
Contract-Based Distributed Scheduling

Abstract

To an increasing extent, large-scale information pro-
cessing is a distributed phenomenon. As the trend
in computing moves further towards distributed
networks of powerful workstations and information
servers, we see the growing importance of solutions
to dynamic distributed scheduling problems. In these
domains, resource providers are distributed both ge-
ographicany and bureaucratically, so that no central
authority can dictate a global schedule. Resource con-
sumers are also distributed: tasks arrive at different
locations according to arrival functions that axe at best
stochastically predictable.
In this paper, we describe a distributed constraint-
based scheduling system that adjusts task distribu-
tion and execution times through the negotiation of
contracts, using & refinement of the Contract Net pro-
tocol. By comb;ni-g the ml,imal-commitment cap&-
bilities of constralnt-based scheduling with the dis-
tributed coordination features of contracting, this sys-
tem responds flexibly to dynamic vaxiations in load
balance and unpredictable task arrivals. Large-scale
simulations show significant performance benefits to
using powerful scheduling methods in the determin&-
tion of contract negotiation bids. These results can
be used to improve the performance of distributed
computing systems cooperating to process large-scale
shareable tasks.

Introduction
As the trend in computing moves further towards dis-
tributed networks of powerful workstations and infor-
mation servers, we see the growing importance of solu-
tions to dynamic distributed scheduling problems. By
"scheduling," we mean the allocation of resources over
a specific period of time to the performance of a partic-
ular task. We are interested in problem domains that
are "distributed" in at least two ways. First, they are
distributed because tasks may be executed at any of a
set of locations, depending on what resources are avail-
able at those locations. Second, they are distributed in
the sense that there is no centred authority that holds
knowledge of and control over when and where differ-
ent tasks are executed. Instead, each location makes
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its own decisions about what tasks to execute at what
times, and coordination is arranged through explicit
communication. Finally, the domains of interest are
"dynamic" in the sense that they change over time: the
desired tasks and available resources may be changing
as the system is executing tasks, and the patterns of
these changes are not known a priori. A static schedule
cannot be created for these problems.

The temporal aspect of these problems presents dif-
ficulties for conventional approaches to load-balancing
in distributed systems; the deadline by which a task
must be completed or face a penalty is a significant
factor in how tasks should be scheduled at individual
sites. In addition, the objective in our domain is aot
to simply balance the load, but rather to maximize the
overall system’s net earned value. As illustrated by the
simulation results discussed in Section, a balanced load
may actually be antithetical to maximal system-wide
net value.

In this paper, we describe a distributed scheduling
system that adjusts task distribution through the ne-
gotiation of confracfs, using a refinement of the Con-
tract Net protocol (SMITH 1980) similar to Sand-
holm’s (Sandholm 1992; 1993). The behavior of this
system is investigated through experiments conducted
in a simulated domain implementing a simplification of
a distributed image processing application for NASA’s
Earth Observing System. Large-scale simulations have
revealed several interesting behavioral aspects of the
system. By comparing the behavior of agents nego-
tiating based on complex, constraint-based scheduling
systems against agents using simpler queue-based ne-
gotiation schemes, we have verified several qualitative
and quantitative advantages of the constraint-based
scheme. The main result is that there is significant
benefit to having the individual negotiating agents use
complex, constraint-based scheduling when computing
their bids on contracts.

Section describes the domain in more detail, Sec-
tion provides the technical details of task scheduling
and distributed negotiation, and Section sketches the
design of the implemented simulator. Finally, Section
describe our experimental results. We conclude with a
discussion of related work, draw some conclusions from
our results, and suggest some areas for further work.
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Dynamic Distributed Scheduling for
EOSDIS

Our simulated distributed scheduling domain is based
on NASA’s Earth Observing System (EOS). EOS is 
multi-year, multi-billion-dollar project aimed at gath-
ering scientific information about the Earth’s environ-
ment. With the participation of the European Space
Agency, Japan, Canada, and NASA, several satel-
lites supporting dozens of sensors are scheduled to be
launched in the late 1990’s. These systems, along with
additional sensors already in orbit, will he used to col-
lect information on ozone depletion, greenhouse effects,
ocean productivity, and other environmental features.

