
Solving a Real-life Time Tabling and Transportation Problem
Using Distributed CSP Techniques.

Gadi Solotorevsky and Ehud Gudes
Dept. of Mathematics and Computer Science

Ben-Gurion University of the Negev
Beer-Sheva, 84-105, Israel

Emaih {gadi,ehud}@cs.bgu.ac.il

Introduction

Many real-life problems in the domain of resource al-
location and scheduling require Solutions which are
composed of several approaches or techniques. Often,
complex problems are divided into sub-problems, sub-
problems are solved by separate people (agents), who
may use different techniques and expertise for solving
them, and the sub-problems are combined later to yield
a coherent, consistent solution. This last phase may in-
volve negotiations with the various agents and requests
for changes in their own solutions. A real-life example
of the above problem is presented in this paper. The
problem is the construction of a weekly timetable of
nurses in several departments in a large Israeli hos-
pital, and based on the departmental timetables, the
construction of a transportation plan for all the nurses.
This transportation plan tries to minimize the cost
of transportation regardless of the departmental as-
signments; i.e., the number of vehicles sent and the
distances they cover should be (approximately) min-
imal. It may happen that the agent responsible for
transportation may ask for changes in the individual
timetables, to avoid situations such as assigning a ve-
hicle to bring in a single nurse from a far-away place.
Obviously, this problem is a real-life instance of the
distributed resource allocation problems.

The hospital requires that its departments main-
tain local control on the assignment of nurses; this
ruled out the option of using a centralized algorithm
to solve the whole problem. One alternative was to use
a synchronized distributed algorithm (i.e., implement-
ing a standard CSP’ algorithm, in a distributed envi-
ronment). In (Solotorevsky & Gudes 1996) we show
that synchronized distributed algorithms are quite in-
effective for performance, since this approach requires
sending numerous messages, which slows the solution
process. Moreover combining local control in a syn-
chronized distributed algorithm is unnatural. An-
other alternative was to use asynchronous algorithms
as the ones developed by Yokoo (Yokoo et al. 1992;
Yokoo 1995) however these algorithms assume that
each agent manages only one variable. It is possible to
extend these algorithms to situations where each agent

manages an entire sub-problem (e.g., a department of
a hospital), however such extension poses many ob-
stacles due to the non homogeneous difficulty of the
sub-problems, and may greatly damage the overall per-
formance of the system. In (Solotorevsky & Gudes
1996) we developed an approach to solve DCSPs (Dis-
tributed Constraint Satisfaction Problems) which was
specially designed for situations in which each agent
handles a complete sub problem, as opposite to a sin-
gle variable. Furthermore, our approach takes advan-
tage of the differences between the difficulties of the
sub-problems. Our approach is based on a forward
searching stage that is completely asynchronous and
a backtracking stage that is semi-asynchronous. That
is, the backtracking itself is done synchronously, but in
the stages where the backtracking takes place all the
agents which are not actively participating in the back-
tracking process, work asynchronously in searching for
alternative solutions, solutions that will be available
when the backtracking stage ends (for work on dis-
tributed scheduling not based on the CSP paradigm
see (Sycara et al. 1991) and (Neiman & Lesser 1996)).

In (Solotorevsky & Gudes 1996) we tested our al-
gorithms for solving DCSPs on random DCSPs with
varying characteristics. In this paper we show how
to apply and extend these algorithms to the nurses’
timetabling and transportation problem (NTTT).

In the next section we describe in detail the nurses
problem. In the third section the original algorithms
are described and in the fourth section they are ex-
tended for the problem in hand. It should be noted
that our problem is a real problem which is currently
being solved partly by a knowledge-based program and
partly by human experts. The last section discusses
the suitability of our DCSP algorithms to this situation
and compares their behavior to sequential algorithms.

The Nurses’ Time Tabling and
Transportation Problem.

A large hospital is composed of several departments;
each department has its own staff of nurses. In each
day there are 3 shifts: morning, evening, and night.
The shifts have fixed starting and ending times that

148

From: AAAI Technical Report WS-97-05. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

are common to all the departments. The head nurse of
each department makes the time table for the nurses
of the department. Making the time table in a de-
partment consists of the assignment of nurses to shifts
according to the requirements of the department and
the personal constraints of the nurses. The require-
ments of the department specify how many nurses are
needed in each shift, and if nurses with special skills
are needed for a certain shift (see (Meisels, Gudes,
Solotorevsky 1997) for an extensive discussion on Em-
ployee Timetabling problems).

