
PRIMES: Progressive Reasoning and Intelligent
Multiple Methods System *

Jean-~-anqois Dauchez, Abdel-Illah Mouaddib, I~ric Grdgoire

CRIL/IUT de Lens-Universitd d’Artois

Rue de rUniversitd S.P. 16, F-62307 Lens Cedex France
~dauchez ,mouaddib, gregoire}~cril, univ-artois, fr

Abstract

In this paper, PRIMES (Progressive Reason-
ing and Intelligent multiple MEthods System),
a new architecture for resource-bounded rea-
soning that combines a form of progressive rea-
soning and the so-called multiple methods ap-
proach is presented. Each time-critical reason-
ing component is designed in such a way that
it delivers an approximate result in time when-
ever an overload or a failure prevents the sys-
tem from producing the most accurate result.

The architecture of PRIMES is presented,
which includes a cooperative control module us-
ing a new incremental scheduling algorithm al-
lowing both progressive reasoning and multiple
intelligent methods to coexist. In this way, we
hope to extend the actual scope of these basic
real-time systems to more real-world applica-
tion domains.

1 Introduction

One recent active research direction in real-time AI has
concerned the development of large applications or ar-
chitectures that embody real-time aspects in many com-
ponents. The eventual goal is to reach overall real-time
performance through several resource-bounded compo-
nents. To this end, several architectures have been devel-
oped, most notably Guardian [9], Phoenix[10], CIRCA
[22], TAEMS[2], RT-SOS[19; 15], REAKT[13] and other
reactive systems such as [5], [12]. Indeed, most of these
systems allow one to build real-time AI components that
are to be assembled in order to deliver larger real-time
application systems. Two major issues arise in the de-
velopment of these systems. First, real-time AI compo-
nents dedicated to particular and domain-specific real-
time problems are to be built. Second, new techniques

*This work has been supported by the Ganym~de-II
project of the Contract Plan Etat/Nord-Pas-De-Calais and
by the MENESR.

are to be defined to guide the behavior of these compo-
nents. Accordingly, recent research in the real-time AI
community has focused on:

¯ defining and elucidating particular useful real-time
techniques. The most popular classes of these
techniques are anytime algorithms [1; 23], multiple
methods [3; 6] and progressive reasoning [14] ones.

¯ using these techniques as backbones to assem-
ble real-time AI systems. The RT-SOS [19] and
REAKT [13] systems are made of progressive rea-
soning components, TAEMS[2] uses components
representing multiple methods whereas Zilberstein
and Russell proposed a system composed with any-
time algorithms [24].

All these systems offer one formalism for implementing
resource-bounded reasoning. Accordingly, their expres-
siveness and their actual use in large various applica-
tion domains are somewhat restricted. In this paper, a
real-time system implementing both a progressive rea-
soning approach (an anytime one [20]) and a multiple
methods one is presented. First, let us briefly recall the
basic difference between these two alternative forms of
resource-bounded reasoning.

¯ The multiple methods approach: different avail-
able methods delivering solutions of an increas-
ing quality, each of them requiring a specific non-
interruptible amount of computation time [6].

¯ The progressive reasoning or anytime algorithms:
solutions are approximated by constructing a rough
one and by refining it through a hierarchy of rea-
soning levels that can be interrupted at any time
[18].

Problems that cannot be approximated are addressed
through a unique method or level of reasoning. The com-
bination of the above two approaches should contribute
in increasing their expressiveness and in allowing more
real-world problems to be addressed. However, when
embedding resource-bounded components based on pro-
gressive reasoning or multiple methods in large systems,

29

From: AAAI Technical Report WS-97-06. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved. 



the problem of controlling and guiding their behavior
can become much more complicated. In order to solve
this problem a new cooperative control module is pro-
posed. It normalizes the representation of the various
resource-bounded components and then uses a schedul-
ing algorithm for guiding their behavior. The construc-
tion of such a system is motivated by different appli-
cations like real-time world-wide web services, railways
control, flexible operating system [11] and navigation
robots. PRIMES is particularly dedicated to real-time
World-Wide Web services and navigation robots.