The EOS Data and Information System (EOSDIS)
will be responsible for archiving and analyzing the re-
sulting vast amounts of data. EOSDIS functions in-
clude managing mission information, archiving and dis-
tributing data, and generating and disseminating scien-
tific data products (Dozier & Ramapriyan 1990). Both
raw data and the results of analyzing that data will be
stored in archives maintained by a set of Distributed
Active Archive Centers (DAACs). Much of the data
analysis will be performed at these centers, though in-
dividual scientists or institutions will also perform in-
dividual analyses of raw data (or intermediate results)
obtained from the DAACs. Each DAAC will have a col-
lection of specialized computing resources (e.g., Cray
XMP and MasPAK computers) to support the analysis
done at that site. Individual DAACs may be responsi-
ble for different sets of data (from different sensors),
generating and archiving different analysis products
from one or more sets of data, and supporting different
users. Interactions among DAACs may arise because
some analyses involve combining multiple sets of data
or because one DAAC’s "customers" may request data
stored elsewhere.

A variety of interesting problems arise in the pro-
cess of automating the functions of the EOSDIS net-
work. These issues range from managing petabyte1

data archives, including the automated generation of
content-based "meta-data" for indexing, to generat-
ing analysis plans to produce a desired analysis prod-
uct, to scheduling ground equipment for satellite sup-
port (Campbell et al. 1991; Boddy et al. 1995;
1994). In this paper, we are concerned with scheduling
analysis tasks at the various DAACs as requests arrive
from their respective users. This process is compli-
cated by the fact that satisfying requests may involve
getting data from or requesting a component analysis
from another DAAC. In addition, some analysis tasks
may be oflioaded if another DAAC has the appropri-
ate resources and less to do. The negotiation required
to find other DAACs to take on such tasks is compli-
cated by the timing restrictions imposed by customer
deadlines.

lone pet~byte ---- 1015 bytes.

Technical Approach
The core of our approach to solving dynamic dis-
tributed scheduling problems involves the combina-
tion of two fundamental technologies: constraint-
based scheduling and contract-based negotiation. The
scheduling methods are used to manage task scheduling
and execution at individual DAACs in the distributed
network; the negotiation methods are used to allow
DAACs to exchange tasks and other commitments.
This section provides a brief background in each of
these independent technologies and then describes the
approach we use to combine them.

Contract-Based Negotiation

Negotiation over formal and informal contracts is a
longstanding societal mechanism for establishing com-
mitments between agents. Not surprisingly, contract-
based negotiation is also a popular paradigm in dis-
tributed AI and distributed problem-solving research.
Early work by Smith (SMITH 1980) described the Con-
tract Net system of distributed processing agents based
on contract negotiation. The Contract Net Protocol
(CNP) specifies how contracts are announced by con-
tract managers to other agents, how bids are returned
to the manager by potential contractors, and how the
contract is then awarded by the manager.

Many extensions and variations of the CNP have
been used to satisfy various system requirements and
avoid certain types of undesirable behavior. The
specializations made by Sandholm (Sandholm 1992;
1993) are most relevant to our work. These extensions
and modifications to the original CNP include:

¯ The use of marginal cost calculations to determine
what contracts should be announced, and how much
agents should bid.

¯ The restriction that bids are binding commitments,
so that an agent must reserve all necessary resources
in order to make a bid on a contract. As a result,
bidders who are not awarded a particular contract
must be sent a loser message to release them from
the bid commitment.

Constraint-Based Scheduling

Each DAAC agent maintains its own schedule of tasks
using constraint enuelope scheduling, in which sched-
ules are constructed by a process of "iterative refine-
ment" (Boddy, Carciofini, & Hadden 1992). Schedul-
ing decisions correspond to constraining an activity ei-
ther with respect to another activity or with respect
to some timeline. The schedule becomes more de-
tailed as activities and constraints are added. Undo-
ing a scheduling decision means removing a constraint,
not removing an activity from a specified place on the
timeline. This basic approach is common to a num-
ber of scheduling systems (e.g., (Fox & Smith 1984;
Smith ct al. 1990; Sadeh & Fox 1990; Mnscettola
1993)). Our implementation of this approach provides
unique support for reasoning about partiaily-specified
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schedules and searching through the resulting space for
an acceptable fully-ordered execution schedule.

