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Abstract

In this paper, we consider Constraint Optimization
Problems in a Resource-Bounded context. We observe
that both exact and approximate methods produce
only an anytime upper bound of the optimum (in case
of minimization). No lower bound, and thus no qual-
ity is available at run time. For a meta-reasoning sys-
tem, it is difficult to reason on the basis of a so poor
piece of information. Therefore, we discuss some ways
of producing an anytime lower bound. In the Val-
ued Constraint Satisfaction Problem framework, we
develop some of them, based on the complete solving
of problem simplifications, and we present experimen-
tal results.

Motivation

There are some difficulties in considering constraint op-
timization problems within a resource bounded frame-
work.

Most of these problems are NP-hard. The worst-
case time, which is needed to solve them optimally,
grows exponentially with the size of the problem. The
mean or the median time, which can be experimentally
observed, is far lower than the worst-case time. The
observed variance may be very large.

Approximate methods, like Greedy, Hill Climbing,
Tabu, Simulated Annealing, or Genetic algorithms,
generally allow good solutions to be rapidly produced.
Their run time can fit any deadline. But they give no
information about the distance between the best value
of the criterion which has been obtained and the prob-
lem optimum. They can never prove the optimality
of a solution and may waste a lot of time trying to
improve an already optimal solution.

Exact methods, like Best-First or Depth-First
Branch and Bound, are able to produce optimal so-
lutions and to prove their optimality. But, due to the
unknown and potentially extremely large amount of
necessary backtracking, the time to get this result is
unpredictable and may be huge. Moreover, it has been
experimentally observed that, due to their strict search
ordering, the quality of their intermediate solutions is
often very poor (Wallace & Freuder 1995).

Both kinds of methods are interruptible: as soon as
a first solution has been produced (what corresponds
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to the mandatory part of the task (Liu et al. 1991)),
they can deliver the best solution found so far, but
the value of the criterion for this solution is just an
upper bound of the problem optimum (in case of mini-
mization). Except when using a Best First Branch and
Bound method, no lower bound is available.

In such a situation, an Anytime approach (Dean &
Boddy 1988) seems promising. The reasoning tasks are
interruptible. What is called a scheduler in the Real
Time community or a meta-reasoning system in the
Artificial Intelligence community (Horvitz 1990; Boddy
1991; Russel & Wefald 1991; Strosnider & Paul 1994;
Musliner et al. 1995; Adelantado & de Givry 1995) is
responsible for organizing the different tasks and trad-
ing time for quality. To do that, it uses information
about the external environnement, the state and the
capacity of the resources, and the current and the ex-
pected state of the tasks.

The problem is that, given the classical methods
which are used to solve constraint optimization prob-
lems, the information the scheduling or meta-reasoning
system can get from the reasoning tasks is very poor:

e concerning the time, which will be necessary to pro-
duce the optimum and to prove its optimality, the
worst-case time is too far from the mean or the me-
dian observed time to be useful; a probabilistic infor-
mation would need the framework of the considered
problems to be precised and a lot of experiments to
be carried out in this framework; it may be impos-
sible or costly to do that; due to the generally large
observed variance, a mean time is not more useful;
off-line scheduling the tasks seems consequently un-
practicable;

e concerning the value of the optimum, it is generally
unknown; although an upper bound can be rapidly
produced, no lower bound is available, except when
using a Best First Branch and Bound method; if the
measure of the quality of a solution is the distance
between the value of the criterion for this solution
and the optimum, this quality is not available (not
recognizable (Zilberstein 1996)) at run time, except
when the problem has been completely solved by
an exact method: the distance is then null and the



quality is maximum;

o concerning eventual Performance Profiles (Boddy &
Dean 1994), they are difficult to be produced, due to
the fact that the value of the optimum and the time,
which is necessary to obtain a given value of the cri-
terion, are both unknown; exact performance pro-
files have no sense in this framework; mean profiles
do not have much more sense due to the observed
variance; probabilistic conditional or dynamic pro-
files (Zilberstein 1996; Hansen & Zilberstein 1996)
might have more sense, but they need a lot of work
to be off-line produced.

In this paper, we propose a limited, but poten-
tially interesting, improvement of the existing meth-
ods, which consists in producing an anytime bounding
of the problem optimum, that is an upper bound and
a lower bound of the optimum, which improve with
time, in order to provide the user, a scheduling or
meta-reasoning system with a more and more precise
information. The upper bound is the value of the best
solution found so far. The lower bound is the best-
case value of the optimum. The difference is then the
worst-case quality of the best solution.

Producing an upper bound is not a problem: exist-
ing methods produce one naturally. Producing an in-
teresting lower bound is more difficult. In the Valued
Constraint Satisfaction Problem framework (Schiex,
Fargier, & Verfaillie 1995), which is an extension of
the classical Constraint Satisfaction Problem frame-
work (Mackworth 1992), we present several means to
produce and improve a lower bound. We develop some
of them and present some interesting experimental re-
sults.

Constraint Optimization Problems

The Constraint Satisfaction Problem framework (CSP)
is widely used for representing and solving Artificial In-
telligence problems, like planning, scheduling, diagno-
sis, design ... The Valued Constraint Satisfaction Prob-
lem framework ( VCSP) is an extension of the previous
framework, which allows overconstrained problems or
preferences between solutions to be dealt with.

Valued Constraint Satisfaction Problems
Unformally speaking:

e in the CSP framework, all the constraints are im-
perative; an assignment of the problem variables is
either consistent (all the constraints are satisfied), or
inconsistent (at least one constraint is unsatisfied);
the goal is to find a consistent assignment;

e in the VCSP framework, some constraints are im-
perative, the others are not; a valuation is associated
with each constraint; the valuation of an assignment
of the problem variables results from the aggregation
of the valuations of the unsatisfied constraints; the
goal is to find an assignment of optimal valuation.
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More formally speaking, whereas a CSP is defined as
a triple P = (V, D, C), where V is a set of variables, D
a set of associated domains, and C a set of constraints
between variables, a VCSP can be defined as a CSP,
which is extended with:

e a valuation structure S, which is itself a quintuple
(E,>,T,L,®), where E is a valuation set, > a total
order on F, T and L the maximum and the mini-
mum elements in F, and ® a binary closed aggre-
gation operator on E, which satisfies the following
properties: commutativity, associativity, monotonic-
ity according to >, T as absorbing element and L
as identity,

o and a valuation function ¢ from C to E.

The valuation set E is used to define a gradual no-
tion of constraint violation and inconsistency. The el-
ements of F can be compared using the total order >
and aggregated using the operator ®. The maximum
element T is used to express imperative constraint vi-
olation and complete inconsistency, the minimum el-
ement L to express constraint satisfaction and com-
plete consistency. The valuation function ¢ associates
with each constraint a valuation, which denotes its im-
portance (the valuation of any imperative constraint
equals T).

Let A be an assignment of the problem variables
and Cynsat(A, P) be the set of the problem constraints
unsatisfied by A. The valuation ¢(A, P) of A is the
aggregation of the valuations of all of the constraints
in Cunaat(A, P) (P(A, P) = ®QceCuynsat(4,P) QD(C)

Then, the goal is to find an assignment, whose valu-
ation is minimum and lower than T (all the imperative
constraints must be satisfied). The optimal valuation
¢(P) of a problem P is the valuation of such an as-
signment.

Note that an equivalent framework can be defined
by assigning a valuation to each tuple of a constraint.

Specific subframeworks can also be defined by in-
stantiating the valuation structure S. Figure 1 shows
the valuation structures, which are used by the classi-
cal CSPs and the possibilistic, lexicographic, and addi-
tive VCSPs*. In the A- VCSP framework, the goal is to
find an assignment which satisfies all of the constraints.
In the maz-VCSP framework, the goal is to find an
assignment which minimizes the maximum valuation
of the unsatisfied constraints. In the lez- VCSP frame-
work, the goal is to find an assignment which minimizes
the number of unsatisfied constraints of maximum val-
uation and, in case of equality, minimizes the number
of unsatisfied constraints of lower valuation, and so on,
until eventually considering the number of unsatisfied
constraints of the lowest valuation. In the X-VCSP

YN is the set N of the natural integers, extented with
the element +o0; N" is the set of the multi-sets of elements
of N; >* is the lexicographic order, which is induced on N*
by the natural order > on N



Subframework Notation E > T 1 ®
Classical CSP A-VCOSP {true false} | false > true | false | true | A
Possibilistic VCSP maz- VCSP N > 400 0 max
Lexicographic VCSP | lex-VCSP N” >* {+c0} | 0 U
Additive VCSP X-VCOSP N > +o00 0 +

Figure 1: Several VCSP subframeworks

framework, the goal is to find an assignment which
minimizes the sum of the valuations of the unsatisfied
constraints.

Solving Methods

Three kinds of methods are classically used for solving
CSPs: filtering, exact tree search, and approximate lo-
cal search methods.

The filtering methods, also called constraint propa-
gation or consistency enforcing methods (arc, path, i,
i-j-consistency (Freuder 1978)) can be extended to the
VCSP framework, but only when the aggregation op-
erator is idempotent?. It is the case with the maz-
VCSPs, but not with the lez-VCSPs and X-VCSPs
(Schiex, Fargier, & Verfaillie 1995; Bistarelli, Monta-
nari, & Rossi 1995).

Concerning the exact tree search methods, the nat-
ural extension of the Backtrack algorithm is a Depth
First Branch and Bound algorithm, which can use vari-
able and value heuristics, and limited filtering meth-
ods, like Forward Checking (Freuder & Wallace 1992).
Due to the limited amount of memory, Best First
Branch and Bound and Dynamic Programming are
more rarely used: the former because of the poten-
tially exponential number of nodes to be managed, the
latter because of the potentially exponential number
of subproblems to be considered.

Concerning the approximate local search methods,
there is no fundamental problem to adapt general
methods like Greedy, Hill Climbing, Tabu, Simulated
Annealing, or Genetic algorithms, to this particular
framework.

From an application point of view, many real prob-
lems use an additive criterion and can be cast as -
VCSPs. But, from an algorithmic point of view, it has
been observed that they are the most difficult to be
optimally solved (Schiex, Fargier, & Verfaillie 1995).
They are generally more difficult than the lez-VCSPs
and far more difficult than the maz-VCSPs and A-
VCSP. In the sequel of this paper, we consequently
assume that the target problem is a X-VCSP.

Optimum Anytime Bounding

As we already said, producing a better and better up-
per bound is easy. The existing exact or approximate
methods produce one naturally. What is difficult is to
produce a more and more accurate lower bound. To
do that, our approach consists in considering modifi-
cations of the target problem, which are a priori easier

2 An operator @ is said idempotent iff Va € E,a®a = a.
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to be solved and whose complete solving allows lower
bounds of the target problem to be deduced. We use
the term simplifications to refer to such problem mod-
ifications.

Possible Simplifications
Here are some possible simplifications:

o modifying the constraint graph: it is always possi-
ble to remove some constraints and to exploit the
property that the optimal valuation of the resulting
problem is a lower bound; in some cases, it is possible
to do that in order to obtain a particular constraint
graph, which is easier to be managed (for example,
a tree); it is also possible to produce a partition of
the problem constraints and to use the property that
the combination of the optimal valuations of the re-
sulting subproblems is also a lower bound; by con-
sidering increasing subsets of variables, the Russian
Doll Search algorithm (Verfaillie, Lemaitre, & Schiex
1996) exploits the same idea;

e modifying the constraints: it is always possible to
remove some forbidden tuples from the constraints
and to exploit the property that the optimal valua-
tion of the resulting problem is a lower bound; it may
be interesting to do that in order to obtain particular
constraints; another way would consist in exploiting
the notion of neighborhood substitutability (Freuder
1991) or a weaker notion of similar values, in order
to aggregate some domain values;

o modifying the valuation structure: following the ex-
perimental observation that the maz-VCSPs and A-
VCSPs are easier to be solved than the lex-VCSPs
and that the latter are themselves easier to be solved
than the X-VCSPs, it may be interesting to use a
simpler valuation structure, without modifying vari-
ables, domains, constraints, and valuation function;
we show further how to deduce a lower bound from
the optimal valuation of the problem resulting from
such a modification;

e modifying the initial upper bound: at the beginning
of the search, it is always possible to define an initial
upper bound ub;n;; (any assignment whose valuation
is greater than or equal to ub;n;: is considered as un-
acceptable); the Iterative Deepening method (Korf
1985) solves successive problems with an increasing
ubin;: ; when a problem is inconsistent, the corre-
sponding ub;n;: is a lower bound;

¢ modifying the optimality objective: another method
consists in using an e-optimal Branch and Bound al-



gorithm which guarantees to find a solution whose
valuation is less than or equal to p(P)/,0< e < L
let ub be the valuation of the solution found by such
an algorithm; ub x ¢ is a lower bound,;

e modifying the consistency property: as it has been
shown in (Schiex, Fargier, & Verfaillie 1995), finding
an optimal assigment and finding an optimal consis-
tent problem relaxation are two equivalent problems;
in the latter, it is possible to use a weakened notion
of consistency, like, for example, arc-consistency; the
valuation of an optimal more weakly consistent re-
laxation is a lower bound;

o using the 0-1 Integer Linear Programming frame-
work (ILP) and relaxing the integrity constraint:
any X-VCSP can be cast as an 0-1 ILP problem,
by associating a 0-1 ILP variable with each VCSP
value; the result of the relaxation of the integrity
constraint on the ILP variables is a lower bound.

Another approach would consist in using a Best First
Branch and Bound algorithm on the target problem or
on any simplification: at any step of the search, the
minimum of the lower bounds of the pending nodes is
a lower bound of the considered problem.

Selected Simplifications

We have chosen to use and to combine two types of sim-
plification: modification of the constraint graph and
modification of the valuation structure.

Let P be the target X-VCSP problem, and
{ti...li...lx} be the set E of the constraint valua-
tions (ordered from the lowest to the highest). The
simplification P? denotes the problem P without the
constraints whose valuation is lower than I; (relax-
ation level) and with the valuation structure s,s €
{A-VCSP, maz-VCSP, lez-VCSP,£-VCSP}. P{ is the
problem P.

Simplified Solving

Experimental results show that the complexity of a
complete solving increases with the number of con-
straints and with the valuation structure, following the
order A-VCSP, maz-VCSP, lex-VCSP, X-VCSP.

It is possible to obtain a partial theoretical confir-
mation of these results, by using the notion of strong
refinement (Schiex, Fargier, & Verfaillie 1995):
Deﬂnitb)jl’ ‘}AP is a afrong refinement of P’ iff

, partial asstgninents”,
@(A, P') <p o(A’, P') = ¢(A, P) <p ¢(A', P)

Theorem 1 If P is a strong refinement of P', then the
set of the optimal solutions of P is a subset of the set of
the optimal solutions of P’, and the tree search of P' is
included in the tree search of P*.

3 A partial assignment is an assignment of any subset of
the problem variables. A complete assignment is an assign-
ment of all of the problem variables. .

4At least, with a Branch and Bound algorithm using
Backward Checking and static variable and value orderings.
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This theorem induces a partial order on the consid-
ered simplifications. In Figure 2, an arrow from P’ to
P means that P is a strong refinement of P/, and that
solving P’ is easier than solving P.

. . A
1<) Pj
4 )]
P;naz Pj P‘A
. /\ 2
Pj”’ P‘ma:n P‘.

\ - Ve

Figure 2: Partial order on selected simplifications

Producing an Upper and a Lower Bound

The result of the evaluation, in the target problem, of
any solution of a simplification is an upper bound.

To deduce a lower bound from the optimal valua-
tion of a simplification, we use the notion of transfer
function:

Definition 2 A function fp:p from E' to E is called
transfer function iff
VA, complete assignment,VYe' € E’,

(A, P') =pr € = ¢(A,P) =p fpip(e)

Theorem 2 If fpip is a transfer function, then ¢(P) =p
feep(p(P')).

The following transfer functions can be established:

Vi, fp‘,/\p(true) = 0
feap(false) = L
Vi, fepesp(ly) =

Vi, fptes p(mi,...,mg) = lexadd(m;,...,my)
= e

Vi, fPPP(e)

If n; is the number of problem constraints and m; the
number of unsatisfied constraints at the level j:

m; = nj,

lezadd(mi,...,m;) = njxl; +lexadd(m;,...,mj—1)
m; < nj,

lezadd(mi,...,m;) = min{(m;+ 1) xj,

mj X l; +lexadd(mi,...,mj_1)]

lexadd() =

Scheduling the Simplifications

To schedule the successive simplifications, we follow
an order of increasing complexity: from the A-VCSP
to the X- VCSP valuation structure and, for each valu-
ation structure except for the first, from the maximum
to the minimum relaxation level. Some simplifications
can be short circuited if their optimal valuation can be
deduced from the previous simplifications or if it can
be established that solving them will not improve the
lower bound.

Figure 3 shows an example of simplification schedul-
ing and of lower bound evolution, on a ¥- VCSP, whose
constraint valuations equal 1, 10, 100, 1000 or +o00 and
whose optimal valuation equals 835.
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Figure 3: An example of simplification scheduling

Variables:30, DomainSize:5, C ivity:50%, Tigh 50%
! | | ) | |

7000 + branch and bound: upper bound -6— —
successive simplifications: upper bound —+—
successive simplifications: lower bound -8—

6000 = optimum — _

0 10 20 3 4 50 60
Time in seconds

Figure 4: On a particular problem

Experimental Results

Figures 4 and 5 are examples of the results which can
be obtained by using such a method on randomly gen-
erated binary X-VCSPs. The first is related to one
problem, the second to a set of one hundred prob-
lems. In each figure, we show the evolution of the
upper bound, by using a classical Depth First Branch
and Bound, and the evolution of the upper and lower
bounds, by using the successive simplifications.

Discussion

What we briefly described is just an example of what
it is possible to do for producing an anytime bounding
of the optimum of a constraint optimization problem.
A lot of choices are arguable. It might be interest-
ing to consider other simplifications and schedulings
and, above all, to discuss the way a meta-reasoning
system could reason about the possible simplifications
and their scheduling, according to the nature of the
problem to be solved, the current bounds, the other
tasks, the capacity of the resources, and the pressure
from the external environment.
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