The nurses in the hospital come both from the city
where the hospital is located and from several sur-
rounding towns (which may be up to 60 Km. away).
The hospital management rents transportation services
for picking up and returning home the nurses that live
in the surrounding towns. The transportation service
is composed of 11 "lines", each line serving several sur-
rounding towns. The transportation consists of taxis
that may take up to 7 passengers. The hospital rents
the taxis according to demands; i.e., the hospital may
rent for a line more than one taxi at a certain time and
none at another time. A taxi may go only to cities that
belong to the same line. A taxi does not enter all the
towns that belong to its line, but only those to/from
which it actually carries passengers.

The hospital pays the transportation company per
taxi (ignoring the number of passengers) according
the number of towns the taxi entered. For example,
using two taxis each entering two towns is more ex-
pensive than using two cars but dividing the passen-
gers so that each car enters one town. Using one taxi is
always cheaper than using two taxis notwithstanding
the number of towns visited by the taxi.

The scenario required by the hospital is first to
solve the assignment according to the departments’
and nurses’ objectives and constraints. Afterwards,
the proposed solution is checked to see if it fits some
constraints about the transportation. If so, the nurses
are divided into the lines trying to achieve a minimum
cost. Otherwise the departments are asked to make
some changes in their timetables and so on.

The problem of finding a distribution of the nurses
(whose shifts assignment was already determined) be-
tween the lines and taxis that minimizes the cost
of transportation is a classical optimization problem;
therefore we will not deal with it in this paper. Our
focus will be on the problem of finding the schedule of
nurses that will satisfy both the needs of the depart-
ments and the transportation constraints.

One constraint posed by the hospital is that no taxi
should take less than 4 passengers. The number of
nurses served by each of the lines varies greatly. When
the number of nurses served by a line is relatively large,
the previous restriction will rarely rule out a solution
proposed by the departments due to the assignment
of nurses belonging to this line. However there is a
line that serves only a reduced number of nurses (and

these nurses may use only this line). It serves about
10 nurses. Therefore we should expect that the con-
straint about the minimal number of passengers in a
taxi will rule out many timetables proposed by the de-
partments.

Distributed Constraints Satisfaction
Problem

The approach we use in this paper is based on the
constraint satisfaction paradigm (Prosser, Conway,
Muller 1992; Sycara et al. 1991). A distributed CSP
can be viewed as a set of constraint networks(CN),
each CN being solved by a different agent, where
the CNs are connected by constraints. A major as-
sumption of our work is that checking constraints
inside a distributed component, has a much lower
cost than checking constraints across different compo-
nents. The latter check involves some kind of mes-
sage passing that the solving algorithm would like
to minimize. The most relevant study of distributed
CSPs has been done by Yokoo (Yokoo et al. 1992;
Yokoo 1995) and Luo (Luo, Hendry, & Buchanan
1993). The basic difference between our approach and’
theirs is that while they assume usually a homogeneous
network of nodes, our approach assumes a natural par-
tition of the DCSP into relatively large components,
and tries to take advantage of the differences between
the various DCSP components.

In general, a DCSP may be represented in two ways.
The Explicit representation is the original one, where
variables in one component may be connected by a
constraint to any other variable in the same or in
a different component. In the Canonical representa-
tion, a new, central component is added. This com-
ponent contains copies of all variables which are con-
nected by inter-component constraints, such that solv-
ing the CSP of this central component guarantees that
all global constraints are satisfied. The equivalence of
the two representations can he shown easily. Figure
1 and 2 are an explicit and a canonical representation

149

Figure 2: A canonical DCSP

of the same DCSP. In an explicit representation of the
NTTT problem, each department is represented in one
component and the transportation constraints are rep-
resented as constraints between the components, in a
canonical representation of the NTTT problem a new
component that maintains all the transportation con-
straints is added.

The formal definition of the canonical representa-
tion is as follows. A DCSP is defined to be a set of
m groups G1,G2...,Gm of variables and a mapping
function M. For each 1 < i < m there exist in the
i-th group, Gi, ni variables XI~, X2,, ..., Xm with do-
mains DI~,D2~,...,Dm. A binary constraint Rtjk~
between two variables Xis, Xk, can be expressed as
Rt, k~ _C Dtj × Dk~. When j = i the constraint is called
internal, otherwise, when j ~- i, it is called external.