To summarize, a new architecture is proposed, that
is based on a cooperative control module allowing one
to guide the behavior of resource-bounded components.
These components are designed as progressive reason-
ing and as multiple methods ones. A new scheduling
algorithm that is able to guide both components is pro-
posed. This scheduling algorithm can be seen as a trade-
off between the Incremental Scheduling Algorithm [15;
21] and the Design-to-Time Scheduler [6]. By combin-
ing several such techniques, it is hoped that this system
will allow more application domains to be addressed in
dynamic and critical hard real-time situations.

The paper is organized as follows: the second section
presents the architecture model of PRIMES and its dif-
ferent communicating modules. The third section re-
views different scheduling algorithms and their proper-
ties. An incremental multiple methods scheduling al-
gorithm dedicated to guide both progressive reasoning
and multiple methods is given. Section four illustrates
how PRIMES meets usual real-time requirements. The
general conclusion is given in section 5, together with
perspectives for further research and applications.

2 The architecture of PRIMES

The architecture of PRIMES is based on different com-
municating modules (Figure 1). It includes Library
o] reasoning components that contains problem-solving
components, each of them being based on either pro-
gressive reasoning or on multiple methods techniques,
a triggering mechanism that maps the set of goals of
the system to a set of reasoning components, a calen-
dar containing the schedule of components to execute, a
decision-maker that constructs a schedule and the timer
that synchronizes the execution of the schedule and up-
dates it, if necessary, after the end of one component
execution.

2.1 Library of reasoning components

The library, hand-coded by the application designer,
contains various domain-specific reasoning components.
Reasoning components can be based either on progres-
sive reasoning that can be interrupted at any time and

Figure 1: Architecture of PRIMES

that it is dedicated to goals that can be achieved at dif-
ferent levels of details, or on multiple methods that are
non-interruptible and that are dedicated to goals that
can be achieved by different methods with different qual-
ities (Figure 2). For the other goals, the reasoning com-
ponent consists of one reasoning level.

¯ A progressive reasoning component c~ is represented

Figure 2: Reasoning component structures

by a linear precedence-constraint graph made of succes-
sive levels Lia: the level Lia can begin its execution only
after the level L~-1 is completed. The level L~ is thus
the immediate successor of L~-1, and the output of L~-1

is one of the inputs of L~. When a level L~ is inter-
rupted before completing its processing, the result from
the level L~-1 is delivered.
¯ A multiple methods component c~ is represented by an
OR-tree of methods M~. The OR-tree consists in acti-
vating one of its methods M~ where the method M~ is
longer and more complete that the method M~-1. Any
method M~ is non-interruptible.

In the following, it is shown how PRIMES guides,
through its Decision-Maker, the behavior of reasoning
components based on both techniques.

2.2 Triggering mechanism

The Triggering Mechanism is responsible for the interac-
tion between the system and the external environment.

3O



It receives messages from the external environment, con-
veying data describing new facts about the world. The
Triggering Mechanism analyzes the current situation and
then generates the goals to be achieved. Afterwards, the
Triggering Mechanism creates, for each goal, an agent to
execute an instance of the appropriate reasoning com-
ponent selected from the library. An agent is thus de-
fined as an instance of a reasoning component that is
created to achieve a goal. The choice of the reasoning
components to be assigned to a specific goal category is
described inside a control rule base, which is up to the
application designer.

For example, let us consider an office surveillance
robot application. We assume that the Trigger-
ing mechanism receives the data object 0 detected
at location X. The outputs generated from these
data take the form of two goals: (Go_to(X),
Look_for_0bject (0)). The Triggering Mechanism cre-
ates an agent that contains an instance of the rea-
soning component Navigate_to that achieves the goal
Go_to(X) and an instance of the reasoning compo-
nents 6et_objet, Analyze_object that achieves the
goal Look_:for_0bj ect ([:}), respectively.

Created agents are put in the Calendar by the Trigger-
ing Mechanism and are to be scheduled by the Decision-
Maker.

2.3 Timer

The Timer reasons about its real-time clock and the time
constraints of agents. It is responsible for the following
tasks:
¯ Execution of agents: the Timer uses a real-time clock
to synchronize the execution of agents. This latter re-
ceives the begin_time of the first agent in the Calendar.
Afterwards, it compares this time to the current time
got from the real-time clock. An execution event is fired
when the current time matches the begin_time of the first
agent in the calendar. In this case, the agent is retracted
from the calendar and its execution is started. The ex-
ecution of an agent modifies the state of the external
environment and then a new situation is assessed.
¯ Removing agents: the Timer has a list of events cor-
responding to the deadlines of the agents. An event is
fired when one deadline in the list is met and then the
corresponding agent that cannot be executed is removed
from the Calendar.
¯ Monitoring execution: at the end of an agent execution,
the Timer uses the consumed execution time to update
the schedule. It then updates its list of events by in-
serting the begin_time of the first agent in the Calendar.
Furthermore, the Timer sends a message to the Decision-
Maker to indicate the modification in the schedule.

2.4 Decision-Maker

This module is responsible for constructing a schedule of
agents in the Calendar. It is based on scheduling algo-
rithms and is activated in two situations:
¯ Arrival of a new agent: At the receipt of a message
from the Triggering Mechanism, the Decision-Maker
performs its scheduling algorithm to determine the exe-
cution window of the new agent by defining its begin_time
and its end_time.
¯ Updating the schedule: At the receipt of a message from
the Timer, the Decision-Maker reschedules agents in the
Calendar by adapting their levels of approximation ac-
cording to the deviation from the predetermined length
of time occurred during the past execution of agents.
The Decision-Maker does not start its scheduling from
the beginning but revises the current schedule by in-
creasing/decreasing levels of approximation depending
on gained/lost time during execution. In the next sec-
tion different algorithms dedicated to this module are
presented and discussed.

2.5 Calendar and cooperative control

The Calendar contains the set of agents created by the
Triggering Mechanism, each of them with its required
time window. Such a window is represented by a pair
(begin_time, end_time) defined by the Decision-Maker
module. The Calendar is a memory ensuring interac-
tion between the different modules of the cooperative
control. Indeed, the Triggering Mechanism inserts new
agents in the Calendar that the Decision-Maker sched-
ules and that the Timer executes. These different mod-
ules interact through message-passing and the Calendar
shared memory. These two communication mechanisms
ensure the cooperation between control modules.

The Triggering Mechanism is responsible for select-
ing reasoning components from the library and activates
the Decision-Maker to perform its scheduling algorithm.
This latter is responsible for constructing the schedule
by adjusting the approximation level of different com-
ponents to ensure that the overall system meets hard
deadlines and also achieves the system goals as closely
as possible. The Timer is responsible for monitoring the
execution of agents in the Calendar. The Timer exe-
cutes the agents one by one. It updates (i.e. advances or
delays) the schedule in the Calendar when the execution
of an agent is deviated from the predetermined length of
time. The Timer sends this modification of the sched-
ule to the Decision-Maker so that agents are rescheduled
when deadlines are violated. The modules of cooperative
control communicate in an asynchronous manner. In-
deed, the Triggering Mechanism analyses asynchronous
messages coming from the external environment and ac-
tivates the Decision-Maker. The Timer is activated as
soon as an important event occurs. Indeed, its list of

31



events contains important dates at which it must start
the execution of agents or indicating that deadlines are
reached.

Such a form of cooperative management and control,
as illustrated in Figure 1, ensures performance trade-
offs to be made based on resource limitations. Indeed,
thanks to the interactions between its cooperative con-
trol modules combined with the flexible structure of its
reasoning components, the system guarantees that it will
produce a solution in timely fashion, with a traded level
of approximation. One salient features of PRIMES lies
in its ablility to guide both the behavior of components
based on a progressive reasoning or on multiple methods.
In this respect, a scheduling algorithm able to support
both techniques and meet the usual main requirements
of real-time intelligent systems is presented in the next
section.

3 Scheduling issues arising from
PRIMES specific real-time
requirements

The cooperative control module must manage the system
so that the real-time requirements are met. Timeliness
requires this module to propose a schedule that guar-
antees all the agents’ time constraints. The Decision-
Maker module is responsible for constructing these
schedules. It is based on scheduling algorithms that
must be able to manage a dynamic situation (i.e. a new
agent arrives) without rescheduling, taking the infor-
mation gathered during execution into account. These
algorithms should support unexpected interrupts when
an important event occurs and return an approximate
schedule. Furthermore, they must deal with both pro-
gressive reasoning and multiple methods techniques. In
the following, the scheduling algorithms, Design-to-Time
introduced by Garvey et al. [6] to schedule multiple
methods components, and the Incremental Scheduling
introduced by Mouaddib et al. [15; 21] to schedule pro-
gressive reasoning components are reviewed. An In-
cremental multiple methods scheduling algorithm ded-
icated to progressive reasoning and multiple methods
techniques is also introduced. In the following sections
these algorithms, their performance and main character-
istics are described.

In the following a set .4 containing n reasoning com-
ponents a, /~,..., 7 sorted according to their deadlines
is considered. The problem is to define, for each reason-
ing component, the optimal approximation level while
all deadlines stay respected.

3.1 Incremental scheduling algorithm

In this section, a scheduling algorithm dedicated to pro-
gressive reasoning components is presented [21]. Both its
formal framework and its processing mode are described.

Preliminary definitions:

Progressive reasoning level formulation Actually,
each progressive reasoning component ~ is a compos-
ite one made of progressive reasoning levels L~. Each
progressive reasoning level L~ is characterized by its re-
quired, a-priori, computation time CL~= and the intrinsic
value of solution quality VL,=.

Utility of progressive reasoning level The utility
UL~= of a reasoning level L~ is defined as follows:

uL, = y~ - COst(CL, 

where Cost(CL~=) the cost of consuming an amount of
time CL~=. The utility concept is then used to classify
the different possible levels. Actually, a utility-based
approach is defined to determine the level of reasoning
to be selected, and to allow for a scheduling revision
when execution is slower or faster than predicted.

Adopted structure As indicated above, a list .4 of
n reasoning components a, ~,..., 7 sorted according to
their a-priori deadlines is considered, using an Earliest-
Deadline-First scheduling algorithm. The schedule will
be computed progressively, i.e. level by level. At each
iteration step, the algorithm attempts to extend a ten-
tative schedule by allowing additional levels of reasoning
to be taken into account.

Figure 3 illustrates the wave-like approach to this in-
cremental construction. The current tentative schedule,
noted g, may already involve several reasoning levels for
the various components. We call Frontier, noted ~, the
set of the immediate successor levels for all the compo-
nents of g. The elements of ~" will be considered for
inclusion in the schedule at the next iteration step.

(
Frontier~

I|

Figure 3: A wave-like structure

32



The scheduling algorithm
Accordingly, the schedule is constructed step by step
through a series of expansion cycles. Initially, a tentative
schedule that contains the first level of reasoning L~ for
each component c~ (~ E ,4) is considered. This schedule
is then refined progressively. At each expansion cycle, all
the levels of the frontier are tentatively introduced, al-
lowing one additional level of reasoning for each compo-
nent. When this expansion succeeds (i.e. when no dead-
line is violated), a new expansion cycle is undertaken.
When an expansion cycle falls to deliver a schedule re-
specting all deadlines, levels exhibiting the least utility
are discarded. This processing is repeated until the set
~" is empty, i.e. until no further expansion is possible.
Let us stress that this algorithm can be interrupted at
any time while still delivering a scheduling.

This algorithm is thus based on the following steps:
¯ Initialization step:
First, the schedule g is empty and the frontier yc is in-
tialized with the first reasoning level Lla of all compo-
nents a (aE.A). Accordingly, the first expansion cycle
will consist in constructing a preliminary schedule with
all reasoning levels L~ of 9r.

E = OandJ:’={L~[V~ e A)

¯ Expansion step:
This step consists in extending C to all the levels belong-
ing to 9v:

The operator ~ allows one to insert additional levels of
reasoning to the reasoning components of the schedule
by respecting the progressive structure of components
(Figure 3) [21]. The .feasibility test step is then invoked
to verify whether no deadline is violated.

¯ The feasibility test step:
Let us note D~ the deadline of a reasoning component
a. The expansion steps fails to deliver a schedule when
at least one deadline D7 is violated.

~’~i~d~ ft . "~3 ’)1 E fit : (E{6 E .4, Da < D~} Z.~i=l ~L~) > DT,
where Lg6 represents one last level introduced in E.

When such a failure is encountered, the approximation
step is invoked. Otherwise, the new frontier step is in-
voked to compute a new set 5r.

¯ Approximation step:
The level with the least utility, noted Lmln, is discarded
when an expansion cycle falls to deliver a schedule with
all the deadlines respected. It is selected among the lev-
els of reasoning L~ inserted by the last expansion cycle:

Lmin -- arg(MINL~ (UL~))

Accordingly, the total required time of the schedule is re-
duced from the computation time of Lmin. Afterwards,

the feasibility test is called again.
¯ New frontier step:
Whenever it exists, the immediate successors of each rea-
soning level inserted by the last expansion cycle is in-
serted in the frontier ~’.
The expansion step is invoked if the frontier is not empty.
Otherwise, the algorithm stops and returns the current
schedule ~.

3.2 Design-to-Time scheduling algorithm

Design-to-Time was introduced in [6] to generalize the
approximate processing developed in [3]. Let us briefly
describe the principles behind this scheduling algorithm.
The interested readers can find more details in [6].

Preliminary definitions:
Multiple solution methods formulation Each rea-
soning component ~ has multiple solution methods M~
available for solving a problem, where the increasing
method number i entails a longer but more complete
method. Each method M~ has an estimated computa-
tion time CM~ and one intrinsic value of solution quality
VM£. CM~+I is longer than CM~ while VM~+I is greater
than VM~_.

Utility of a method The utility of each method UM~-

obeys a similar definition as the one presented in §3.1.

The scheduling algorithm
This algorithm constructs a schedule of agents in Jt that
meets the timing constraints and maximizes the qual-
ity of the agents. To this end, it schedules the methods
with the highest quality and then tries to ensure that
no constraint is violated. If no schedule can be found,
the scheduler changes the problem-solving method of the
least important agent to use a faster but less accurate
method. This reduces the total run-time of the sched-
ule. This processing is repeated until no deadline is vi-
olated. Whenever all the agents are approximated to
their quickest and less accurate methods and no sched-
ule is found, then the scheduler discards some agents (of
the least importance) from the schedule until this later
becomes feasible. Such an algorithm constructs a sched-
ule with the maximum possible quality without missing
any deadline.

3.3 Incremental scheduling algorithm for
multiple methods

The most salient feature of the incremental algorithm
lies in its ability to deliver a schedule at any time. Con-
sequently, it should be suitable for applications requiring
a bounded-resource schedule that can be interrupted un-
expectedly.
Let us recall that our motivation behind the development

33



of PRIMES was twofold. First, we wanted our schedul-
ing algorithm (and the schedule itself) to be interruptible
while delivering a schedule anyway. Accordingly, we se-
lected the incremental scheduling approach. Second, we
wanted to accomodate both forms of progressive reason-
ing and multiple methods.

Since the incremental scheduling approach deals with
progressive reasoning only, two possible ways to over-
come this limitation were available. First, we could have
tried to represent multiple methods under the form of
a progressive reasoning structure. No clear and easy
way to accomplish this seems available. Consequently,
we went on representing progressive reasoning under the
form of multiple methods and on adapting the incre-
mental scheduling accordingly. In the following, such an
original approach is presented.

From progressive reasoning to multiple methods
The main goal of this mapping is to take advantage of
algorithms guiding the behavior of anytime algorithms
for guiding multiple methods. In [7], it is proposed to
represent an anytime algorithm with multiple methods
and use Design-to-Time. In this sense, a straightforward
way to encode progressive reasoning under the form of
multiple methods is proposed in [16]. Indeed, the hier-
archical structure of progressive reasoning containing d
levels is mapped to multiple methods as follows (Figure
4):

¯ The 1’~ method: the M~t method consists in acti-

Progressive reasoning structure Multiple methods structure

Figure 4: Mapping from progressive reasoning to multi-
ple methods

vating the first level Lie of the reasoning level hierarchy.
This method is the fastest but the less accurate one.
¯ The i th method: the method M~ consists in activating
{L~, 2L~,..., L~}. This method is faster but less accu-
rate than the method M~+i.

¯ The last method: the method M~ consists in activat-
ing all the reasoning levels of the hierarchy. This method
is the slowest but the most accurate one.

This mapping allows one to interpret a progressive rea-
soning agent as a multiple methods agent.

Incremental Scheduling algorithm for multiple
methods With the mapping presented above, we can
represent all reasoning components as multiple methods
components. Then, we could directly use the Design-to-
Time scheduler. However, it is advantageous to use the

Incremental Scheduler because of its high performance
and its suitability to critical time pressure situations.
Consequently, a version of the Incremental Scheduling
algorithm to multiple methods is required. It uses £ as
a set of current scheduled methods while ~" contains the
immediate successors of the scheduled methods. The
algorithm consists in scheduling, first, the fastest and
less accurate methods of the agents. When a schedule
is found, the scheduler improves it by changing sched-
uled methods M~ in ~ with their respective immediate
successor methods M~+i in ~" that are longer and more
precise. In the following the basic steps of this algorithm
are described:
¯ Initialization step:
The schedule is initialized with the fastest but less pre-
cise methods of the reasoning components.

e = {M~lVa E A}
Then, go to the the feasibility test step.
¯ Expansion step:
The frontier ~" becomes the new current tentative sched-
ule:

Go to the feasibility test step.
¯ Feasibility test:
Let us note Da the deadline of a reasoning component
a. The expansion step fails to deliver a schedule when
at least one deadline D7 is violated.

3 ~ E A : (~-~{5 E A, Ds <_ D~} CM]) ~> 97, where
M~E£.

If the schedule fails go to the approximation step, else go
to the new frontier step.
¯ Approximation step:
When no schedule is found, the algorithm replaces the
method Me/ exhibiting the least utility by its immedi-
ate predecessor M~-1 (when it exists), which is faster
but less precise, and thus leads the total run-time of the
schedule to be reduced. Formally, the method Mkin to
be replaced is selected in E in such a way that:

Mk,n = arg(MINMgE~(UMg))

When k matches 1 (i.e. when Mimin is selected to be
replaced), the scheduler discards the agent rain.
Go to the feasibility test step.
¯ New frontier step:
Whenever it exists, the immediate successor of each rea-
soning component in E is inserted in the frontier br, i.e.

~" = {M~+i I v M~ E ~}

Then, the expansion step is invoked if the frontier is not
empty. Otherwise, the algorithm stops and returns the
currently obtained schedule ~.

34



3.4 Complexity and suitability of the
algorithms

The complexity of the Design-to-Time and the Incre-
mental Scheduling algorithms are studied in the "worst-
case" Sw and the "best-case" Sb. By the "worst-case"
Sw, we mean the hard critical time situation where only
the first levels of approximation (the first reasoning level
for progressive reasoning or the fastest and less precise
methods) are schedulable, while the best-case Sb is the
situation where a schedule is found using the deepest
level of approximate reasoning.

Let K be the average number of methods or reasoning
levels for one reasoning component. The following table
describes the time-complexity results for Design-to-Time
and the new Incremental Scheduler. In particular, it
shows us that the Incremental Scheduler is more efficient
than Design-to-Time in constrained situations (with a 
factor).

&
Design-to-Time O(Kn2) o(,0
Incremental Scheduler O(n O(Kn)

Although Design-to-Time is in turn more efficient in
underconstrained situations, we believe that the Incre-
mental Scheduler should often be preferred also in these
situations because it accomodates both progressive rea-
soning and multiple methods approaches.

4 How does PRIMES meet standard
real-time requirements?

In [4] Dodhiawala et al. outlined the major require-
ments of real-time intelligent systems. In this section,
how PRIMES meets these requirements is described:

¯ Responsiveness: This property lies in the abil-
ity of the system to stay alert to incoming events.
Since the interactive real-time Triggering Mecha-
nism module is primarily driven by external inputs,
PRIMES recognizes when such an input is avail-
able, through message-passing between the Trig-
gering Mechanism and the Decision-Maker, which
decides when this new event is processed. Indeed,
the Decision-Maker is expected to have agents that
check for all important events as frequently as nec-
essary with messages received from the Triggering
Mechanism. The software cooperative control in-
terruption allows one to embed a reactive behav-
ior in PRIMES. Indeed, the knowledge in Trigger-
ing Mechanism encodes resource-bounded reasoning
components to activate and to react to a given sit-
uation. Furthermore, PRIMES reasons, through its
Decison-Maker, about the resource required for ac-
tivated components. However, PRIMES provides
more guaranteed performance than reactive systems

that simply run as fast as they can and can thus co-
incidently be real-time [4] without guaranteeing any
real-time performance.

¯ Timeliness: This property lies in the ability of the
system to react so that deadlines are met. Through
the scheduling process of its Decision-Maker mod-
ule, PRIMES achieves this property by adapting the
approximation level of its resource-bounded reason-
ing components. The Timer is up to execute the
most critical agent. Indeed, it gets the first agent
in the Calendar and executes it when its begin_time
is reached. The Decision-Maker and Timer include
rudimentary mechanisms of temporal reasoning. In-
deed, the Decision-Maker reasons about temporal
relations between time points. This module must
sort agents according to their deadlines and reason
about their temporal windows. The Timer includes
a simple form of temporal reasoning driven by a
local clock that allows one to detect reached dead-
lines and begin_time of the first agent in the Cal-
endar. Furthermore, the cooperation between the
Decision-Maker and the Timer allows the monitor-
ing of progress of the resource-bounded components
to be conducted. We believe that these features rep-
resent a significant contribution compared to exist-
ing systems such as e.g. CIRCA [22] and PRS [8].

¯ Graceful adaptation: This property lies in the
ability of the system to adapt the priority of the
agents according to the workload or resource avail-
ability. PRIMES, through its Decision-Maker com-
bined with the resource-bounded reasoning of com-
ponents, allows one to adapt the level of approxi-
mation of its problem-solving components accord-
ing to the available resource. The low levels from
a component are retracted when a schedule is not
found. In this respect, PRIMES offers more flexibil-
ity than many existing systems. Indeed, PRIMES
is more flexible than CIRCA [22] in the sense that
when no schedule is found, PRIMES flexes the de-
tails of its reasoning components while CIRCA rea-
sons with another subset of agents of the initial set.
Furthermore, PRIMES integrates multiple methods
and progressive reasoning to reach more expressive-
ness to address real-world problems.

5 Conclusion and open issues

In this paper, an architecture embedding resource-
bounded reasoning components using both the progres-
sive reasoning and the multiple methods approaches has
been presented. In particular, a cooperative control
module has been described that allows the system to rea-
son at different levels of detail through hierarchies of rea-
soning levels and multiple methods. This combination of

35



techniques increases the scope of the system but makes it
more complex to manage. To address this last issue, an
algorithm that appears as a trade-off between the incre-
mental processing of the Incremental Scheduler and the
Design-to-Time algorithms has been proposed. This al-
gorithm is more suitable for critical time situations than
Design-to- Time. It is able to guide the behavior of both
progressive reasoning and multiple methods components.
It also can be interrupted at any time and returns a
schedule. PRIMES, the system implementing this archi-
tecture, is written in C. Future works concern various
directions: (1) Developing a user interface allowing 
designer to hand-code its applications and assessing the
system in more real-world applications, (2) handling du-
ration uncertainty in cooperative control [21] to improve
the monitoring of resource-bounded components, (3) us-
ing both scheduling algorithms, Incremental Scheduling
and Design-to-Time and selecting, through incremental
negotiation [17] between the Triggering Mechanism, the
Decision-Maker and the Timer, the most suitable one
with respect to the current state of PRIMES. This nego-
tiation should assess different parameters affecting the
work load such as the length of the Calendar and the
arrival frequency of external events. (4) PRIMES must
take interactions between agents into account.

References
[1] T. Dean and M. Boddy. An analysis of time-dependent

planning. In AAAI-88, pages 49--54, 1988.
[2] K. Decl~er, A. Garvey, MT. Humphrey, and V. Lesser.

Real-time control architecture for an approximate pro-
cessing blackboard system. The Journal of Pattern
Recognition and Artificial Intelligence, 7(2):265-284,
1993.

[3] K. Decker, V. Lesser, and R. Whithair. Extending a
blackboard architecture for an approximate processing.
The Journal of Real-Time Systems, 2(1-2):47-79, 1990.

[4] R. Dodhiawala, N. Sridharan, P. Raulefs, and C. Pick-
ering. Real time A1 system: Definition and architecture.
In IJCAL pages 256-261, 1989. .

[5] E. Durfee. A cooperative approach to planning for real-
time control. In Workshop on Innovative Approaches to
Planning, Scheduling and Control, pages 277-283,.1990.

[6] A. Garvey and V. Lesser. Design-to-time real-time
scheduling. IEEE Transactions on systems, Man, and
Cybernetics, 23(6), 1993.

[7] A. Garvey and V. Lesser. Design-to-time for anytime
algorithms. In Workshop Anytime algorithms and delib-
erative scheduling, 1995.

[8] M. Georgeff and F. Ingrand. Decision-making in an
embedded reasoning system. IJCAI-89, pages 972-978,
1989.

[9] B. Hayes-Roth. Architectural foundation for real-time
performance in intelligent agents. Journal of Real-Time
Systems, 2(1)_1990. 

[10] ~. Howe, D. Hart, and P. Cohen. Addressing real-time
constraints in the design of autonomous agents. Journal
oj Real-Time Systems, 2(1/2):81-97, 1990.

[11]D. Hull, W. Peng, and J. Lm. Operating system support
for imprecise computation. In AAAI Fall Symposium on
Flexible Computation, pages 96-99, 1996.

[12] F. F. Ingrand and M. Georgeff. Managing deliberation
and reasoning in real-time AI systems. In Workshop
on Innovative Approaches to Planning, Scheduling and
Control, pages 284-291, _1990.

[13] P. Lalanda. Conduite de raisonnement dans syst~me
base de blackboard temps r~el. PhD, University of

NancyI, (in French), 1992.
[14] A.-I. Mouaddib. Contribution au raisonnement progres-

sif et temps r~el darts un univers multi-agents. PhD,
University of Nancy I, (in French), 1993. .

[15] A.-I. Mouaddib. Progressive goal-directed reasoning
for real-time systems. Engineering intelligent systems,
3(2):67-77, 1995.

[16] A.-I. Mouaddib. Progressive reasoning in intelligent sys-
tems. In AAAI Fall Symposium on Flexible Computa-
tion, Research Summary Report, pages 183-185, 1996.

[17] A.-I. Mouaddib. Progressive negotiation for time-
constrained autonomous agents. In First ACM Interna-
tional Conference on Autonomous Agents, pages 8-16,
1997.

[18] A.-I. Mouaddib, F. Charpillet, and J. Haton. Approxi-
mation and progressive reasoning. In AAAI Workshop
on Imp.reeise Com~utation. pages 166-170, 1992.

[19] A.-I. Mouaddib, K Charpillet, J. Haton, and Y. Gong.
Real-time specialist society. In IEEB Conference on In-
telligent Control and Instrumentation, pages 751-754,
1992.

[20] A.-I. Mouaddib and S. Zilberstein. Knowledge-based
any.time computation. In IJCAI, pages 77..5.-781., 1995.

[21] A.-I. Mouaddib and S. Zilberstein. 2-Iandling duration
uncertainty in meta-level control for progressive reason-
ing. In IJCAI-gZ1997.

[22] D. Musliner, E. Durfee, and K. Shin. Circa: A coop-
erative intelligent real-time control architecture. IEEE
Transactions on Systems, Man and Cybernetics, 1993.

[23] S. Zilberstein. Using anytime algorit]~ms in intelligent
systems. AI Magazine, 17(3):73-83a 19.96.

[24] S. Zilberstein and S. Russell. Optimal composition of
real-time systems. Artificial Intelligence, 82(1-2):181-
213, 1996.

36