Constraint envelope scheduling is a
least-commitment approach. We do not assign a set
of activities to places on a timeline, assigning each ac-
tivity a start and end point. Rather, we collect sets
of activities and constrain them only as needed. Con-
straints may express relations between activities (e.g.,
any analysis task using the results of task A must not
start before A is completed) or relative to metric time
(this task takes st least 2 hours, and may not start un-
til 10:15). Additional constraints are added as needed
to resolve conflicts over resources. So, for example, two
tasks that require the same tape drive must be ordered
with respect to one another, whereas if they were to
use two different drives, their ordering would not have
to be determined.

The least-commitment nature of our schedules is an
important advantage in dynamic domains where task
arrivals and changes require rescheduling. If an event
arises that makes a resource unavailable, or an ongoing
task takes longer than expected, the effect on the sched-
ule is minimized. First, only those activities related by
a chain of constraints to the activities explicitly moved
will be affected. Second, if the set of constraints in
the schedule is consistent with the new event, the pro-
jected effect of the schedule can be updated efficiently,
without any rescheduling at all.

Combined Technologies

Traditionally, the CNP and its variants are used to
exchange contracts that encapsulate complete tasks.
This is the primary use in our current implementa-
tion as well, where tasks correspond to users’ requests
for EOSDIS data processing, and contract negotiations
allow the DAAC agents to exchange these processing
tasks to achieve a balanced system load and maximize
throughput. The constraint-based scheduling meth-
ods are used within each agent to remain as flexible
as possible about the start times for individual tasks,
so that the dynamic arrival of new tasks and contract
announcements can be accommodated as much as pos-
sible.

The links between contract negotiations and task
scheduling are forged primarily through functions that
compute the value of a task schedule and the value
of individual tasks. For example, the CNP requires
bidding agents to provide a measure of their cost (a
bid) to perform the contract task under consideration.
In our system, this bid is the marginal cost of adding
the contract task to the bidding agent’s schedule. The
marginal cost is computed by first storing the value of
the agent’s existing task schedule, adding the contract
task to the schedule, and then finding the new sched-
ule’s value. The difference in values, new minus old, is
the marginal cost of the addition, and hence the bid.
Note that the contract remains on the schedule after
this computation; the bid is binding.

Similarly, the decision about which of an agent’s ex-
isting tasks to announce as a contract open for bidding
is made by computing the marginal cost of the task.
In our implementation, if the marginal cost of a task
is negative (i.e., the agent is better off without trying
to execute the task), then the contract is announced
for possible award to a different agent2. Thus the fun-
damental decisions required by the CNP are made us-
ing value functions evaluated on the constraint-based
schedule.

In addition to the CNP modifications made by Sand-
holm (noted above), we adapted several aspects of the
contract negotiation protocol to focus on our thesis in-
vestigation and minimize other concerns:

¯ To limit repetitive and unproductive contract an-
nouncements, each contract is announced by a par-
ticular manager no more than three times: if the
contract is still not awarded to another DAAC (i.e.,
the manager’s bid was the best bid), the contract is
executed locally. Also, contracts are not announced
more frequently than every 20 time units, to avoid
negotiations when no significant changes have oc-
curred that could lead to a different outcome. These
limitations were chosen arbitrarily, and seem to be
effective at limiting the network communication load
while still permitting effective contract movement.

¯ Rather than using a "focused addressing" scheme
in which contract announcements are sent to a se-
lect few potential bidders, we broadcast contract an-
nouncements to all DAACs, maximizing the poten-
tial for useful contract exchange. We are not particu-
larly concerned about the resulting communications
load, since the number of contracts "on the market"
at any time is restricted through the limitations de-
scribed above.

¯ To prevents issues of bid timing from interfering with
our investigation, the bidding process is required to
operate in a first-come, first-served manner: agents
cannot delay their bids to see what other alternatives
are available. Combined with synchronized agent
clocks, this restriction also allows us to fix an upper
bound on the time a contract manager must wait un-
til he is assured of receiving all bids, and can make
the contract award with complete information.

