability of including a given tuple in a constraint;
with this many constraints, the average tightness was
almost exactly equal to the stipulated probability of
0.18. Problems with these parameters are in or near
the critical region for computational complexity; those
in the present set were the first ten generated that had
complete solutions.

Two kinds of algorithms were tested: (i) a com-
plete CSP algorithm, forward checking with conflict-
directed backjumping and dynamic ordering by do-
main size (Prosser 1993), (ii) a heuristic repair method,
rain-conflicts augmented with a random walk strategy
(Wallace 1996). In the latter procedure, after a vari-
able in conflict has been chosen, a value is chosen at
random from the domain with probability p, while the
usual min-conflicts procedure is followed with proba-
bility 1 - p.

For the complete algorithm, suggestion strategies
were devised by ordering domain values in specific ways
prior to search. To maximize constraint satisfaction,
values in each domain were ordered by maximum av-
eraged promise (marx-promise), where "promise" is the
relative number of supporting values in each adjacent
domain, and these proportions are averaged across all
adjacent domains. A violation strategy was obtained
simply by reversing this order for each domain, which
gave an ordering by minimum averaged promise (min-
promise). Another violation strategy was to ’shuffle’
the domains before each search, i.e., to order each do-
main by random sequential selection of its values. In
addition, lexical ordering of values served as a control.

For the heuristic procedure, a possible maximiza-
tion strategy is "solution reuse": each iteration after
the first begins with the solution obtained at the end
of the last iteration. Two kinds of suggestion strategy
were tested as candidate violation strategies. In one
case the walk probability was raised from 0.10 to 0.35;
since the latter allows more random selection of values,
a greater variety of solutions might be found, leading
to more violations. The other kind of strategy was a

"reset" strategy: each iteration begins with an initial
assignment generated from scratch. In addition, reset-
ting was combined with three different preprocessing
strategies: (i) rain-conflicts greedy preprocessing based
on a single variable ordering, where for each successive
variable a value is chosen that minimizes conflicts with
existing assignments of values to variables, (ii) greedy
preprocessing based on a different, randomly selected,
variable ordering for each iteration, (iii) hill-climbing
from an initial random assignment on each iteration,
i.e., for each variable a value is chosen at random and
its conflicts with previous assignments recorded. Since
the walk strategy is independent of the reset strategies,
all combinations of the two were tested.

For each Matchmaking Dialog, the constraint set of
the original CSP was the universal set. From this uni-
versal set, constraints were chosen by random methods
to be in K and P. At the beginning of each dialog,
the full constraint set was scanned and with proba-
bility Pk, a given constraint was added to both the
Solver’s and the Customer’s constraint sets. (These
constraint, therefore, comprise K.) If the constraint
was not chosen, then with probability pp, it was added
to the Customer’s set, P. From this, it is easy to de-
termine expected values for number of initial Solver
constraints, Customer constraints not in K, and con-
straints that are in neither the Solver’s nor the Cus-
tomer’s constraint sets.

Four sets of values were used for pk and lap, respec-
tively, in the procedure just described: 0.2 and 0.4, 0.2
and 0.8, 0.4 and 0.4, 0.4 and 0.8.

Experimental Results

Representative results for the different value orderings
used with the complete CSP algorithm are shown in
Table I. The same pattern of results was found with
0.4, 0.4 and with 0.4, 0.8 for pk and pp. And similar re-
sults were obtained for another set of random problems
that were based on a different model of generation and
that had greater variability in constraint tightness.

In one case (0.2, 0.4), the satisfaction strategy, max-
promise, found acceptable solutions after fewer iter-
ations in comparison with either the lexical ordering
or the constraint violation strategies. But with more
Customer constraints in relation to Solver constraints,
a violation strategy, min-promise, was more efficient
in this respect than max-promise. In both cases, rain-
promise was the most effective in uncovering violations
quickly, as reflected in the measure of violations per it-
eration. On the other hand, the shuffling procedure
found more violations across the whole dialog.

The tradeoff expected with max-promise was very
much in evidence, since this procedure uncovered far
fewer Customer constraints than any other; this was
true for both pairs of pk, pp values. This tradeoff was
also found for the shuffling procedure: while it was the
least efficient ordering, it uncovered more constraints
than any other procedure.

108

Interestingly, the rain-promise ordering required rel-
atively few iterations, while finding more violations
pe~ iteration on average than the other orderings, and
in this respect it tended to overcome the tradeoff be-
tween efficiency and constraint discovery. In fact, when
there were more Customer constraints not in the initial
Solver set, this ordering was better than the satisfac-
tion ordering, max-promise, on both metrics.

