
Run-Time Monitoring of Fixed-Contract Interruptible Algorithms

Martin Adelantado

Onera-Cert
Department of Computer Science

2, Avenue Edouard Belin,
31055 Toulouse Cedex, France

e-mail: Martin.Adelantado @ cert.fr
fax: (33) 05-62-25-25-93

http:llwww.cert.frlanglaislderiladeleladele.html

Abstract
Anytime algorithms give intelligent real-time systems the
ability to trade deliberation time for quality of results. This
capability is essential in domains where computing the
optimal result is not computationally feasible or is not
economically desirable. Examples of such domains include
avionics, air traffic control, process control and mission-
critical computations. Run-time monitoring of anytime
algorithms defines a framework for reducing the effect of
uncertainty on the performance of the system. In this paper,
we discuss ongoing work aiming at extending the scope of
anytime computing when performance profiles of basic
components are not predictable at compile time. More
precisely, we describe a two-levels model of run-time
monitoring for resource-bounded problem-solving systems:
at meta-level, original fixed-contracts are allocated to
interruptible tasks according to some expectations on the
environment behavior. At resource-level, contracts
adjustments are dynamically performed by a scheduler
according to the computational resources workload and the
quality of the available approximate results, estimated at run-
time. This work, supported by the French Ministry of
Defense (DRET)1, has been conducted in collaboration with
G. Champigneux and J. Sardou from Dassault-Aviation
Company.

Introduction

Anytime computing provides a framework for preventing
timing faults and achieving graceful degradation in
intelligent real-time systems. The problem in monitoring
anytime algorithms is to decide how to allocate processing
time among different tasks so as to optimize the total
performance of the system. Several monitoring approaches
have been proposed. The compilation approach (Russel and

J Under contract 9400200051.

Zilberstein 1991), (Zilberstein 1996), (Zilberstein 1993),
(Grass and Zilberstein 1996) calculates a fixed temporal
contract to each component of the system prior to its
activation. M. Boddy and Th. Dean (Boddy and Dean
1994) introduced several deliberation scheduling
techniques to make time-allocation decisions in time-
constrained planning problems. E. J. Horvitz (Horvitz
1990) proposed flexible inferences to solve time-critical
decision problems, implementing decision-theoretic
reasoning about what next action has to be performed. J.
Liu et al. (Liu et al. 1991) propose the imprecise
computation technique to achieve graceful degradation of
approximate results. In their design-to-time approach to
real-time scheduling, A. Garvey et al. (Garvey, Humphrey
and Lesser 1993) exploit task interrelationships in
situations where multiple methods exist for many tasks that
the system needs to solve. A. Mensch and F. Charpillet
(Mensch and Charpillet 1996) propose algorithms
supporting a joint scheduling approach of predictable tasks
and unbounded optional tasks, in real-time knowledge-
based systems.

The fixed-contract monitoring strategy is optimal when
the domain has predictable utility and the system provides
deterministic performance profiles (Zilberstein 1993).
Unfortunately, there is in most cases, uncertainty about the
rate of improvement of solution quality, or about the future
state of the environment. To face these situations, a great
deal of research effort has been spent in defining run-time
strategies for solving the monitoring problem (Hansen and
Zilberstein 1996).

In this paper we discuss a run-time monitoring model
based on the following assumptions: First, despite
unpredictable changes on the environment behavior, utility
of a result can still be predictable. Such assumption allows
to calculate an original fixed-contract before activating an
anytime process. Second, performance profiles are not

From: AAAI Technical Report WS-97-06. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

predictable. Therefore, expectations on the quality of the
future approximate results, are not allowed (myopic
approach). Nevertheless, an interruptible task can
accurately calculate the quality of the currently available
solution. Third, at run-time, computational resources are to
be shared between several parallel interruptible algorithms.
In the next section we describe the run-time monitoring
model we propose through an example taken from actual
applications. Then, we examine several monitoring
strategies for dynamically adjusting the original fixed-
contracts according to the resources workload. Finally, we
briefly discuss the significance of this work and current
research directions.

Run-Time Monitoring Model and Problem
Statement

The run-time monitoring model shown in figure 1, is based
on a cooperative scheduling approach between a meta-level
scheduler and a resource-level scheduler. Such a model is
suitable for designing distributed time-constrained systems
in such areas as avionics, air-traffic management or
distributed air defense systems.