¯ Contract award messages identify which DAAC has
won a contract, and they are broadcast. Thus
award messages also act as loser messages: each loser
DAAC can see that the contract has been awarded
to some other DAAC.
The constraint-based scheduling paradigm remains

essentially unchanged for this domain: tasks are asso-
ciated with time intervals whose position in the sched-
ule is restricted by constraints. One significant sim-
plification was made to reduce the complexity of the

2Actually, we announce & contract if its net value is less
than its price, indicating that some penalty was incurred,
and thus that some other DAAC might be able to do a
better job.
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Figure 1: Conceptual role of the implemented
DAAC agent.

domain: each DAAC is defined to have only one execu-
tion resource it is scheduling (e.g., one data processing
engine), and thus the eventual executable task ached-
ule is a fully-ordered list of tasks to run. However,
we retain the flexible constraint-based representation
of scheduling limitations, so that dynamic changes in
a DAAC’s load and its contracting environment can
be accommodated through incremental changes to the
minimal-commitment constraint structures.
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Figure 2" Overview of the DAAC agent architec-
ture.

System Design and Implementation

We have implemented a distributed, contract-
exchanging network of scheduling agents to simulate
DAAC behavior in a wide variety of load conditions
and operational scenarios. In this section, we describe
the system architecture and pertinent implementation
details that influence the simulator’s flexibility and ca-
pabilities.

Conceptual Architecture

Conceptually, the DAAC agents we are simulating ex-
ist in an environment similar to that shown in Figure 1.
The negotiation and scheduling portions of the DAAC
are responsible for receiving new tasks from the ex-
ternal domain (the EOSDIS scientists who submit in-
formation processing jobs). Each new job can either
be scheduled to execute on local resources, or it can
be passed to another DAAC in the network using the
negotiation protocol.

Our investigation is focused on the central schedul-
ing and negotiation roles of the DAAC agent, and thus
we have implemented only low-detail simulations for
the domain and execution components of the system.
To avoid the complexities of numerous interconnected
processes, we have bundled the peripheral domain and
execution components in with the controlling agent it-
self, yielding an implementation in which a single Lisp
process encapsulates all of these components.

Implementation Architecture

As shown in Figure 2, each implemented simulation
process has components responsible for the primary
DAAC functions:

¯ Communications with other DAACs, including boot-
strap synchronization, contract announcement, bid-
ding, and awarding.

¯ Scheduling functions, including inserting new tasks,
removing tasks, and finding the value of individual
tasks and the whole schedule.
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¯ Agent control, including coordination of overall com-
munications, simulation, and scheduling activities.

In addition, relatively simple components are included
for:

¯ Client simulation, including generation of new tasks
for the local DAAC.

¯ Action simulation, including maintaining the local
simulation clock, starting and finishing scheduled
tasks, and notifying the contract managers of sta-
tus changes.

ScheduHng

Each DAAC agent maintains a local constraint-based
schedule of tasks it will perform. Based on the existing
Honeywell Interval Constraint Engine (ICE) system,
the DAAC scheduler provides a function-call based in-
terface to maintain a fully-ordered schedule of tasks by
inserting and removing execution time intervals asso-
ciated with each task.

When a task is defined at a DAAC (either via the
client simulation or a contract announcement), a time
interval is defined and associated with the task. Con-
straints are asserted to restrict the possible position of
the task interval on the schedule. For example, dura-
tion constraints define the minimum length of the in-
terval, earliest-start-time constraints limit the position
of the interval’s start point, and precedence constraints
can be asserted between subtasks in a hierarchical task
structure. The interval is then added to the existing
schedule, if possible.

To insert a new task interval into the schedule, the
current implementation uses a simple greedy algorithm
that is neither optimal nor complete; it does not guar-
antee to find a schedule if one exists. The greedy algo-
rithm takes as arguments a list of the entire set of task
intervals to be scheduled (including those that were al-
ready on the schedule) and a cost function. The algo-
rithm greedily inserts task intervals from the list onto



vhile (tins < end-tins)
(
foreach nassage in priority-sort (set-aassagas ())

case type(neeeage) 
(
AIIIIOUICE: bid-on-contract(neesage) 
BID: add-bid-to-contract (neseage) 
AWARD: if (contractor(nessage) == self) 

accept-conLract (neasage)
else renove-conLract (neesase) ;

)
avard-contracts () 
Innounce-contracts 0 ;

)

Figure 3: Pseudo-code for main agent control loop.

the schedule, checking for consistency, and returns ei-
ther failure or the value of the resulting schedule. The
cost function is used to choose the best possible alter-
native position for each task interval as it is greedily
inserted.