Table 1: Matchmaking Dialog Statistics for Different
Value Orderings

constr val iterats violat undis sol time
probs* ord to sol /iter const sim (see)
.2, .4

.2, .8

hx 8 8 59 .72 .03
max 6 5 85 .83 .02
min 8 11 37 .61 .02
shuf 14 8 15 .22 .02

lex 12 14 69 .54 .55
max 15 9 105 .65 .43
min 11 17 47 .48 .53
shuf 19 11 21 .24 .41

Notes. Means based on 10 problems and five dialogs, or ini-
tial K and P, per problem. Algorithm is FC-CBJ with dy-
namic ordering by domain size. * prob(shaxed constraint),
prob(tester constraint), iterats are number of iterations be-
fore a solution was found, violat/iter are mean number of
violations discovered by tester on one iteration, undis const
axe mean number of undiscovered tester constraints at end
of a run. sol sire is mean similarity (proportion of common
values) of successive solutions found during a run. time
is runtime for entire dialog. Expected numbers of shared
and tester-only constraints are 69 and 110 for the 0.2, 0.4
condition and 69 and 220 for the 0.2, 0.8 condition.

From these results alone, one would conclude that
max-promise should be chosen to maximize efficiency
if the difference between the number of Customer and
Solver constraints is small, but rain-promise is pre-
ferrable when the difference is large. If one wants to
maximize constraint discovery overall, then the shuffle
should be chosen. But for the best tradeoff between ef-
ficiency and constraint discovery, rain-promise should
be chosen.

Unfortunately, perhaps, the picture changes when
efficiency is measured in terms of time instead of it-
erations. For overall time to complete a dialog, max-
promise is better than rain-promise, especially when
there are more Customer constraints (the reverse of
what was found when we considered iterations). This
difference may be due to the greater time required to
find a solution when starting from the least supported
values. Surprisingly, shuffle is essentially as fast as
max-promise. (For the 0.4, 0.8 case, where the times
were about twice as long as for 0.2, 0.8, shuffle was
somewhat slower, but both were almost twice as fast
as the other two orderings.)

250 .
:1 -- m~-~a,,,,

"~ 200"~ k lain-prom~e

kk ""

O’
’ ’3’ ’5’ ’7’ ’9’ II ’l~ i~ ’17’ N ~i ~I il

Iteration

Figure 2: Undiscovered Customer constraints after
successive iterations with three value orderings. Con-
dition involved inclusion probabilities of 0.2 and 0.8
(cf. explanation under Methods). Means based on five
dialogs with one problem.

These results show that, when efficiency is measured
in units of time rather than iterations, max-promise
is still the best strategy in terms of efficiency. How-
ever, now it is shuffle, rather than rain-promise, that
best overcomes the tradeoff between efficiency and con-
straint discovery. This does not leave us with a simple
decision, since either measure of efficiency may be more
appropriate in different contexts. In particular, a half-
second increase in summed search time may be much
more palatable than presentation of five additional so-
lutions.

Although the summary data in Table 1 imply some-
thing about trends during a dialog, it is useful to con-
sider curves for some of these measures across an entire
dialog. Perhaps the most informative is the curve for
number of undiscovered constraints (Figure 2). The
curves in Figure 2 are for one problem, but the qual-
itative differences seen here were found with all prob-
lems tested. During the early iterations, rain-promise
finds the most constraints, but its curve levels out more
quickly than the curve for shuffle, and it also finds a
completely satisfactory solution more quickly, so its
curve is shorter. Consequently, the curve for shuffle
falls below the other curve on the eighth iteration. The
curve for max-promise remains well above the other
two throughout the dialog.

These curves suggest yet another basis for choosing
between strategies for constraint discovery, if one is
willing to accept a partial solution. If a limit is put on
the number of iterations in a dialog, then, if that limit
is low (< 8 in Figure 2), rain-promise is the strategy
choice. But if the limit is sufficiently high, the shuffling
should be chosen.