EXPERT DOMAIN I~t/RT IXhMAIN

Figure 1: Two-levels run-time monitoring

For example, in an embedded avionics system, the
guidance and control function involves Situation
Assessment to detect abnormal situations (threats, system
failures), and Plan Generation to create one or several
plans to face unexpected problems. In generating plans, a
variety of mechanisms and algorithms may be applied. The
decision to which plan generation mechanisms to employ is
made by a Coordination function according to a given
strategy including the time allocated to generate a plan and
constraints to be employed. For the sake of simplicity, a
strategy describes an activation order of the processes.

The Coordination function can be then considered as a
meta-level control flow controlling the real-time decision

making performed by the Plan Generation function. From
the Coordination point of view, Planning consists then of
sending tasks activation requests to a set of expert domains
performing a plan according to their own operational
knowledge. Each request from the meta-level control flow
defines a fixed-contract activation of an interruptible
process. When the system is designed for simultaneously
handling up to N abnormal situations, Planning involves up
to N meta-level flows of control, each of them sending
asynchronously tasks activation requests to the
corresponding expert domains.

Based on such a monitoring scheme, we assume that an
interruptible task can easily estimate the quality of the
currently available result. Time is then discretized into a
finite number of time steps, t0, t I t,. Similarly, solution
quality is discretized into a finite number of levels q0, ql,
.... q,. Whenever an activation request of an interruptible
task T is sent, the corresponding meta-level control flow C
decides how much time AT should be given to T to receive
an approximate result. Process T returns the approximate
result elaborated at the last time step t~ before reaching the
deadline, or the correct result if T has completed before
deadline. Usually, a fixed-contract approach can be used
when the complete system is compiled into a contract
algorithm. We consider in this paper that an interruptible
approach is more suitable since performance profiles are
not predictable. Computational resources associated to an
expert domain, are controlled by a scheduler which receives
activation requests of fixed-contract interruptible tasks
from several meta-level control flows. According to the
computational resources workload, the resource-level
scheduler dynamically adjust the contracts in such a way
that the updated contracts are never greater than the original
ones.

Resource-Level Monitoring Issues

The framework previously described raises many
interesting and challenging questions. In this paper, we
focus on the problem of how adjusting the fixed-contracts
associated with the tasks activation requests, from the
resource-schedulers point of view. In other words, we are
not interested in the problem of how time can be
reallocated among the remaining computational processes,
by the meta-level scheduler. Assume a resource-level
scheduler has p, 0<=p<n, pending tasks activation requests
T1, T2, ...,T. with the corresponding fixed-contracts AT1,
AT2 AT.. On a single processor system, T~ is the
running task, and p=n-1. On a multiprocessor system, k
tasks, TI, Tz, ...,T k are running and p=n-k. Based on this
formal framework, several discrete monitoring policies2 can
be examined. Those policies perform contracts adjustment

2 From now on, the time spent in ran-time monitoring will be neglected.

either upon arrival of a task activation request or whenever
a running task has completed.

Basic Contracts Adjustment Algorithm on Single
Processor Systems

Upon arrival of the T,+1 task, with a fixed-contract AT,÷~, a
basic contract adjustment algorithm is performed as shown
in figure 2, assuming first a single processor system. The
goal of this algorithm is to dynamically adjust the pending
tasks contracts according to the expected resources
overload given in time units. The basic idea consists in
equally diminishing the contracts of the running and the
pending tasks in such a way that the deadline of T**t will be
guaranteed. Tasks activation calls are assumed to be
serviced in a FIFO order, and running tasks are never
preempted. The constant noted eonst ensures that T~+1 will
be allocated at least "const" time units.

T/1. Compute A = A - ATn+1

2.1f A<(-const) then AT’n+I =(-A); exit

A + const
3. Compute I" =

n
4. For i=1 to n

4.1. Compute AT’i = max(const, ATi - F)

4.2. Compute A = A - F

4.3. If AT’i -- const and i t. = n then

4.4. Compute A = A + (coast- (ATi - F))

A
4.5. Compute r-

n-i
4.6. endtf
5. EndFor

Figure 2: Adjusting contracts upon arrival of a task
activation request

The first step consists of computing the expected timing
overload. At the second step, the resources are not
overloaded: AT’~.1 is accordingly updated, and the
algorithm exits. Otherwise, all the contracts associated with
the pending tasks have to be adjusted using l" (step 4).
step 4.1, the adjusted contract is lower bounded by a
constant (const>=0). A value of const greater than
ensures that all the pending tasks will be allocated at least
"const" time units. A value of const equal to 0 allows a task
activation request to be ignored when AT’I=0. Steps 4.4 and
4.5 update the timing overload, respectively F, whenever a
given contract has been "less adjusted" than expected. The
worst case occurs if the updated contract AT’, is equal to
"const" when the algorithm ends. In such a case, all the

pending tasks contracts have been correctly diminished,
except the contract of Tn. Therefore, the deadline of T~I is
not guaranteed and the algorithm fails. Several solutions are
offered to solve this problem. The first one consists in
removing the task T**1. In the second solution, the scheduler
selects among T~ to T~I, the first task T~ such as

AT’h-(const-(AT n -r))> const

and diminishes then the contract of T0 as follows:

AT’ ’h = AT’ h--(const -- (ATn -I~))

When AT’I<ATt, the scheduler updates the abort
conditions of the running task T1 through a process
interaction request, in the following way" let t,~ the starting
time of Ti, and t the current time. If AT’t is greater than t-
ts~, the adjusted abort condition is indicated to the running
task. Otherwise, Tt is discarded and the last approximate
result elaborated so far is returned. The updated contracts
computed by this basic algorithm have to be considered as
worst-case contracts: first, because the running time already
spent by Tt has been neglected in calculating the expected
resource overload, and secondly, because a running task
can terminate before its deadline, since the execution time
needed to obtain the correct result depends on input data
and processing power. In such a case, when the running
task T1 has completed at time t, a time recovering
mechanism is performed by the scheduler by adjusting once
again the contract of the ready task T2. The contract
adjustment equation of the ready task is then the following:

AT"2 = AT’2+((tstar t + AT’l)-)

A similar mechanism may be applied by the meta-level
scheduler to reallocate the remaining time to the following
processes. For example, when the Planning function
involves up to N meta-level flows of control, each of them
has to send several tasks activation requests to the expert
domains. Therefore, each flow of control has to
sequentially send R requests to the corresponding resource-
level dispatchers. For a given problem, Planning has to be
performed in AT units of time. Before sending the
activation request of the task T, the meta-level scheduler
estimates the fixed contract ATi according to its knowledge
about the future behavior of the Planning process. An
extremely simple policy consists of equally allocating time
to the remaining processes. Whenever a given AT~ has not
been wholly used, the meta-level scheduler has the
opportunity to give to the following tasks, more time than
previously expected.

Several straightforward improvements may be suggested
to enhance the basic algorithm behavior. For example,
instead of adjusting the contract of the ready task upon
completion of the running task, time should be equally
allocated among all the pending tasks. Another strategy
consists of sorting the pending tasks contracts in decreasing
order, and then adjusting only the first contracts until the
deadline of T~.1 can be guaranteed. The basic algorithm
assumes that the worst case budget given in time units by
the variable "const", is exactly the same for all tasks. An
obvious improvement consists of associating a time budget
related to the task’s importance.

Basic Contracts Adjustment Algorithm on
Mulliprocessor Systems

Suppose now a multiprocessor system built around K
processors, k tasks T,, T2, ..., Tk (k<=K) are running, and
there are n-k tasks Tk÷l, Tk÷2, ...,T n pending into a FIFO
queue. Upon arrival of the T.+t task, the expected resources
overload in time units is computed if and only if k=K. It is
given by:

k n

a-- m!n(AX,)+ EAr, - arn÷l
= i=k+l

If k<K, a processor is free and T.., is immediately
started. When resources are not overloaded, Arm.1 is
updated as previously described in the single processor
algorithm. Otherwise, each pending task contract is
expected to be diminished by 1" time units, given by:

a + const
F=

n-k+l

The loop body at step 4 of the single processor
algorithm, is then restricted to the pending tasks and the
running task m such as:

AT. -- m)r(aT,)

When a task 1", has completed (l<=c<=k) at time t, the
contract of the ready task Tk÷t is updated once again as
above described, and then the ready task is activated on the
processor c. Allocation of tasks to processors follows then a
self-scheduled policy. When a resource-level scheduler
controls a multiprocessor, an abort strategy may be
suggested: whenever the resources are overloaded, the
scheduler selects the running task Tc whose quality Qc
(l<=c<=k) of the last returned result so far, is maximum.
is then immediately discarded if Q, is greater than a given

quality threshold.

Priority-Driven Non Preemptive Algorithms

The basic adjustment algorithm we have discussed,
assumes that tasks activation calls are serviced in a FIFO
order. It is not optimal when the contracts variance is high.
A best strategy begins by sorting the pending tasks
contracts according to a given criterion. In this section we
briefly describe the underlying ideas of the algorithm, when
applied on a single processor system.

Assume a list of n+l pending tasks activation requests
Tt, "172, ..., Tk.,, Tk, Tk÷,, ..., T,~, with the corresponding
fixed-contracts AT1, AT2 Atn÷~. This list is obtained by
inserting the current task activation request Tk with contract
ATk, into the sorted queue in an "earliest deadline first"
order. Suppose we have at time t, the following contracts
queue

(5,8,6, 1,3)
corresponding to five pending tasks. The expected
deadlines at time t, are given by the sorted list

(t+5, t+13, t+19, t+20, t+23)
These deadlines are to be considered as worst-case
deadlines since T~ is already running at time t. Suppose
now that the resource scheduler receives at time t an
activation request for a task T with a contract AT, and a
deadline t+AT. Inserting the task T in position k in an
"earliest deadline first" order, implies that before insertion,
we have the following relation

k-1 k

~AT, _< AT< ~AT,
i=1 1=1

For example, if AT=7, T will be inserted in position 2.
This strategy implies that the timing overload from the new
request point of view, is given by

k-1

A = ~_~ATi - AT-< 0
i=l

* When A=0 occurs, the current task T has the same
deadline as a pending task I",, and has to be inserted in
position k=i+l. For example, if AT=13, task T has to be
inserted in position 3, and the contract queue becomes

(5, 8, 13, 6, 1, 3)
The deadline of T cannot then be guaranteed without

adjusting the contracts of tasks T1 and T2. This is performed
according to the basic contracts adjustment algorithm
previously discussed, and improved in the following way.
In the basic version of the algorithm, an incoming task is
discarded whenever A=0. An improved mechanism consists
in preventing to ignore a pending request whenever is
possible. Several solutions are then offered. An obvious

one gives to the incoming task T a contract equal to (k-l)
and diminishes the contracts of the tasks T1 to Tk.~ by one
unit of time. Applying this straightforward solution, the
contracts queue becomes

(4,7,2,6, 1,3)
and the deadlines queue is given by

(t+4, t+ll, t+13, t+19, t+20, t+23)
Since AT3 has been adjusted such as its deadline t+13

will be guaranteed, the contracts associated with the
following tasks T4 to T6, have not to be modified.
¯ When A<0, the deadline of T can be guaranteed by
updating its contract through the equation

AT’--

For example, if AT=15, task T has to be inserted in
position 3 and AT’=2. The contracts queue becomes then

(5, 8,2,6, 1,3)
Inserting a new contract in position k prevents the

deadlines of the tasks Tk÷~ to T,, to be guaranteed. A
straightforward solution consists in updating ATk÷z in the
following way

AT’k+1 = ATk+1 - AT’

Remember that inserting the task T in position k ensures
that

k-1 k
]~ ATi < AT < ~ ATi
i=1 i=1

implying that

k-I
AT- ~ ATi < ATk

iffil

and that

AT’= (-A) < ATk

Once the task T has been inserted in position k, the
previous ATk becomes ATk+p and then

AT’ k+l = ATk+1 - AT’ > 0

Updating the contract of task T4 in the previous example,
gives the following contracts queue

(5,8,2,4,1,3)
and all the contracts will be guaranteed. Consequently,
when a task T is inserted into the queue in position k, the
adjusted contracts of the following tasks are always greater
than 0, and then are never discarded. The proposed

algorithm is described in the general case, by the figure 3.

1. Find the correct position of the incoming task T
k-1 k

suchas EAT, <AT<~ATi
i=1 i=1

k-1
2. Compute A = ~ AT| - AT

i=1

3./f A = 0 then
3.1. Adjust the contracts of task T1 to Tk.1
4. Else
4.1. Adjust the contract AT’= (-A)

4.2. Adjust the contract AT’ k+l = ATk÷I - AT’

5. Endlf

Figure 3: Adjusting the contracts in an "earliest deadline
first" order

When this algorithm is applied, a particular case occurs
if the incoming task T has to be inserted at time t, in
position 1, with a contract AT. This case occurs when
AT<ATr Remember that the key point of the scheduling
approach is to avoid a running task to be preempted.
Consequently, the deadlines queue is only updated upon
completion or interruption of the running task Tr To solve
this problem, the scheduler maintains the starting time t~
of the running task Tr The scheduling decision depends
then on the value of

A=AT1 - (t- tstaa)

¯ If A<AT, the scheduler updates the contract of the task
T in the following way

AT’= AT - A

The task T is then inserted in position 2 and the contract of
task T3 is updated in order to guarantee the deadlines of the
following pending tasks.
¯ Otherwise, the deadline of T will not be guaranteed
without stopping the running task. Such a case is the most
interesting one, and may be solved through the knowledge
of the quality Q of the last approximate result produced so
far by Tr For example, if Q is greater than a given
threshold, the scheduler may decide to abort T~ and to
immediately start T. Otherwise, the incoming task T will be
ignored.

Conclusions and Outstanding Issues

Anytime algorithms are being used increasingly for time-
critical problem-solving in domains such as planning,
database query processing, scheduling and others. This

short paper discusses a cooperative scheduling approach
between meta-level flows of control and resource-level
schedulers. Several run-time monitoring issues based on
contracts adjustment algorithms, have been examined. This
framework is suitable when original fixed-contracts may be
estimated at run-time and when quality of approximate
solutions returned by the anytime components cannot be
accurately measured at compile-time. Adjusting fixed-
contracts according to run-time workload, facilitates the
design of machine-independent problem-solving systems,
that can automatically adjust time allocation to achieve
graceful performance degradation. The main advantage in
monitoring through contracts adjustments lies in the fact
that real-time preemptive scheduling is not necessary to
meet timing requirements. Therefore, both context
switching and protocols to protect the consistency of shared
data are avoided. However, how guaranteeing the proper
use of non-preemptable shared resources, remains a key
problem since interruptible processes are expected to be
aborted at any time. Ongoing work addresses this aspect of
anytime computing. Further works include investigating
extended scheduling protocols when weighted tasks and
shared data are required, and developing language supports
and run-time system facilities for activating and interacting
with fixed-contracts interruptible algorithms.

References

Boddy, M., and Dean, T. 1994
Deliberation scheduling for problem solving in time-
constrained environments. Artificial Intelligence 67, pp.
245-285, 1994

Garvey, A.; Humphrey, M.; and Lesser, V. 1993
Task interdependeneies in design-to-time real-time
scheduling. In Proceedings of the Eleventh National
Conference on Artificial Intelligence, 1993

Grass, J,. and Zilberstein, S. 1996
Anytime algorithms development tools. SIGARTBulletin,
Special Issue on Anytime Algorithms and Deliberation
Scheduling, Vol. 7, N° 2, 1996

Hansen, E. A., and Zilberstein, S. 1996
Monitoring the progress of anytime problem solving. In
Proceedings of the Thirteen National Conference on
Artificial Intelligence. Portland, Oregon, 1996

Horvitz, E. J. 1990
Computation and action under bounded ressources. Ph.D.
Dissertation, Department of Computer Science and
Medecine, Stanford University, December 1990

Liu, J. W. S.; Lin, K. J.; Shih, W. K.; Yu, A. C.; Chung, J.
Y.; and Zhao, W. 1991
Algorithms for scheduling imprecise computations. IEEE
Computer 24(5):58-68, May 1991

Mensch, A., and Charpillet, F. 1996
Scheduling in the REAKT Kernel: Combining predictable
and unbounded computations for maximising solution
quality in real-time knowledge-based systems. In
Proceedings of Real-Time Systems and Embedded
Systems, R.T.S. & E.S.’96. Teknea, January 1996

Russel, S. J, and Zilberstein, S. 1991
Composing real-time systems. In Proceedings of the
Twelfth International Joint Conference on Artificial
Intelligence. Sydney, Australia, 1991

Zilberstein, S. 1993
Operational rationality through compilation of anytime
algorithms. Ph.D. Dissertation, Computer Science Division,
University of California at Berkeley, 1993

Zilberstein, S. 1996
Using anytime algorithms in intelligent systems. AI
Magazine, 17(3):73-83, Fall 1996