This system has proven quite robust in practice, but
optimizing the scheduling algorithm remains one pos-
sible direction for future investigation. The cost func-
tion is already passed to the scheduler, so the interface
would not need to be changed.

Overall Agent Control
The outer loop of the agent program coordinates and
controls each of the modular functions shown in Fig-
ure 2. Ignoring the domain and execution simulation
components, the main loop is shown in pseudo-code in
Figure 3.

Action Simulation
Although dynamic environmental conditions such as
execution failures are one of the motivations for using
constraint-based scheduling, our current implements-
tion does not include that aspect. Tasks are started at
the start of their scheduled interval and take exactly
their original duration to execute. No uncertainty is
currently introduced into the system from the action
simulation. The model of action simulation was in-
cluded, however, as a placeholder for future studies in
which execution may fail or be delayed, leading to ad-
ditional contracting efforts to ameliorate the incipient
costs of schedule disruption.

Client Simulation
The client simulation generates the task load that the
DAAC agents try to distribute and process in a cost-
effective manner. The load is generated stochastically
from task-class descriptions that specify the distribu-
tion of arrivals, durations, deadlines, prices, and other
task features. In the experiments described below, all
task distributions are uniform.

We have also implemented "conditional distribu-
tions" that can express discrete variations in distribu-
tions based on context information such aa the time at
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which a distribution is evaluated. For example, condi-
tional distributions can be used to describe tasks that
arrive with a particular probability on Monday morn-
ing, but do not arrive at all at other times. Supporting
temporal expressions have been built to make it easy
to express a wide variety of such conditions based on
weekly, dally, hourly, and other time ranges.

Experimental Results

Extensive simulations were run to test the behavior of
the DAAC agent network under various loading condi-
tions. In order to provide a basis for comparison and
evaluation, two competing version of the contract nego-
tiation system were used. In the first, "simple bidding"
system, bids on announced contracts are determined by
an approximation to queue duration (specifically, the
bid consists of the finish time of the latest queued task;
this is not precisely the queue duration because there
may be slack time segments in the schedule). In the
second, "complex bidding" system, bids are computed
as the actual marginal cost of adding the contract to
the agent’s schedule: the difference in schedule value
before and after the addition.

The intention is thus to compare the performance
achieved using the full constraint-based scheduling sys-
tem against a simpler scheme which conceivably could
employ a different scheduling method. In fact, only the
bidding method is different between the simulated ver-
sions; in both systems, bids are made binding by plac-
ing the bid-upon contract on the full constraint-based
schedule. In the simpler system, the bidding method
simply ignores the available schedule-value information
and uses queue duration instead.

Common aspects of all the experiments discussed be-
low include:

. The network consisted of five DAAC agents.
e Four of the five DAACs all had the same stochastic

task generation functions, giving them, on average,
the same level of load from new tasks.

. DAAC~3 was distinguished in that it received
medium duration tasks that none of the others did.
Its expected load was approximately twice the loads
placed on the other DAACs. Hence DAAC-3 must
give away tasks or fall further & further behind.

e All task penalties were computed as linear functions
of the tasks’ lateness [i.e., penalty = penalty-factor
* (finish-time - deadline)].

. All experiments were run for 10000 simulated time
ticks. Since tasks can arrive at DAACs right up un-
til the end of the simulation time, some tasks are
left unexecuted when the simulation halts. These
tasks are accounted for in most of the performance
metrics (e.g., total schedule value) because they are
scheduled as soon as they arrive. Continued negoti-
ation could only lead to earlier execution by a dif-
ferent DAAC. The tasks scheduled after time 10000
are generally a very small portion of the overall data



set, amounting to less than 1% of the total duration
of task arrivals.

The main parameter varied throughout the exper-
iment set discussed below is the overall system load
level: task durations and deadlines were scaled pro-
portionally to vary the overall system load from 50%
to 90%. Those load levels represent the average DAAC
load if the actual arriving tasks could be spread evenly
amongst the five agents. As noted above, the load ar-
rived from the client simulation with an uneven dis-
tribution favoring DAAC-3 with more tasks than the
others.

