
Preliminary Empirical Results on Anytime Propositional Reasoning (Abstract)*

Mukesh Dalai and Li Yang
Columbia University

Department of Computer Science
New York, NY 10027

Email: {dalai, lyang} @cs.columbia.edu.
Phone: (212) 939-{7114, 7116}

Abstract

An anytime family of propositional reasoners is a sequence
I-o, I-i,... of inference relations such that each I-k is sound,
tractable, and makes more inferences than I-k-i, and each
theory has a complete reasoner in the family. Anytime fami-
lies are useful for resource-bounded reasoning in knowledge
representation systems. We describe implementations of an
anytime family {I-t,} of clausal propositional reasoners us-
ing three different strategies. We present empirical results
comparing the three strategies, the completeness of reason-
ing, the time for making inferences, and the space used for
reasoning. Our results show that the reasoners with higher
values of k infer significantly more formulas than reason-
ers with lower values of k, and the time for inferencing de-
creases significantly as k is increased from 0 to 2.

Introduction

Since deductive reasoning is intractable for propositional
knowledge representation systems, several tractable ap-
proaches for making incomplete inferences have been pro-
posed (Crawford 1992). The incompleteness of these rea-
soners make them unsuitable for several tasks where more
inferences are needed (Doyle & Patil 1991). An attractive
approach that is tractable as well as complete in the limit is
based on the notion of anytime reasoners (Boddy & Dean
1988). They are complete reasoners that provide partial an-
swers even if stopped prematurely; the degree of complete-
ness of the answer improves with the time used in comput-
ing the answer. They are often used for providing a quick
"first cut" to a problem, which can be later improved. In
(Dalai 1996b; 1996a), we presented a family F-o, F-l,, ..
reasoners such that each F-k is sound and tractable, each
F-k+1 is at least as complete as ~-k, and each theory has a
complete reasoner ~-k for reasoning with it. Such a fam-
ily is called an anytime family of reasoners, since given any
reasoning task, one can presumably start with ~-0, and suc-
cessively proceed to the next reasoner if more time is avail-
able.

* This work is partially supported by NSF Grant
IRI-94-10117, NSF infrastructure grant CDA-9625374, and
DARPA/ARL Contract DAAL01-94-K-0119.

In contrast to some other resource-bounded approaches
(for example, see (Zilberstein 1993)) for dealing
limited computational resources, our anytime approach
does not provide explicit quality measures with the an-
swers, but instead provides semantic justifications (Dalai
1996c). In particular, each reasoner t-k is also charac-
terized by a model-theoretic semantics. Since our fam-
ily {I-h} is defined using boolean constraint propagation
(BCP) (McAllester 1990), the semantics of each F-k is based
on the semantics of BCP (Dalai 1996d).

In this document, we describe implementations of our
anytime family {F-k} of reasoners using three different
strategies. We present empirical results comparing the three
strategies, the completeness of reasoning, the time for mak-
ing inferences, and the space used for reasoning. We show
that (1) one particular strategies consistently outperforms
the others; (2) reasoners with higher values of k infer sig-
nificantly more formulas than reasoners with lower values
of k; (3) the time for inferencing decreases significantly
k is increased from 0 to 2; and (4) the space required grows
with the increase in k.

Although BCP is an efficient linear-time method, it does
not make all inferences that are logically entailed. For
example, it cannot detect the inconsistency in the theory
{(P V Q), (P v -~Q), (-~P v Q), (-~P v -~Q)}.
shown that any theory can be transformed into a logically
equivalent theory from which BCP can make all allowed in-
ferences -- such theories are called vivid. The term vivid is
inspired by (Levesque 1986), where vivid theories are ones
where an answer can be "read off" quickly. For a knowl-
edge base that is accessed frequently, it might be useful to
compile its theory into an equivalent vivid theory (Selman,
Levesque, & Mitchell 1992; Cadoli 1996). This process
of vivification was defined using a fixed-point construction
based on inferences made by BCP. By suitably restricting
this construction, we also defined notions of partial vivi-
fication, which provides yet another complete characteri-
zation of the anytime reasoners in the family {I-h}. Our
algorithms for anytime reasoning are based on partial vivi-
fication.