Curves for solution similarity across successive iter-
ations are also of interest, since solution similarity may
be important psychologically in interactions with a hu-
man customer. This measure tends to increase in the

109

- - max-promise
----- rain-promise

shuffle

o.s-! / ,’ , ,
o.,4 ,,’,,.--’ ,

’ 0.3
~

Oil I11 I] I’l I I I I I I]] | I I I I | I I
2 4 6 8 10 12 14 16 18 20 22 24 26

Iteration

Figure 3: Similarity of successive solutions during a
dialog, for three value orderings. Same condition and
problem as in Figure 2.

course of a dialog regardless of the ordering (Figure 3;
Again, the same trends were found for all ten prob-
lems.) For rain-promise, successive similarity is fairly
low at first, but it rises sharply. Similarity values for
max-promise are high throughout the dialog. In con-
trast, similarity values for shuffle are fairly low through
most of the dialog.

In experiments with heuristic repair (Table 2), some
of the same differences are seen between satisfaction
and violation strategies, and to some degree there are
similar kinds of tradeoffs. Solution reuse, the satis-
faction strategy, finds acceptable solutions after fewer
iterations, and after less time, than any of the viola-
tion strategies. On the other hand, all of the latter are
more successful in discovering Customer constraints.
The most successful is the restart strategy that uses
a different random value assignment at the beginning
of each search; this procedure discovers as many con-
straints as the shuffled ordering with the complete al-
gorithm. Unfortunately, success in discovering con-
straints is purchased with a considerable increase in
runtime, and none of the procedures really overcomes
this tradeoff. However, there is a partial mitigation
in that the best restart strategies are just as success-
ful with the lower walk probability as with the higher,
although the runtime is much lower in the former case.

Concluding Comments

This work introduces a new strategy for Customer-
Matchmaker interaction based on software agents per-
forming the Matchmaker functions (and possibly play-
ing the role of Customer as well). We have evaluated
several strategies that may be useful in this context.
We have also identified an important and interesting
tradeoff between the goals of efficient problem solving
and knowledge acquisition, and our experimental work

Table 2: Matchmaking Dialog Statistics for Hill-
Climbing Strategies

restart walk iterats violat undis sol time
proced probs / iter const sim (see)

0.2, 0.4 constraint probs.
no restart (solution reuse)

0.10 6 9 70 .83 .18
0.35 7 9 65 .81 .22

restart - mincon preproc
0.10 9 7 61 .74 .60
0.35 9 7 57 .70 .65

restart - random var mincon
0.10 14 6 35 .47 1.03

restart - random value
0.10 14 8 15 .22 1.26

0.2, 0.8 constraint probs.
no restart (solution reuse)

0.10 14 12 76 .71 2.12
0.35 15 13 47 .55 8.12

restart - mincon preproc
0.10 18 11 41 .43 17.0
0.35 18 11 32 .36 28.6

restart - random var mincon
0.10 18 12 29 .31 15.3

restart - random value
0.10 18 12 24 .27 14.5

Notes. Same problems as in Table 1, five dialogs per prob-
lem. Minconflicts hill-climbing with random walk. Restxxt
procedures described in text; for randomized orderings
both walk probabilities gave almost identical results except
for runtimes. Other abbreviations as in Table 1.

already provides suggestions for handling it.
Work now in progress is beginning to examine the

matchmaking process in a more realistic setting. This
work will incorporate preferences on the part of the
Customer, to replace the simple ok/not-ok decisions
made in the present experiments, and will enlarge on
the Solver’s learning capacities, so it can determine the
structure of the Customer constraints when these are
not known a priori.

This work also carries the implication that a multi-
agent system may be well-suited for solving the Con-
straint Acquisition and Satisfaction Problem. There is
an obvious division of labor between the information
acquisition and CSP-solving aspects of CASPs, and it
is likely that this can be mapped directly onto different
agents in many situations.

Acknowledgments. This material is based on work
supported by the National Science Foundation under
Grant No. IRI-9504316.

References

Freuder, E. C. 1995. Active learning for constraint
satisfaction. In Active Learning. AAAI-95 Fall Sym-
posium Series, Working Notes, 34-35.

ll0

Gomez, J.; Weisman, D. E.; Trevino, V. B.; and
Woolsey, C. A. 1996. Content-focused matchmakers
(excerpt). In Money eJ Technology Strategies, volume
2(3). Forrester Research, Inc.
Krantz, M. February 17, 1997. The web’s middleman.
Time 67-68.
Prosser, P. 1993. Hybrid algorithms for the con-
straint satisfaction problem. Computational Intelli-
gence 9:268-299.
Wallace, R. J. 1996. Analysis of heuristic methods for
partial constraint satisfaction problems. In Freuder,
E. C., ed., Principles and Practice of Constraint Pro-
gramming - CP’96, volume 1118 of Lecture Notes in
Computer Science. Berlin: Springer. 482-496.

111