Data Collection

Each DAAC agent writes data to a file continuously
as the simulation progresses. In addition, each DAAC
periodically writes (to the same file) a complete tex-
tual description of its contract schedule and various
measures of performance. Thus incremental results are
available for evaluation, and much of the DAAC net-
work’s overt behavior can be reconstructed from the
set of data files produced. Automated data extraction
and processing programs have been written to produce
graphs and statistics on a wide variety of agent perfor-
mance measures.

Performance Metrics

We have extracted and evaluated a variety of mea-
sures of system behavior and performance. Some track
the production of incoming tasks with different distri-
butions and load levels. Other metrics monitor each
agent’s performance in terms of the number contracts
that it completes, the total slack time it accumulates,
the total penalties for late contracts, and the net value
of the agent’s overall schedule includin8 both finished
contracts and scheduled future tasks. Still other met-
ties monitor the agent’s network behavior to show how
many times a contract was exchanged between DAACs
before it was finally executed, the number of contracts
bid upon, and the number of contracts won. The exper-
imental results discussed in the following subsections
include examples of several of these different perfor-
mance evaluation metrics.

General Observations

The experimental results support our initial hypothe-
sis that the complex, full scheduling bidding method
would outperform the simple bidding scheme based on
queue duration alone. For example, Figure 4 shows
that, at an overall load level of 82%, the simple bid-
ding scheme led to uniformly falling net schedule val-
ues, while the complex bidding scheme left room for
more variation in DAAC performance. As a whole, the
complex network significantly outperformed the sim-
ple system: the final summed net value across all the
DAACs was seven times lower for the simple system.
Furthermore, these superior results were achieved with
much lower rates of contracting activity: nearly three

times fewer task minutes were exchanged via contract
in the complex bidding scheme, and the median num-
ber of "hops" by any single contract was cut in half.

It is interesting to note that the simple bidding
scheme led to smoother load balancing according to
several simple measures, but was not able to outper-
form the complex bidding method in terms of net value.
For example, Figure 4b shows that, in the complex
scheme, DAAC-2 actually underperformed the over-
loaded DAAC-3, which we might normally expect to do
the worst. In this case, the bidding scheme has trans-
ferred enough penalty-laden jobs to DAAC-2 to over-
whelm its normally underloaded state and lead to neg-
ative net schedule values. The simple bidding scheme,
on the other hand, keeps all the DAAC schedule val-
ues very nearly the same (see Figure 4a). Why, then,
would the complex scheme do better? Both systems
are using the same scheduling algorithm, so what must
be happening is that the complex scheme is finding
earlier places to schedule tasks in a DAAC’s schedule,
so that the placement of individual tasks is optimized.
The simple scheme, on the other hand, is assuming that
tasks will be placed at the end of the queue, which is
often inaccurate. Thus the simple bidding scheme will
not bid as accurately, and the complex scheme is more
likely to place each task in an optimal place.

Additional evidence pointing to unbalanced loading
providing superior overall performance is provided in
Figure 5 and Figure 6. The queue durations are syn-
chronized very closely in Figure 5a, as we’d expect since
this value is used to determine bids. In contrast, Fig-
ure 5b shows a much wider variance in queue duration.
However, the magnitude of the average queue duration
is much smaller in the complex bidding case, indicating
the effectiveness of the overall system at determining
a good place and time to execute each incoming task.
At the end of the simulation of task arrivals, the com-
plex scheme had about one-half as much contract time
queued up as the simple bidding system.

Similarly, Figure 6a shows closely matched cumu-
lative penalties for all 5 agents in the simple bidding
system, but Figure 6b shows wide divergence in the
penalties accumulated by the complex bidding agents.
This result is particularly interesting because it indi-
cates that DAAC-2, for example, continued to exe-
cute high-penalty tasks even after it was already doing
worse (in terms of net schedule value) than the other
agents. This may initially seem counter-intuitive, since
it would seem better to offload tasks that are being
scheduled to have a penalty, and this might be expected
to even out cumulative penalty. In the short term, the
complex bidding scheme does exhibit that behavior: in
effect it runs a task on the DAAC that can execute
it with the smallest penalty. Note, however, that the
cumulative penalty shown in Figure 6 is different from
the instantaneous penalty associated with a contract
at bid-time: the bid does not take into account how
much past penalty has been accumulated by a DAAC,
because the primary goal is not to smooth schedule
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value, but to maximize the network-wide value. Thus
the cumulative performance measures give a picture of
system behavior that arises when the agents themselves
are not concerned directly with load balancing or av-
erage performance measures, but rather with a global,
network-wide performance metric.

