
Neurosched : a Resource Bounded Scheduler

Jean-Michel Gallone and Francois Charpillet

CRIN-CNRS &INRIA Lorraine,
BP 239, 54506 Vandceuvre-l~s-Nancy, France

Tel: 03.83.59.30.83 fax: 03.83.41.30.79
E-mail: {gallone, charp} @loria.fr

Abstract
Scheduling techniques have been intensively studied by
several research communities and have been applied to a
wide range of applications in computer and manufacturing
environments. Most of the scheduling problems are NP-
Hard. Therefore, heuristics and approximation algorithms
must be used for large problems when timing constraints
have to be addressed. Obviously these methods are of
interest when they provide near optimal solutions and when
computational complexity can be controlled.
This paper presents such a method based on Hopfield
Neural Networks. With this approach, a scheduling
problem is solved in an iterative way, finding a solution
trough the minimization of an energy function. As the
minimization process can fall into a local minimum we can
not guarantee that the process will find an optimal solution.
Worst, a solution can be missed in some cases.
An interesting property of this approach is its capacity to
trade-off the quality for computation time. Indeed, the
convergence speed of the minimization process can be
tuned by adapting several parameters that influence the
quality of the results. We will demonstrate in this paper that
an anytime probabilistic algorithm can be constructed by
combining in sequence a set of minimization processes with
decreasing convergence speed.

1 Introduction

Resource bounded reasoning systems are required in
particular context, in which taking the optimal decision
does not consist in computing the result with best
quality but rather in performing the best trade-off
between resource consumption and quality of results. In
order to address this issue, several approaches have been
proposed so far, among which we can quote anytime
algorithms [1][14], flexible computation [9], imprecise
computation [11], approximate processing [10], design-
to-time scheduling [6] and probably bounded optimal
agents [12].

In this paper, we present an application of these
techniques for solving scheduling problem instances
under time constraints. The scheduling problem we
consider is defined by a set of non pre-emptive tasks
over a set of processors. Each task Ti is characterized by
a given processing time pt, a time before which T~ cannot

begin its execution (Ri the ready time) and a time before
which T~ must complete (Ai the deadline). The problem
is to find a schedule that respects all these constraints in
a time that is imposed by the environment.

The approach we propose is based on a general
inference mechanism which is implemented by a
Hopfield Neural Network. This approach has retained
our attention because a trade-off in solution quality
versus time make it possible to construct easily a
resource bounded scheduler.

This paper is organized as follows. In section 2, we
present our model, based on Hopfield Neural Networks
and illustrate it with the encoding of the scheduling
problem we are interested in. In section 3, we present
several methods to construct an anytime scheduler.
Different policies have been experimented on a large
amount of randomly generated examples.

2 Anytime Neural Network

2.1 Our model
Neural computation is based on the parallel processing
of elementary simple units, called formal neurons. A
great amount of work based on such connectionist
models is devoted to pattern matching or classification.
In this case, each neuron plays a processing role for
perceptual fragments. More rarely, connectionist models
can also be adapted for optimization problems. In this
case, some emergent properties are exploited to use a set
of constraints. The Hopfield model [8] is a good
example of such an approach. It is made up of a set of
fully interconnected processing elements. The model
relies on three major forms of parallel organization:
parallel input channels, parallel output channels and
parallel computation of the processing entities (called
neurons). Each neuron has an external input, performs
weighted sum of all its inputs and applies a sigmoid
function to the result to obtain a value in the interval
[0,1]. This model was originally proposed as a Content-
Addressable-Memory, able to store and to retrieve

49

From: AAAI Technical Report WS-97-06. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

pattern. Later, its author explained how an energy-based
analysis of this model could enable its use for
optimization problems.

The Cohen and Grossberg stability rules [3] state the
conditions under which the energy function
implemented by an Hopfield Neural Network converges
to its minimal value. When the external input and the
weights of the connections are set to define the energy
function E, the result of the processing gives the output
that minimizes E. Thus, if we can match the energy
function to an optimization problem, the criteria will be
reached when the Hopfield Neural Network will be in a
stable state. Hopfield used this property to tackle the
traveling salesman problem [8].

Taggliarini and Christ present in [13] a simple method
to encode into a simple Hopfield Neural Network a set
of Boolean variables on witch constraints are applied.
This model was applied more recently to solve
scheduling problems [2] [7].

2.2 Encoding a scheduling problem

Let us remind the problem we are considering. We want
to find a schedule of a set of non pre-emptive tasks over a
set of processors. Each task T~ is characterized by a given
processing time Pi, a time before which T~ cannot begin its
execution (Rl the ready time) and a time before which
must complete (A~ the deadline). Figure 1 exemplifies
such a schedule. In this example, we randomly generate
10 tasks in a planning window of 37 seconds. Each task
has its own release time, processing time and deadline.
The resulting schedule is shown as a bar-graph. Black and
white rectangle represent a neuron with an output value
set respectively to one or zero. Each light dashed
horizontal line stands for a temporal window associated to
one task, and each dark dashed horizontal line represents
the time required for the task execution.

I I I

¯ ¯

|==

"1

Figure 1 : A feasible schedule

To represent such a scheduling problem in our system,
we have to work on a discreet representation of time
such that each neuron stands for the activation of a task
at a given time. Thus, a problem instance is represented
by a two dimensional array of neurons. The first
dimension of the array stands for the tasks to be
scheduled and the second dimension stands for the time.
The second dimension has a size which depends on the
way the time is split up.
The variables of the problem being defined, the
constraints of a problem instance have to be encoded.
They are of two kinds :

intra-task constraints to encode release times r~,
deadlines Ai and duration times pi. Those constraints
state that each task must start between its earliest
begin time r~ and its latest begin time (Al - Pi).
inter-task constraints stating that at any time, there
are no more active tasks than the number of
processors available. Thus no more than n tasks are
active per unit of time for an execution when n
processors are available.

These constraints can be directly implemented in the
network by fixing both the input values and the weight
of the connections of the network such that the energy
function encoded in the network has a minimum value
which corresponds to a feasible schedule.
More details about the encoding of the problem are
given in [4].

2.3 Approximations
With the objective of addressing real-time applications,
we have proposed in [4] a method which enables to
design resource-bounded scheduling algorithms using
Hopfield Neural Networks. In [5], we have extended
this work by studying the incidence of two kinds of
approximation criteria on the processing time and on the
success rate. By tuning those two approximation criteria,
we have obtained a set of run-time executions of the
Hopfield minimization process with different
characteristics (quality, efficiency).

2.3.1 Granularity of time

In our model, a problem must be represented as a set of
Boolean variables and a set of constraints of two kinds :
k out of n, at most k out of n. This implies a discrete
representation of time. The complexity of the
minimization process of an Hopfield network is directly
related to the number of neurons (boolean variables)
the network. Thus, the granularity of the time
representation influences directly the speed of the
computation. The lower the value of the unit of time will
be, the more neurons to represent time schedule are
necessary, thus the more important the execution will be
but in the other hand, the more precise the result will be.

5O

2.3.2 Threshold function of each neuron

Another way to realize approximations is related to the
nature of the network : the convergence speed of a
Hopfield network is dependent on the slope of the
sigmoid defining the threshold function of each neurons
in the network. Thus, the value of this slope can be
tuned to adjust time needed for reaching a stable state.
We have experimentally demonstrated that for
homogeneous instances of our scheduling problem, the
number of iterations needed for the convergence process
is nearly constant.

2.4 Performance profiles
In the following, we report two kinds of experiments.
The fhrst one considers our approach from the anytime
point of view, i.e. as an iterative and interruptible
process improving continuously the quality of the result
over time. We show that this point of view is adequate if
we define the quality of a solution as the number of
satisfied constraints. The second point of view considers
our approach as a non interruptible process, and we
measure the success rate depending on the two
approximation criteria given in previous section. In both
cases, problem instances are classified such that a
performance profile is associated with an homogeneous
set of instances (in term of complexity of the instances).
Thus a class is characterized by : the number of tasks to
be scheduled and the number of time units defining the
horizon of the problem. For example all instances of a
scheduling problem with 10 tasks and 100 time units are
in the same class. Thus, each performance profile is
obtained by measuring statistically the evolution of the
quality (or success rate) over time. For this purpose,
random generator of scheduling problems has been
defined in order to produce thousand of problem
instances for each class.
In the following, a contract is a configuration of the
neural network with the two approximation criteria
respectively set to one value. Contracts are ordered
according to execution time needed for their
achievement. Execution times are expressed in term of
the number of iterations. Thus performance profiles are
not dependent neither on the workstation executing the
contract nor on the overall load.

2.4.1 Quality versus computation time

The anytime behavior of our approach is presented in
Figure 2 which exemplifies performance profiles of
several contracts obtained for one class of problem.

Number of iterations

40

-2

~ ~ Violated
constraints

4.L ...

Figure 2 : Performance profiles

The horizontal axis corresponds to the number of
iterations, while the vertical axis corresponds to the
opposite of the number of violated constraints after a
given number of iterations. Theses results have been
computed on a corpus of 10 000 problem instances
belonging to a given class. The considered class is
characterized by problem instances of 20 tasks; each
task has a duration set between 1 and 6 time units and an
execution window whose duration is less than twice the
task duration; and an horizon composed of 80 time
units. Each problem instance in the corpus has been
chosen to be feasible.
We can remark that the quality (number of satisfied
constraints) is really an increasing function of the time
dedicated for the resolution.

2.4.2 Success rate versus computation time

Figure 3 shows the success rate, i.e. the percentage of
correctly solved scheduling problems, that we can get
depending on the two parameters defining a given
contract: granularity of time and convergence speed.
The success rate has been estimated on a corpus of
100 000 feasible problem instances. Figure 3
exemplifies the kind of performance profiles we get for
a class of problem instances. The graphic represents the
mean success rate (y axis) we can expect depending
the time granularity (z axis) and the convergence speed
(x axis) defining a contract.

51

¯ 60-70

¯ 50-60

¯40-50

m30-40

Q20-30

¯ 10-20

UO-lO

Figure 3 : Success rates of the contract algorithms

We can see on the graphic that the longest contracts are
not the ones that give best success rates. For small values
of allocated time (small values of convergence speed)
the success rate increases with the convergence speed (i.e.
with execution time), but then decreases for greater values
of the convergence speed and finally sensibly decreases
for the highest values of the convergence speed. It means
that increasing the precision of refinement variables is not
enough to guarantee best success rate as it is not
proportional to the quality of the result. Consequently, our
system, in a global point of view, is not a contract
anytime algorithm, as the success rate does not strictly
increase with a priori execution time.

However, an interruptible anytime probabilistic algorithm
can be constructed by sequencing the contracts with
different characteristics. The idea is that the contracts are
complementary: the problem instances solved by one
contract are quite different than those solved by an other
contract. Thus by chaining several contracts the success
rate increases over the sequence. The remaining of the
paper demonstrates this fact over additional experiments,
our aim is to build the sequence of contracts that will be
the most likely to solve a given class of problems under
some resource constraints.

3 Chaining contracts

3.1 Building the optimal sequence
At any time, the optimal policy will determine how to
choose the contract that offers the best chance to end
before the deadline and to deliver the best result. In
order to build an optimal sequence, we have to compute
conditional performance profiles that define the success
rate of a given contract knowing that an other given
contract failed to find a solution. Figure 4 illustrates
such a conditional performance profile : the vertical axis
represent failed contracts, the horizontal axis stand for
tested contracts and the darkness of the points on the
map states for success rates.

1
8
16
24
32
40
48
56
64
72
80
88
96
lO4
112
12o
128

1 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Figure 4 : Matrix of Success Transition

By using this matrix, we can compute the optimal
sequence (i.e. the one that have the best success rate) for
a fixed deadline : as each execution time is bounded and
each success rate can be estimated by the matrix, we can
select the sequence that will finish before a given
deadline and which will be the more likely to get a
correct result.

This matrix also shows that for low values of the
convergence speed, the higher you increase the values,
the more likely you are to get a good schedule. But, in
the other hand, the higher the convergence speed, the
longer the execution time. Thus, for an unknown
deadline, the principal difficulty is to find a sequence of
contracts that are far enough to improve the actual
success rate but close enough to get an answer before
the deadline is reached.

3.2 Composition policy

The difficulty come from the a priori uncertainty in the
deadline of the problem. The different possible
sequences have to be computed so as to dynamically
select the best one. Consequently, a good trade-off has
to be found to select a contract far enough to give
correct result and close enough to give a quick result.
An example of such a trade-off consist in executing a
sequence of contracts where each duration is twice as
much as the previous one. If the first contract has a
duration of t seconds, the sequence is pursued by a

,thcontract of duration 2t, the ~ contract executed will
have a duration of 2i.t seconds. This policy guarantees
that in the worst case, at least a quarter of time allocated
for resolution was efficiently used.

One way to verify that this policy is efficient is to
compare it with other chaining policy. Figure 5
exemplifies typical performance profiles (probability of

52

success versus number of iterations) obtained by
chaining contracts with duration following an arithmetic
progression. Note that a contract can find a solution
before its allocated time. This is due to the variance of
the duration of a contract depending of the instance of
problem for a given class.

1
0,9
0,8
0,7
0,6
0,5

0o 0,4
e 0,3

0,2
0,1

0
0 1000 2000 3000

Number of Iterations

Figure 5 : Arithmetic progression

6, exemplifies typical performance

4000

Figure profiles
obtained by chaining contracts with duration following a
geometric progression.

0 Bo lOO 1~0 200 2oo 3oo

Figure 6 : Geometric progression

Figure 7 gives an example of a performance profile
stating the quality (in term of number of violated
constraints) versus computation time of a geometric
progression. Both criteria quality and success rate are
increasing over time.

000 O0
0 0 0 0 00J W" (0 O0

0 04 ,~" iO O0 T- ~ ~ ,-" ",-

0
-I
-2
-3
-4
-5
-6
-7
-8
-9

-10

local
performance
profile
global
performance
profile

Figure 7 : Quality versus time

4 Conclusion
In this paper, we have presented the Hopfield Artificial
Neural Network model and its capability to be used for
solving a particular scheduling problem : tasks with
release times, deadlines and computation times to be
scheduled on several uniform machines. We have
validated our approach on a great number of randomly
generated examples. Results are better than an efficient
scheduling heuristics when no timing constraints exists.
It is capable of adapting its behavior when timing
constraints are imposed by the application as it is an
anytime algorithm. Furthermore, this approach can be
easily parallelised and even be replaced by a specific
hardware system. Thus, it can be on-line used on
systems where computation time available for
scheduling is very low. A third advantage is the ease of
extending the approach. We can easily tackle other
classes of problem by adding constraints to the existing
network or by modifying the defined constraints.

53

5 References
[1] Boddy M. and Dean T. Solving Time dependent Planning
Problems. Proc. of International joint Conference on Artificial
Intelligence, pp. 979-984, 1989.

[2] Cardeira C. and Mammeri Z. Neural Networks for
Multiprocessor Task Scheduling. Proc. of 8th Euromicro
Workshop on real-time Systems, IEEE CS, June, Vaesteraas,
Sweden, 1994.

[3] Cohen M. and Grossberg S. Absolute stability of goal
pattern formation and parallel memory storage by competitive
neural networks. In IEEE Transaction on Systems, Man and
Cybernetics, 13, pp. 815-826, 1983.

[4] Gallone J-M. and Charpillet F. Hopfield Neural Network
for Scheduling Non Pre-emptive Tasks. 12th European
Conference on Artificial Intelligence, pp. 223-227, 1996.

[5] Gallone J.M. and Charpillet F. Composing Approximated
Algorithms Based on Hopfield Neural Network for Building a
Resource-Bounde, d Scheduler. IEEE International Conference
on Tools with Artificial Intelligence, pp. 445-446, 1996.

[6] Garvey A. and Lesser V. Design-to-time Scheduling,
IEEE Transactions on Systems, Man and Cybernetics,
Special Issue on Planning, Scheduling and Control, Vol.
23, N°6, 1992.

[7] H6rault L. R6seaux de neurones puls6s pour l’optimisation
Application ~ l’allocation de ressources. Automatique

Productique Informatique lndustrielle, vol. 29, n.4, pp. 471-
506, 1995.

[8] Hopfield J.J. and Tank D.W. Neural computation of
decisions in optimization problems. Biological Cybernetics,
52, pp. 141-152, 1985.

[9] E.J. Horvitz, <<Reasoning about Beliefs and Actions
under Computational Resources Constraints>>. Proc.
1987 Workshop on Uncertainty in Artificial Intelligence,
Seattle, