
Controlling Reasoning Within Battlefield Simulation Agents

J. W. Baxter and R. T. Hepplewhite

Defence Evaluation and Research Agency
St. Andrews Road,

Malvern,
Worcestershire. WR14 3PS

United Kingdom

Obaxter,rth) @signal.dra.hmg.gb

Abstract
Computer Generated Forces (CGFs) are becoming
increasingly important in battlefield simulations, in
particular for reducing the number of operators required to
control entities when training only a few military
commanders. These entities must operate in a spatially and
temporally continuous dynamic domain, react to any
situation in a realistic but non-deterministic manner, using
potentially uncertain information about the world. In order
to operate large numbers of entities in real time tight
constraints must be kept on the computational resources
used. In this paper we describe thv resource control
mechanisms available to us within the "SimAgent" tool-kit
and give an example of one of the ’anytime’ search
techniques we have used to ensure decisions can be made
within the available resources.

Introduction

The simulations we are dealing with typically involve
decisions being made about movement over a realistic
terrain surface. Decisions are made according to how the
terrain affects the ability of vehicles to move over it and
how it affects their visibility to potential threats. This
provides a very complex cost surface over which to search
since small movements can dramatically change the cost
as visibility to an enemy is made or lost.

The reasoning processes of our agents are based on a
"broad agent" architecture (Bates, Loyall and Reilly

1991) implemented within a hierarch~ of agents based on
the military command and control (C) structure. A broad
agent is designed to have a broad but perhaps shallow
range of capabilities, instead of a few very detailed
behaviours. The C2 hierarchy enables commands to be
devolved from high level commanders to subordinates and
so each agent need only consider the appropriate level of
detail.

In the following section we describe the way resource
limits are applied within the agent tool-kit we use and the
implications this has on the way we write the rule
modules for our agents. The ’anytime’ search mechanism
used for route planning by the troop command agents to
fit in with this framework is described and some

comments made on the enhancements needed to the tool-
kit to improve the ability to monitor resource limitations

Agent Tool-Kit

The framework for the agents has been developed in
collaboration with Aaron Sloman at Birmingham
University as a "SimAgent" tool-kit, written in Poplog
(Sloman and Poli 1995). The "SimAgent" tool-kit
executes multiple agents, controls the message passing
between them and allows physical simulation of the
agents.

Since, the precise agent architecture was not initially
known the tool-kit needed the facility to support different
architectures between the agents, and possibly a number
of sub-architectures within the agent to support all its
functionality. The agents need to interact with each other
and possibly with other entities and so must be physically
simulated. This can be achieved either using modules
internal to the tool-kit, or by enabling the agents to
control the actions of a separate simulation system, in the
work described here an external simulation has been used.
Figure 1. shows the relationship between the agent
objects, agent rule-sets, the tool-kit and remote
simulation.

Agent Scheduling

The tool-kit scheduler is responsible for the correct
running of the agents. The scheduler runs in a two pass
operation. Firstly, it allows the agents to perform their

SimAgent (Tool-Kit)]Sensors/ A..[I A..g.?..fl...t.

..~. ~ t: , ~.: IMessazesRuleSet !RuleSet
i~ic~e~!e r ~aiii~i~: I RuleSet i RuleSet

Actions RuleSet
Actions ~ ~ Sensors/messages ..

ISimulation Methods
[Simuiation ~ieffac ei

Network

Figure 1. Tool-Kit Overview.

12

From: AAAI Technical Report WS-97-06. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

mental processes, this is controlled via POPRULEBASE a
forward chaining production system. Secondly, it passes
messages between agents and runs any physical
simulation, or external actions of the agents. The external
simulation returns messages back to the agents reporting
changes in state, or information from sensors. Running in
this two pass manner ensures the behaviour is independent
of the order of the agents, because all agents get to
perform sensor and thinking activities before the actual
state of any entity changes. It does however require that
the time allowed to perform reasoning for all agents
during the first pass should be short enough to ensure that
updates to and from the simulation happen frequently
enough to give reasonable behaviour. In many cases this
requires that algorithms are interruptible and operate in
small incremental stages.

Internal Agent Mechanisms

Each agent has an associated collection of rule-sets
known as its rule-system. A rule-set contains a collection
of condition-action rules interacting via a number of
databases. The condition action components of a rule are
not limited to a particular style, since they can invoke any
POP11 function, it is possible to call other languages such
as C++, Prolog, etc. The rule-sets are a method of
grouping similar behaviour components. The rules can
switch between rule-sets and databases, push them on a
stack, restore them, etc. (c.f. SOAR (Laird et al 1993)).

Although learning is not included in our
implementation, it is supported in the tool kit. A rule can
introduce new rules or rule-sets within an agent.

Each agent within the hierarchy is based on the same
architecture, Figure 2 shows the basic design. The
fundamental properties of this design are:
¯ It contains a central database, through which all the

rule-sets communicate. This database can be
partitioned on a keyword, each sub-database holding
related data, allowing searching to be performed
much more quickly.

¯ Individual rule-sets can be identified to perform
fundamental tasks, although their operation may be
inter-linked Separating functionality enables

Orders, Messages

Orders, Messages
Figure 2. Example Troop Commander Architecture.

parallelism of the rule-sets.

¯ The modules only simulate the agent’s intelligence
and do not perform any actual physical modelling. To
perform actions the agent sends instructions to the
physical simulator, and receives confirmation back
about the action via its sensors. This allows
separation of the intelligence modelling from the
physical simulation

¯ The design of the intelligence is generic to any
position in the Cz hierarchy.

Additional or modified behaviour can be easily
implanted into the agent by simply loading different, or
additional rule-sets into the agent.

Control of an Agent’s Resources

Within the tool-kit there are several mechanisms for
controlling resources, not all of which we use. The prime
means of controlling agents is by limiting the number of
rules which may be run within a rule-set on any pass. This
may be set as a limit specific to each rule-set or apply to a
rule-system as a whole. Additionally agents may run their
rule-systems a multiple number of times in a pass or
include rule-sets multiple times within their rule-system
but we have not made use of these mechanisms. Each
time the scheduler is run it is given a list of agents to
execute, each agent reports if it did not fire any rules on a
pass, allowing it to be removed from the list of runable
agents until new information arrives.

It is important to note that none of these mechanisms
include any reference to real time or the processor time,
only to counts of rule firings. It is therefore important to
ensure that the actions performed by rules take a small
amount of time. In some cases we actively use the rule
system to decide actions but in other cases, such as the
troop route planner described in the following section, it is
used simply as a means of controlling the resources
available to an agent.

As the agents can interact with human controlled
simulation entities, it is necessary for the agents to run in
real time. This is achieved by constraining the amount of
processing an agent can perform on a cycle (single pass of
the scheduler) and by updating the agents from the
simulation at regular time steps (typically two seconds).

The agents therefore operate by all running up to their
rule limit (or completion) in the first pass of the scheduler
at which point the scheduler checks to see if the next time
step has been reached. If more time is available another
pass is made through all active agents. This continues
until all agents have completed (have no more rules they
can run) or the time step is reached.

It is therefore impossible for an agent to predict how
much processor time it will get in any slice of real time
since this depends on the number of agents running and
how much work they are doing. This requires the use of
’anytime’ techniques which always have a solution of
some sort available so that the agent can start executing it

13

Figure 3. Example of ridge line abstraction.

when desired. One example of this is the troop concealed
route planner described in the following section.

Meta-level Reasoning
Reasoning about the computational resources and

abilities available to an agent (sometimes called meta-
level reasoning) is one of the features of the tool-kit which
is still developing. Presently there are mechanisms known
as rule-families which can be used to control which of a
number of rule-sets are available to an agent at a given
time. These can be used to focus attention on a particular
problem, such as planning a route, to prevent time being
wasted checking all the rules within a module when a
clearly identified subset is all that is required.

Control of other aspects of reasoning, for instance the
depth of a search the degree of abstraction to be used and
how much real time to allow before execution must
commence is done through setting parameters via rules
which make modifications in the database. In theory this
allows ’meta-management’ rules to control the types of
reasoning as well as the resources available to an agent
depending on the present situation. In practice we have
only just begun to explore the use of these mechanisms
and most of the parameters used to control the resources
an agent has remain fixed.

Troop Agent

The troop commander agents are one level up the
control hierarchy from individual vehicles (Hepplewhite
and Baxter 1996) and they cover movements of several
kilometers over the terrain rather than the few hundred
meters over which the tank commander agent plans. Since
the plans will be used as guidelines by the tank
commander agent, rather than an exact description of their
motion, troop plans can be made at an abstract level
reducing the potentially huge search space to a more
manageable size.

The troop commander agents make plans over a series
of points based upon ’significant’ terrain features,
currently abstracted ridge lines. This is designed to enable
troop commanders to consider large scale moves, such as
driving round a hill, as a single step, and reduces the
search space significantly to enable the planning to occur
in a reasonable amount of time. Troop plans are currently
based on consideration of the degree of concealment

provided by a route from known enemy positions in
addition to the time taken to travel a route.

To represent a ridge in the planning system a simple
line is not sufficient, some idea of the size of the ridge is
also important and potential crossing points. The ridge
lines are abstracted manually and a simple algorithm used
to extract the edge points. An example of the points
produced from a ridge like feature is shown in Figure 3.

Costing of Routes

The cost function uses a combination of traversal time
and exposure to enemy units. To model the effect of
terrain, traversal time is based on the slope of the terrain
profile. The speed reduction depends on how close the
slope is to the maximum vehicle gradient. Only upward
slopes have an effect and ’impassable’ slopes are given an
arbitrarily slow speed. The exposure of a route is
calculated by using line of sight to find what percentage
of a route segment (sampled at 50m intervals) is visible
observer positions. The costs are combined by multiplying
the cost of exposed sections by a constant indicating the
relative importance of speed and concealment. The
heuristic function used in the search is the straight line
distance divided by the maximum speed of the vehicle.

The Search Mechanism
The search is a variant of A* modified to work with

complete routes over a fully connected graph. The search
is required to find the lowest cost solution in the available
time. Since tracked vehicles are able to move across most
terrain types there is almost always a valid (if perhaps
very slow) route from any given node to all others. The
terrain abstractions we are using typically yield on the
order of a hundred nodes for start and goal points five
kilometers apart.

The search starts by considering the cost of the route
direct from the start to the goal and then considers all
single stage routes (routes which travel via a single
intermediate node). This gives an upper bound on the
route cost and also identifies the direction in which search
can be carried out with the lowest apparent branching
factor. A* search then proceeds, expanding in the
direction with the lowest apparent branching factor. The
following description assumes expansion from the start
towards the goal although either direction is possible.

The node (’significant point’ on the terrain) which has
the lowest expected path cost, that is the known cost to
the node plus the heuristic cost to the goal, is selected for
expansion. In general the branching factor at each node
would appear to be the number of nodes in the graph. In
practice it is considerably lower than this since nodes can
be rejected if the expected path cost through them exceeds
the current lowest cost plan. The cost of each valid
expansion is computed and if found to be less than the
existing cost of getting to that node then the cost to it and
route to it are amended. The planner also checks the
(known) cost to directly complete the route to see if this

14

p~,.°o,t Plan cost vs time for A*
25000 ’

23000

21000

18000

17000

I S000

13000

0 20 40 60 80 100 120 140 160

Time (nconds)

Figure 4. Plan cost against Planning Time

provides a cheaper route than has been found so far and
updates its best plan accordingly. This means that at any
time the best route found so far can be executed, allowing
the troop commander to respond quickly when necessary.

The routine is also memory bounded since all that
needs to be stored are the nodes (significant points) and
the best known routes to and from the node. The search
terminates when no node has any possible extensions
which could yield a lower cost route.

Figure 4 shows how the initially high cost for a route
was improved over time with an initial very fast reduction
in cost as the search quickly identified how to avoid areas
which were very exposed to the enemy and then showing
a steady improvement as the route was refined.

Integrating with the Agent

The planner thus has several desirable features for
allowing the agent to reason with limited resources. The
representation of all nodes is the same throughout the
search allowing a fixed structure to be used and stored in
the database between invocations by the agent. The
progress of the search can be stored simply by recording
which node is being expanded and how far along the list
of other nodes that expansion has proceeded. The
resources used in each invocation of the planner can
therefore be limited by controlling how many nodes can
be considered each time it is called. The rule-set
controlling the planner can therefore call the planner as
many times as its rule limits allow before it is forced by
the scheduler to pass control to other rule-sets or other
agents. The rule-set can use references to a hard time
limit, or other context dependent constraints to decide
when to pass the best plan found so far out for execution
and can decided whether or not to continue looking for
improvements to a plan it is currently executing.

Executing troop level plans.

The route planner has been incorporated into the troop
commander agent which uses it to plan routes for the
troop (group of three to five tanks) to follow. Routes are
planned based on known enemy positions. The plans are
executed by agents controlling each individual tank in the
group who try to keep together and move in a group while
responding sensibly to the terrain they are moving over
and the presence of enemy tanks. The troop commander

Current Position of Troop
~.’re. ,r~,. ,!r)..R[dge..Llne~PJanned.Route
I~ Terrain Profile hlflh

"~~:::::. I

Figure 5. Initial troop plan and a re-plan on spotting the enemy.

monitors the progress of the group and may re-plan the
route if an enemy which was not previously known about
is detected. The behaviour this produces can be seen in
Figure 5.

The blue troop initially planned to cross the ridge in
front of it and proceed towards their goal along the
northern edge of the ridge. As it reached the top of the
hill one of the tanks spotted the red troop in the valley and
informed the troop commander. This resulted in a re-plan
which caused the blue troop commander to adjust its plan
to follow the southern slopes of the ridge instead, first
crossing the smaller ridge to the SW.

Conclusions

We have described the features of the SimAgent tool-
kit which allows resource limitations to be applied and
described how we have used them to enforce real time
operation in agents for military simulations. We have also
briefly described an ’anytime’ planner for concealed
routes over terrain used by these agents.

Clearly the present mechanisms allow us to apply some
resource limits but place the onus on the programmer to
ensure that no particular rule or rule-set consumes an
’excessive’ amount of processor time. It is probable that
the SimAgent tool-kit will require more sophisticated
resource monitoring and control mechanisms to allow a
’meta-management’ layer to control the way in which
resources are allocated to problems.

The planner described in this paper shows the features
which we believe to be necessary for situations where
planning or search cannot be guaranteed to continue to
completion. It is easily interruptible enabling mechanisms
which can adjust its performance and control the overall
resources used by an agent to gain feedback from it and
temporarily or permanently halt it. It always has the best
plan so far ready for execution and continuously improves

15

on that plan given more time. It is also able to recognise
when it has produced the best plan it can find and the
search can be terminated.

At least part of the reason that the plans produced can
always be executed by the troop commander is because
they are made at an abstract level and so are further
expanded by the individual tank commander agents for
final execution within the simulation.

Britannic Majesty’s Stationery Office.

Further Work

We would like to investigate the control of reasoning
within agents further, particularly as they grow more
complex. We are interested in applying techniques which
maintain plans at varying levels of abstraction, depending
on how close they are to execution. We are also interested
in examining how to allow agents several different ways
of solving a problem with different time profiles and
reasoning about how to share resources between these
techniques. We believe that search and planning
techniques cannot operate simply as ’black boxes’ or
closed processes they must feed back information about
the search and the search space to assist the agent in
making decisions about how to balance different planning
and execution methods.

Acknowledgments

We would like to acknowledge the assistance of the
cognition and effect project at Birmingham University,
particularly Aaron Sloman and Brian Logan, for sharing
their ideas on agents with us and for producing and
maintaining the SimAgent tool-kit. We would also like to
thank our colleagues at DERA Malvern for the valuable
suggestions they have made about the agents and the route
planner.

References

Bates, J, Loyall, A. B. and Reilly, W. S. 1991 Broad
Agents. Sigart Bulletin.

Hepplewhite R. T. and Baxter J. W. 1996 Broad Agents
for Intelligent Battlefield Simulation. In Proceedings of
the 6~ Conference on Computer Generated Forces and
Behavioural Representation, Orlando, Florida: Institute of
Simulation and Training

Laird, J. E. Clave, B. L. Erik A. and Roberts D. 1993
Soar User’s Manual (V6), University of Michigan,
Carnegie Mellon University.

Sloman A. and Poli R. 1995 SIM_AGENT: A tool-kit
for exploring agent designs. ATAL-95 Workshop on
Agent Theories, Architectures, and Languages, IJCAI-95
Montreal, August.

© British Crown Copyright 1997 / DERA

Reproduced with the permission of the controller of Her