24

From: AAAI Technical Report WS-97-06. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

A Family of Anytime Reasoners
In this section, we review the definitions of the anytime
family and vivification (Dalai 1996b; 1996c). For this,
we restrict our attention to clausal propositional theories
(Mendelson 1964), that is, a theory is a set of propositional
clauses. The empty clause is denoted by f.

Clausal boolean constraint propagation (BCP) is a vari-
ant of unit resolution. Given any theory F, BCP mono-
tonically expands it by adding literals as follows: in each
step, if any single clause in r and all the literals in F
taken together logically entail any other literal (or f), then
this literal (or f) is added to the theory F. This step
is repeated until f is obtained or no new literal can be
added to the theory. For example, starting with the theory
{~P, P V -~Q, P v Q v -~R, P V Q v R}, BCP first obtains
-~Q from -~P and P V -~Q, then -~R from -~P and -~Q and
P V Q v ~R, and finally f from -~P and -~Q and -~R and
PVQVR.

The complement, ,,, (¢), of a clause ¢ = al V... V...
is defined to be the theory {,,, cq,... ,,,, an}. A clause ¢
is BCP-inferable (or inferable using BCP) from a theory
r, denoted by F }-Bcp ¢, iff BCP obtains f from the theory
rt3 {,,, (¢)}. Although I-ncp is sound, it is complete only for
restricted classes of theories, for example, Horn theories. A
common source of incompleteness in ~-Bcp is its inability to
use previously inferred clauses for inferring new clauses.
For example, for the theory F0 = {P V Q, P v -~Q, ~P v
SVT, -~PVSV-~T}, both F0 }-Bcp P and FoU{P} F-Bcp S,
but Fo ~Bcp S. A theory F is called vivM if for any clause
¢: r ~ ¢ iff F ["BCP ~"

If }-Bcp is extended by allowing chaining on arbitrary for-
mulas, the resulting entailment will be sound, complete,
and intractable. So, we allow chaining on only a restricted
set of formulas for defining the anytime family }-: For any
natural number k, the consequence relation I-k is defined
using the following two inference rules:

1. r~-BcP~ 2. r~-k¢; r,¢~-k~ forl¢l_<k;

where F is any theory, ¢ is any formula, and qo is any for-
mula.

We now define the vivification process. For any theory
F, we restrict our attention to only those clauses that are
built from the atoms in F such that all literals in a clause
have distinct atoms; these clauses are called basic clauses.
A basic clause with at most k literals is called a k-clause.
The extended Herbrand base, E(F), of a theory F is the the
set of all basic clauses, and the k-extended Herbrand base,
E(F, k), is the the set of all k-clauses in E(F).

The operator Tr,~ on any set S of k-clauses produces the
set of k-clauses that can be BCP-inferred from F t3 S, that
is:

Tr,k(S) = {# E(r, k)I ru s BcP ,}.

Since Tr,k is a monotonic operator over a finite lattice,
it has a least fixpoint (Tarski 1955), which we denote
lfp(Tr,~). We will refer to lfp(Tr,~) as the kth fixpoint
F; k is said to be the index of this fixpoint. For example, if
F = {(P V Q), (’~P v Q), (P v ~Q)} then lfp(Tr,0)
and lfp(Tr,k) = { (P), (Q) } for each k > 0. For any
F and any number k, Viv(F, k) is defined to be the theory
F t3 lfp(Tr,k). Note that Viv(F, k) augments the theory
rather than replacing it, by the theory lfp(Tr,k), since this
allows more clauses to be inferred from it using F-Bcp.

In (Dalai 1996c), we show that for any theory
any clause ¢, and any number k: Viv(F, k) - F and
Viv(r, k) VBcp ¢ iff F F-k ¢. Thus, vivification can be used
for anytime reasoning using the family {t-k } of reasoners.

Algorithms and Strategies

Algorithm Vivify(k) reads in a theory F and pro-
duces the theory Viv(F, k) by possibly adding several basic
clauses with at most k literals each.

Algorithm Vivify(k)
I. ReadTheory()
2. for size = 1 to k do
3. Round(size)
4. if (UNSAT) return(f);
5. return(t)

end (Vivify).

The exception UNSAT is trigerred anytime f is inferred
from the theory. Procedure Round (size) iterates over
basic clauses with at most size literals. It restarts enu-
merating clauses of size 1 onwards (repeat loop) as soon
as any new clause is added to the theory. The intuition is
that adding a new clause may cause the theory to entail new
smaller size clauses, and adding smaller size clauses should
speed up the vivification process. In Section 4, we provide
empirical evidence that this strategy is faster than the one
that does not reset the enumeration.

ProeedureRound(max-s~e)
i. start-size = max-size;
2 repeat
3 for size = start-size to max-size do
4 start a new clause (pos=l);
5 while (pos > 0)
6 pos = NextPos(pos, size);
7 if (UNSAT) return;
8 if (pos < 0) break {for};
9 if (pos = 0) return;

I0 if (pos < 0)
ii start-size = i;

end Round).

A new clause in Round (size) is usuaily created from
the current clause by adding a new literal ~ position pos.

25

Procedure NextPos (pos, s i ze) generates the new lit-
eral by considering literals whose truth values are not yet
determined. If such a literal is found, it tests whether the
current clause can be BCP-inferred from the current theory
(using Ask-Lit (lit)); if yes, the clause is added to
theory and the enumeration is reset by returning a negative
flag. The next position is otherwise returned if the current
clause hasn’t exceeded the size bounds. If the current
clause has size literals or no new literal can be found for
the current position, it backtracks and removes the last lit-
eral that was added. If pos falls to 0, it means that no new
clause of current s i ze can be generated.

Among all possible choices at any position, the literal
which occurs most often is chosen. We have tried another
strategy (Dubois et al. 1995) that uses the weighted counts
of both the literal and its negation. In Section 4, we provide
empirical evidence that our strategy is faster than the one
with weighted counts.

Procedure As k- Lit (1 i t) determines whether 1 i t
entailed using BCP from the current theory. It does this
by adding the complement of lit as a unit clause to the
current theory and invokes Procedure BCP. Any unit clause
added to the theory is also added to the Stack of unpro-
cessed unit clauses.

ProcedureBCP
i. while Stack is not empty do

2. lit = pop(Stack);
3. for all cls in Head(lit)
4. ShortenHead(cls);
5. for all cls in Tail(lit)
6. ShortenTail(cls);

end (BCP).

For each literal popped from the Stack, BCP (see (Zhang
& Stiekel 1996)) unit-resolves on the clauses having the
negation of the literal either as the first (head) or the last
atom (tail). Procedure ShortenHead (cls) examines
the clause cls from its second literal to the last one.
When encountering a literal set to TRUE, it returns because
the clause is already satisfed. Literals set to FALSE are
skipped because of unit-propagation. If all literals in the
clauses are set to FALSE, the UNSAT flag is set because

Nalne Theories Atoms Clauses Sat Unsat
aiml 8 100 160 4 4
aim2 4 200 320 0 4
jnhl 16 100 800 7 9
jnh2 18 100 850 2 16
jnh3 9 100 900 0 9
bf 2 1000 3500 0 2

Table 1: Groups of theories

the clause can not be satisfied. Otherwise, the first unset
literal becomes the new head of the clause. Whenever head
of a clause meets its tail, the clause should be added again
as unit clause by using Procedure Add-Unit. Procedure
ShortenTai i is identical to Short enhead, except that
it works from the second last literal back to the first one and
determines the new tail of the clause.