Changing System Loading

Our experiments were run at three different load lev-
els: 67%, 82%, and 90%. The loading is calculated
as the (summed) expected duration of contracts ar-
riving over the entire simulation run, divided by the
time available for processing, over the entire system.
The results are summarized in Figure 7. Figure 7a
graphs the total slack time for each bidding scheme as
a function of load level. At 67%, the slack times are
effectively equal. Figure 7b is a graph of total penalty
incurred by the system as a whole over the entire simu-
lation run. At 67%, despite the fact that both bidding
schemes spent the same number of ticks computing,
the complex bidding scheme accrues only two-thirds as
much total penalty. This difference is consistent across
all loading levels. In all cases, the slack times are very
similar, but the difference in penalties is quite substan-
tial and increases with increasing load level.

This suggests that what is happening is that the
smarter bidding scheme is resulting, not in the execu-
tion of a different number of contracts or of contracts
with different durations, but in the execution of con-
tracts by different DAACs or at different times. In fact,
if we compare the numbers of contracts left uncom-
pleted for each scheme at each load level, the difference
is in favor of the smarter scheme. The complex bidding
scheme, using additional information about the sched-
ule, results in more contracts being completed and a
much lower level of penalties.

The fact that the proportional difference in penal-
ties is greatest at an intermediate loading raises some
interesting possibilities for further investigation. The
additional information available in the smarter bid-
ding scheme should be most useful when two condi-
tions hold: first, when there is substantial room for
improvement through smarter scheduling (the load is
high enough), and second, when there is sufficient flex-
ibility to make smarter decisions (the load is not too
high) .3 If borne out in further analyses, this conjecture
would support our arguments in favor of the utility of
combining flexible scheduling with informed bidding.

Related Work
Distributed problem-solving in general, and the allo-
cation of tasks in a distributed system in particular,
are both very broad research topics, addressed using a
wide variety of approaches in fields ranging from man-
agement science, to AI, to operations research, to work

3This parallels results from other problem-solving do-
mains (e.g., Barrett and Weld’s results on partial order
planning (Barrett & Weld 1994)).

on distributed operating systems. Our concerns in this
paper are somewhat narrower. We are specifically in-
terested in problems involving the allocation of coln-
puting resources to individual tasks, where allocation
decisions must be made locally. In additional, these
allocations are constrained temporally: there are lira-
its on when the work can be done, where those limits
themselves are potentially subject to negotiation.

At least two aspects of our domain distinguish it
from those addressed by operating system load bal-
ancing techniques (e.g., (Ni, Xu, & Gendrean 1985;
Lin & Keller 1986)). First, the temporal character
of the client tasks (i.e., earliest start times and dead-
line) means that the DAACs are not simply operat-
ing in a first-come, first-served queue manner, but are
maintaining a full schedule of future tasks that must
meet stringent timing requirements. This scheduling
aspect is difficult to reconcile with the simpler notion
of "load" present in operating systems. Second, the
objective in our domain is not to simply balance the
load, but rather to maximize the overall system’s net
earned value. As illustrated by the simulation results
discussed in Section, a balanced load may actually be
antithetical to maximal system-wide net value. Thus
simple load-balancing methods aim at the wrong tar-
get for our problem. Interestingly, however, the ap-
proaches used by distributed operating systems are
very similar to our contract-exchanging network; they
focus more on using various announcement and bid-
ding protocols to manage non-negligible network traf-
tic. Bidding in pure load balancing is trivial; in our
domain, high-quality bidding appears to be the key to
high performance.

Market-based approaches such as Wellman’s WAL-
RAS (Wellman 1993) are difficult to apply to our do-
main because of the focus on scheduling individual
tasks, and the relatively large size and small number of
those tasks. Our view of the overall system architecture
closely parallels Wellman’s description of a coordinat-
ing mechanism synchronizing the behavior of a large
set of agents with only limited information about what
is going on in the system as a whole.