M is a function that maps the variables in the set
Gm into variables on the other G sets. Each variable
in the Gm set is mapped to a single variable in one of
the other sets, and no two variables in group Gm are
mapped to the same variable. A tuple P is a solution
to a DCSP network iff:
1) All the binary constraints are satisfied in P.
2) Each variable that belongs to group Gm is assigned
the same value in P as the variable on which it is
mapped by M.

An explicit DCSP is a DCSP whose Gm group is
empty, see Figure 1.

A canonical DCSP is a DCSP in which:
1) each external constraint includes exactly one node
not in Gm and all other nodes are members of Gin.
2) For each internal constraint between nodes that all
of them are mapped into nodes in Gin, there exists in
Gm the same constraint between the mapped nodes.

An example of a canonical CSP is depicted in Figure
2 . The canonical representation of a DCSP problem

is the basis for the two solution algorithms discussed
next.

The Algorithms

The model of a DCSP in the present paper uses agents
that are connected by a communication network (i.e.,
no common memory, just message passing). Since the
overall goal is to find a global solution in the shortest
time, we state the following goals for our multi-agent
algorithms:

¯ Optimize the performance of the slowest agent,
rather than optimizing each individual agent.

* Minimize the amount of backtracking each agent
performs as a result of actions of other agents.

In (Solotorevsky & Gudes 1996) we presented two
algorithms for solving DCSPs, CFPA (Central First
Peripheral After), and PFCA (Peripheral First Cen-
tral After), they can be summarized as follows:
1. CFPA. The first agent finds first a solution to the
central component. It then broadcasts this solution
to all the other agents. These agents search for solu-
tions to their corresponding sub-problems in parallel.
If all of them find a consistent solution to their sub-
problems, we are done. Otherwise, the central agent
must backtrack and broadcasts a new solution to the
peripheral components.
2. PFCA. Here, the peripheral agents search for solu-
tions in parallel, and send their solution to the central
agent. If the central agent can find a consistent so-
lution we are done. Otherwise, the first agent that
caused the failure is asked to backtrack, and send its
new solution back to the central agent. The backtrack-
ing is done sequentially to assure completeness.

Algorithms CFPA and PFCA were designed for two
opposite cases of DCSPs: a dominant central compo-
nent seems natural for algorithm CFPA, while domi-
nant peripheral components calls for algorithm PFCA.
Note that these algorithms do not impose any spe-
cific strategy on the work of the internal agents, and
those can use any suitable CSP strategy or even a
Knowledge-based approach to solve their specific sub-
problem.

Although these algorithms seem quite simple, their
implementation is not trivial and has many alterna-
tives. For example in algorithm CFPA when the cen-
tral component backtracks, the agent’s problem is to
correct a solution found by the central component by
minimizing the number of changes required from solu-
tions found so far. In (Solotorevsky & Gudes 1996)
used four low level procedures as the building blocks
of CFPA and PFCA:

* solve..internal(Gi) is a procedure that finds a so-
lution to the network Gi ignoring the external con-
straints.

¯ propagate_external(Gi) is a procedure that in-
forms all the agents that are connected by con-

150

straints to Gi, about the values that were assigned
to the variables of Gi.

¯ update_propagate(Gi) is a procedure that up-
dates the agents that are connected by constraints
to G/, about changes in assignment of values
to variables that were reported by Gi the last
time that either propagate_external(G/) or up-
date_propagate(G/) were used.

¯ external_conflict_backtrack(Gi) is a procedure
that seeks an alternative solution for G/, that is dif-
ferent from all the solutions found for Gi since the
last call to solve_internal(G/).

Note that much of the sophistication that may
greatly affect the algorithms performance is hidden in
the implementation of the four basic procedures, e.g.,
solve-internal may be implemented to use learning al-
gorithms whenever the agent is idle.

In (Solotorevsky & Gudes 1990) the behavior of the
proposed algorithms was tested by generating and solv-
ing a set of random DCSPs. The advantages of the
two algorithms over the sequential CSP algorithms was
clearly shown. In the following section we will discuss
the use and adaptation of these algorithms for solving
the NTTT problem.

Solving the Problem
The NTTT problem presents difficulties to both algo-
rithms CFPA and PFCA. The difficulties derive from
the fact that its quite easy to solve the central problem
(transportation) separately, or the peripheral problems
(timetable) separately, since each individual problem
has many solutions; however very few of the combina-
tions of these solutions are consistent with the trans-
portation constraints. In more detail, we note that the
zones of transportation can be roughly divided into two
types. The first zone, serving only 10 nurses, is very
constrained, therefore, the probability that a separate
timetable created by the various departments will fulfill
this constraint by chance is quite small! Thus, the first
zone is more appropriate for algorithm CFPA. For the
second zone that serves all the other lines, the central
problem is not heavily constrained; therefore PFCA is
more appropriate.

In order to overcome this problem we propose a new
algorithm which is basically the adaptation and com-
position of the two basic algorithms. The original prob-
lem is first partitioned by a binary partition into two
related DCSP sub-problems, then the following are ap-
plied:

1. Apply algorithm CFPA to the first sub-problem

2. Now use PFCA on the second sub-problem. If there
is no solution, perform the backtracking on the com-
ponents participating in the central component of
the first sub-problem. Once the first sub-problem is
free of conflicts there is a high probability that there
are no conflicts in the second sub-problem either.

In terms of the NTTT problem, the first sub-problem
is composed of the first zone and the components of
the peripheral problems connected to this zone. The
second sub-problem is the second zone and the rest
of the peripheral components. The new algorithm is
detailed and proven complete in the next section, x

Completeness of the Combined
Algorithm

We first define the concept of a Binary partition of a
canonical DCSP. Given a DCSP D let us define Af(D)
the set of nodes of D and C(D) the set of constraints
in D. Given a canonical representation of a DCSP D
and a partition of the variables of into two groups Nx
and N2 let us define D’ to be a DCSP that includes
all the nodes and constraints in D and for each couple
of variables (Xt, Xk) such that Xt E N1 Xt E
and neither of them is in Gm if exists a constraint
(Xk,Xt) E C(D), then we will add nodes XIm and
Xkm to the Gm group of D’ and identify constraints
between Xk and Xkm, and between Xt and Xara.

Let us define a binary partition as a partition of the
nodes and constraints of a DCSP into two parts, P1, P2,
such that P1 contains the set N1 and P2 contains the
set N2, that fulfills:

1. Xk E N’(D’) ~ Bp, ee(Xk E Af(Pi)). No node
appears and no node is added.

2. Xk E .,V’(D’) ~--,3v, ev, p~ev(Xk E .N’(P/)A X~
Af(Pj) A i ~ j). Each node belongs to one Pi.

3. M(Xk) = Xa A Xk E .A/’(Pi) ~ Xz E .A/’(Pi). If Xk
and Xt represent the same variable in the/Y, then
they belong to the same Pi.

4. Vx~e~.(vO,x,~y(vO(Ck, e C(P/) ~ CA, ~ C(l~))
i.e., all original constraints remain, and no new con-
straints are added.

In (Solotorevsky & Gudes 1996) we proved that
CFPA and PFCA are complete, i.e. they terminate
with a solution or with failure in finite time. Let us
denote CompleteEztAll an algorithm that finds all the
solutions of a DCSP that differ in values in the nodes
in Gra. It is easy to modify CFPA and PFCA to be
CompletegxtAII by as soon as a solution is found store
it, then add a new constraint to the central compo-
nent that states that the found solution is illegal, and
continue.

Now, let P be a partition of a DCSP into two groups
Pa and P2 , and let A1 and A9 be two CompleteExtAll
algorithms for solving DCSPs. Algorithm CompCP
(composition of CFPA and PFCA) is:

1. Apply AI to P1: If no solution was found then halt
with failure. Otherwise propagate the results to Pg..

1note that a practical result of this algorithm is that
nurses on the first zone can coordinate their schedule, and
it is likely that the system will fulfill their requests...

151

2. Apply A2 to P2 (with the domains reduced by the
propagation) If no solution was found then undo the
effects of the last propagation and goto 3. Otherwise
halt with failure.

3. Use A1 to find an alternative solution to P1. If no
alternative solution was found then halt with failure,
otherwise propagate the results to P2, and goto 2.

Theorem given a binary partition P of a DCSP D
into two groups P1 and P2 then applying on them the
CompCP algorithm is complete.
Proof:

Clearly D’ has a solution if and only if D has a so-
lution. Let Solsl, and Sols2 be the groups of all the
solutions found by A1 of P1 and by A2 of P2, respec-
tively.

hFrom the construction of D’ we get that Sol1 (So12)
includes all the possible solutions that differs in values
assigned to variables which have an "external" con-
straint to a variable in P2 (P1) (since they belong in ~

to Gin, and A1 and A2 are CompleteExtAll). There-
fore D has a solution if and only if there is a solution
in (sl, s2 I sl G Solsls2 E Sols2)

Both A1 and A2 are CompleteExtAll, therefore they
will find the groups Solsl and Sols2 in a finite time.
Since both Solsl and Sols2 are finite and were found
in a finite time, then CompCP will terminate in a finite
time. Therefore CompCP is Complete.

Note that in our algorithm the backtracking is done
sequentially (although the backtracking time is used
by other agents to find more solutions in parallel). In
contrast the backtracking in (Yokoo 1995) and (Luo,
Hendryl & Buchanan 1993) is asynchronous. On the
surface its seems a disadvantage of our algorithm.
However, our algorithm has important advantages on
the asynchronous method. First, we use much fewer
messages, and second we can incorporate more so-
phisticated backtracking methods such as backjnmping
easily. Finally, we deal easily with non-binary con-
straints. These types of constraints are very impor-
tant in the type of problem we have on hand (e.g. lim-
iting the number of nurses in a line is a non-binary
constraint). The asynchronous algorithms require ex-
tensive changes to deal with these types of constraints
in order to make them suitable to problems like the
NTTT problem.

Experimental Evaluations
Our experiments with the different algorithms are sum-
marized in table 1. We tested the behavior of CFPA,
PFCA, CompCP, and two versions of sequential for-
ward constraint checking with failure directed back
jumping (FC-BJ), the first regular FC-BJ, and the sec-
ond FC-BJ in which the nurses that belong to the "dif-
ficult line" are assigned first (FC-BJ-L-lst). We tested
the algorithms on two versions of the NTTT problem,
a full version that included 10 departments, 20 nurses
in each department, half of them from surrounding

Toy Problem Real Problem
Algorithm Messages MNCC Messages MNCC
PFCA 123054 555517 stopped stopped
CFPA 128 16336 stopped stopped
FC-BJ 553964 stopped stopped
FC-BJ-L-Ist 525 150000
CompCP , 8 148 20 15102

Table 1: Applying the different algorithms to the
NTTT problem

towns, each nurse can work up to five shifts per week,
and each department requires about 100 weekly assign-
ments. The second set of tests was on a reduced ver-
sion of the problem with only 4 departments, 7 nurses
in each department, each nurse works 2 shifts per week,
and each department required about 20 weekly assign-
ments.

The results are presented in table 1, the performance
is measured both in terms of messages needed, and in
terms of the maximal number of consistency checks
(MNCC). We defined MNCC to be the sum of all the
consistency checks that are performed in the sequential
intervals plus the sum of the maximal number of con-
sistency checks that are performed by one of the agents
in each parallel interval. Note that by assuming that
all the agents have a common clock, and that each
internal constraint check takes one time unit we get
an equivalence between the MNCC measurement and
the time cycles measurement which is used by Yokoo
(Yokoo 1995).

Algorithms that failed to solve the problem in 2
hours were halted (stopped). It is clear from the table
that algorithms CFPA and PFCA alone can not deal
with the NTTT problem however applying CompCP
gives very good results, much better than the sequen-
tial algorithms, specially for the full size problem. It
is also interesting to see that applying FC_BJ without
dealing first with the "difficult line" is very inefficient.

Note that we did not measure the time required
for solving the problems because time measurements
are highly implementation dependent. Furthermore,
in a distributed implementation, time measurements
are highly dependent on the network architecture (e.g.,
LAN or WAN) and on its load. (Note that performing
15102 MNCC and 20 messages, may on many archi-
tectures take more time than performing 150000 con-
straints’ checks in a centralized environment.) Our aim
is to show that when a problem requires the use of
a distributed solution method (as the hospital man-
agement demanded) then applying an appropriate dis-
tributed algorithm for the problem, enables its solution
with a reasonable amount of work.

Discussion
The efficiency of applying CompCP to a problem de-
pends on the capability to identify tightly and loosely
constrained zones in the central component. When, in

152

a problem, the central component is uniformly difficult
then PFCA or CFPA should be preferred to CompCP.

One can think about a general partitioning algo-
rithm which attempts to identify the difficult compo-
nent of the problem. However, in the NTTT problem,
as well as in many other real life resource allocation
and scheduling problems, many of the constraints are
naturally represented in a functional form, and not in
an explicit form (the reason for this is that an explicit
representation may take exponential space). When the
constraints are not given in an explicit form, finding
the difficult regions of the central component automat-
ically, without using some knowledge about the prob-
lem, doesn’t seem feasible, (since it is basically equiv-
alent to finding the number of failures due to these
constraints over the total number of constraint failures
for all possible solutions!), that is the reason why we
need to use specific knowledge on the problem in order
to find the partition of the central component. Note
that the use of such knowledge was also mandatory for
the sequential algorithm (FC-CBJ-L1), since the algo-
rithm FC-CBJ which did not use knowledge specific
variable ordering failed to solve the real problem in a
reasonable amount of time.

To generalize on this, we claim that a DCSP problem
of this nature, where part of the central component
is much more difficult than the rest, and where the
constraints are stated functionally, will usually require
domain knowledge to identify the difficult part, and
then the application of CompCP is quite obvious.

Conclusions
In this paper we investigated a real-life resource allo-
cation problem - the timetabling and transportation
of nurses in a large hospital. The solution method-
ology is based on the algorithms developed earlier for
solving distributed constraint satisfaction problems. In
the previous section we saw that this methodology en-
abled an efficient solution of the problem. The reason
was the differences existing between solving the cen-
tral problem vs. solving the peripheral problem, these
differences are of great importance in our algorithms.

Other reasons for using our methodology are the
possibility of preserving local control and reasoning,
and the ability of incrementally constructing the over-
all system. The latter point is of particular importance
in our case. In several departments, the timetabling is
still done manually where only the results are encoded
into input to the transportation part. In others, where
the knowledge-based approach is used, the local ex-
pert wants complete control, even with the option of
manually changing the schedule and violating some of
the constraints. All these entails a methodology which
gives as much local autonomy as possible to the indi-
vidual agents, and does not force a particular algorithm
on them. Note that even though preserving local con-
trol and using independent internal strategies are nat-
ural properties of the distributed AI approach, other

approaches to distributed solving of CSP do not main-
tain them. This makes our methodology quite different
from the uniform methodology for solving distributed
CSP problems advocated for example by Yokoo (Yokoo
1995).

As was shown, the solution of our problem required
the combination of the CFPA and PFCA algorithms.
This is needed, because there are quite large differences
between the difficulty of solution of the various periph-
eral problems. We believe that such composition would
be useful in many problems where there are great dif-
ferences between various components of a distributed
CSP problem, and there is domain specific knowledge
identifying these differences.

References
Luo, Q. Y.; Hendry, P. G.; and Buchanan, J. T. 1993.
Heuristic search for distributed constraint satisfaction
problems. Research Report KEG-6-93, University of
Strathclyde.
Meisels, A.; Gudes, E.; and Solotorevsky, G.
1997. Combining rules and constraints for employee
timetabling. Intern. Jou. Inteli. Sys 12(6).

Neiman, D. E., and Lesser, V. It. 1996. a cooperative
repair method for distributed scheduling system. In
Proc. of the Third Inter. Conf. on Artificial Intelli-
gence Planning Systems, 166-173.

Prosser, P.; Conway, C.; and Muller, M. 1992. A
constraint maintenance system for the distributed re-
source allocation problem. Intelligent Systems Engi-
neering 76-83.

Solotorevsky, G., and Gudes, E. 1996. Algorithms
for solving distributed constraint satisfaction prob-
lems (dcsps). In Proc. of the Third Inter. Conf. on
Artificial Intelligence Planning Systems, 191-198.

Sycara, K.; Roth, F.; Sadeh, N.; and Fox, M. 1991.
Resource allocation in distributed factory scheduling.
IEEE E~;pert 29-40.

Yokoo, M.; Durfee, E.; Ishida, T.; K.; and Kuwabara.
1992. Distributed constraint satisfaction for formal-
izing distributed problem solving. In IEEE Intern.
Conf. Distrb. Comp. Sys., 614 - 621.

Yokoo, M. 1995. Asynchronous weak-commitment
search for solving distributed constraint satisfaction
problems. In Proc. 1st lntrnat. Conf. on Coast.
Progr., 88 - 102.

153