Empirical Results

We have implemented our vivification algorithm using the
three strategies described in Section 3. We ran the vivi-
fication algorithms and anytime reasoners based on them
on several propositional theories taken from benchmarks
archived at DLMACS web site (http://dimacs.rutgers.edu/).
In this section, we present the results of these experiments.

Table 1 lists some information about the theories which
are clustered into 6 named groups. It presents the number
of theories, satisfiable theories, and unsatisfiable theories in
each group. The number of atoms and number of clauses
in each theory (identical within a group, except for the last
where the numbers are approximate) are also provided.

Table 2 shows a comparison of the three strategies we
have implemented so far on all the unsatisfiable theories.
The algorithm Vivify in Section 3 describes the Reset
strategy. The No Reset strategy does not reset the enu-
meration of clauses after adding a new clause, while the
Weighted Count strategy uses a different strategy for select-
ing the next literal. The numbers in the table give the CPU
times (in seconds) used for inferring that the theories are
unsatisfiable (minimum, average, and maximum for each
group). The data shows that Weighted Count is faster than
No Reset in most cases, while the Reset shows tremendous
improvements over the other two strategies in all cases, ex-
cept for somejnh cases where the absolute time difference
is slight.

The rest of the tables focus only on the satisfiable theo-
ries. Table 3 gives the fraction of number of basic clauses
(with at most 3 literals) that can inferred using BCP from
Viv(F, level) but not from F. For example, about 87% of
all basic clauses were inferable from Viv(F, 2) but not from
an aim1 theory F. The data shows that the completeness of
reasoning with BCP increases with the level of vivification.
Although there is a significant increase in completeness in
going from Level 1 to Level 2, there is only a little increase
in then going to Level 3.

Table 4 shows the time improvement in inferring ba-
sic clauses that are inferable using BCP from both F and
Viv(F, level). In particular, it shows the improvement fac-
tor due to vivification. For example, it is about 15 times
faster to infer clauses from Viv(F, 2) than from an aim1
theory P. The data shows that efficiency increases as we
move from Level 0 (that is, F) to Level 2, and then often
decreases to Level 3.

26

Name No Reset Weighted Count Reset
Min Aver Max Min Aver Max Min Aver Max

~ml 1.120 6.105 14.350 2.330 4.362 9.170 1.120 2.010 2.850

mm2 5.800 990.807 3744.130 4.220 859.130 3340.120 1.950 53.807 198.500

jnhl 0.080 1.876 6.430 0.070 0.746 4.000 0.080 1.857 6.000
jnh2 0.120 115.284 1827.570 0.050 7.526 114.050 0.080 57.123 894.920
jnh3 0.030 0.903 5.280 0.010 1.064 8.320 0.020 0.915 5.460
bf 7967.330 11371.640 14775.950 2565.820 4288.545 6011.270 603.180 1167.430 1731.680

Table 2: Comparison of three strategies (CPU time in secs)

Name Level 1 Level 2 Level 3
Min Aver Max Min Aver Max Min Aver Max

~ml 0.000000 0.000000 0.000000 0.870078 0.870325 0.870805 0.870078 0.870325 0.870805
jnhl 0.000000 0.073649 0.351922 0.327409 0.586764 0.793308 0.327632 0.586940 0.793308
jnh2 0.053111 0.313945 0.574778 0.453137 0.513958 0.574778 0.453150 0.513964 0.574778

Table 3: Fraction of clauses inferable after each level

Name Level 1 Level 2 Level 3
Min Aver Max Min Aver Max Min Aver Max

~ml 0.743 1.066 1.457 5.647 15.190 34.250 4.576 14.090 34.250
jnhl 1.001 3.238 8.687 1.031 42.890 131.814 0.862 41.512 131.814
jnh2 8.735 94.233 179.730 11.741 99.330 186.920 11.334 92.204 173.074

Table 4: Time improvement (factor) in inference after each level

Name Level 1 Level 2 Level 3
Min Aver Max Min Aver Max Min Aver Max

~ml 1.000 1.000 1.000 1.033 1.148 1.250 1.033 1.148 1.250
jnhl 1.000 1.001 1.006 1.041 1.123 1.353 1.044 1.218 1.589
jnh2 1.002 1.004 1.005 1.005 1.099 1.192 1.005 1.544 2.083

Table 5: Size of theory after each level (as fraction of initial size)

27

Table 5 shows the increase in size of the theory because
of vivification. For example, Viv(I’, 2) is about 1.148 times
the size of an aim1 theory F. The data shows that the sizes
increase with increase in level, as expected.

Conclusions

We presented some empirical results demonstrating that
vivification using BCP increases the completeness as well
as efficiency of reasoning, at least until Level 2. We have
used vivification for anytime temporal reasoning (Dalai
Feng 1996). Our current work involves removing redundant
clauses to offset the increases in sizes of the theories.

References

Boddy, M., and Dean, T. 1988. Solving time dependent
planning problems. Technical report, Dept. of Computer
Science, Brown University.

Cadoli, M. 1996. Panel on knowledge compilation and ap-
proximations: terminology, questions, and references. In
Fourth International Symposium on Artificial Intelligence
and Mathematics (AI/MATH-96), 183-186.

Crawford, J., ed. 1992. Proceedings oftheAAAI Workshop
on Tractable Reasoning. San Jose, California: American
Association for Artificial Intelligence.

Dalai, M., and Feng, Y. 1996. Anytime temporal rea-
soning based on propositional satisfiability (extended ab-
stract). In Freuder, E. C., ed., Proceedings of Second In-
ternational Conference on Principles and Practice of Con-
straint Programming (CP96), 535-536. Cambridge, Mas-
sachusetts: Springer.

Dalai, M. 1996a. Anytime clausal reasoning. Submitted
to Annals of Mathematics and Artificial Intelligence.

Dalai, M. 1996b. Anytime families of tractable propo-
sitional reasoners. In Fourth International Symposium
on Artificial Intelligence and Mathematics (AI/MATH-96),
42--45.

Dalai, M. 1996c. Semantics of an anytime family of rea-
soners. In Wahlster, W., ed., Proceedings Twelveth Eu-
ropean Conference on Artificial Intelligence (ECAI 96),
360-364. Budapest, Hungary: John Wiley and Sons, Ltd.

Dalai, M. 1996d. Semantics of an efficient propositional
reasoner: Preliminary report. In Stewman, J. H., ed., Pro-
ceedings Ninth Florida AI Research Symposium (FLAIRS-
96), 101-105.

Doyle, J., and Patil, R. 1991. Two theses of knowledge
representation: language restrictions, taxanomic classifi-
cation, and the utility of representation services. Artificial
Intelligence 48(3):261-297.

Dubois, O.; Andre, P.; Boufldaad, Y.; and Carlier, J. 1995.
SAT versus UNSAT. DIMACS series in Discrete MAthe-
matics and Theoretical Computer Science 24.

Levesque, H. 1986. Making believers out of computers.
Artificial Intelligence 30:81-108.

McAllester, D. 1990. Truth maintenance. In Proceed-
ings Eighth National Conference on Artificial Intelligence
(AAAI-90), 1109-1116.

Mendelson, E. 1964. Introduction to Mathematical Logic.
Princeton, N.J.: Van Nostrand.

Selman, B.; Levesque, H.; and Mitchell, D. 1992. A new
method for solving hard satisfiability problems. In Pro-
ceedings Tenth National Conference on Artificial Intelli-
gence (AAAI-92), 440--446.

Tarski, A. 1955. A lattice-theoretical fixpoint theorem and
its applications. Pacific J. Math. 5:285-309.

Zhang, H., and Stickel, M. E. 1996. An efficient algorithm
for unit propagation. In Fourth International Symposium
on Artificial Intelligence and Mathematics (AI/MATH-96),
166-169.

Zilberstein, S. 1993. Operational Rationality through
Compilation of Anytime Algorithms. Ph.D. Dissertation,
University of California, Berkeley, California.

28