Sandholm’s work on task allocation in a transporta-
tion domain is closest to ours in flavor, and as discussed
previously we have implemented CNP extensions mod-
eled on his. However, our domains are sufficiently dif-
ferent that only limited parallels can be drawn. The
main commonality is that negotiating on the basis of
marginal cost seems to be a good approach for both do-
mains. While Sandholm has investigated the exchange
of "package deals" encompassing multiple tasks, our
system is limited to exchanging individual contract
tasks. Although DAAC tasks lack the spatial interde-
pendencies inherent in Sandholm’s delivery tasks, they
may still interact through resource consumption, and
thus package deals might be a fruitful area of extension
to our existing negotiation scheme.
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Figure 6: Cumulative penalties at 82% load level.
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Figure 7: Comparative behavior at different load levels.
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Conclusions and Future Work

In this paper, we describe the class of dynamic dis.
tributed scheduling problems, using the EOSDIS DAAC
scheduling problem as an exemplar. We present some
early remlts on the use of an architecture integrating
constraint-based scheduling with contract-based nego-
tiation to task allocation in this domain. These re-
sults clearly demonstrate the utility of incorporating
the additional information made available by explicit,
site-specific schedules of what tasks will be performed
when.

Our comparison of two bidding schemes, one using
queue length as a measure of marginal cost, the other
using the actual marginal cost calculated by the sched-
uler, showed clear benefits for the more informed ap-
proach. At any loading level, the final value of the
schedule executed (task value - penalties for late com-
pletion) was substantially better for the smarter bid-
ding scheme. These results were achieved with much
lower rates of contracting activity, both in terms of the
number of contracts moving and the average number
of times any one contract was moved, which means a
lower communications overhead. Looking at the behav-
ior of the two bidding schemes as the system loading
varies shows that the smarter bidding scheme is using
additional information about the schedule to complete
more contracts, at a much lower level of penalties, with
an increasing advantage as the loading level increases.

The work presented here is best characterized as pre-
liminary results in an area with rich possibilities for
further investigation. Dynamic distributed scheduling
problems are common, and will only multiply with in-
creasing automation and integration in such areas as
manufacturing, distributed communication and con-
trol, distributed data management, and air traffic con-
trol. Current scheduling practice for applications that
are not distributed involves the use of a wide variety
of techniques, depending on the detailed requirements
for a given system. We expect that the choice of solu-
tion methods for distributed scheduling problems will
be equally sensitive to these details.

Our current simulation makes a number of simplify-
ing assumptions about how the system operates, both
at an individual level and in the interactions between
agents. These assumptions can be broadly grouped
into those related to the areas of synchronization, ex-
pectation, and contract performance.4 For example,
we currently assume that the agent accepting a con-
tract will necessarily complete the associated task by
the specified time. Relaxing this assumption will re-
quire a number of system modifications, including pro-
viding some way to penalize agents for contract viols.
tions, and some way for contracting agents to realize
that a task is late and may never be completed. The
more complicated and dynamic the agents’ behavior

t More generally, most of these assumptions involve the
complications involved in accounting for the passage of
time.

becomes, the more benefits we expect to realise from
the flexibility of the underlying constraint-based rep-
resentation of the schedule.

We also have plans for future work in the area of
inter-agent synchronization. We hope to utilize the
constraint-based scheduling capabilities of the individ-
ual agents more fully by allowing them to negotiate
over the enforcement or relaxation of individual con-
straints. For example, if DAAC-1 has promised an in-
termediate data product to DAAC,-2 by a certain time,
they might negotiate over a modification in that deliv-
ery. Providing this capability requires that the nego-
tiation protocol include a language for expressing con-
straints, including a distinction between modifications
which are voluntary (’°now about relaxing this deadline
by 10 minutes7") and imposed ("I’m going to be late
with that data, and there’s nothing you can do about
it.").

Finally, the agents in this system currently calculate
the marginal cost of an added task based on the current
schedule, despite the fact that tasks continue to arrive
as time passes. We have preliminary results showing
that explicit consideration of ezpectations about the
arrival of future tasks allows the DAACs to compute a
more accurate marginal cost, in the sense that the sys-
tern makes better decisions about what tasks to sched-
ule when. To date, these results do not include the
possibility of task exchanges. In future work we plan to
test the additional hypothesis that, by improving the
bidding function to take into account these expects-
tious, the full multi-agent, contract-exchanging system
will also display improvements in net value earned and
other performance metrics.
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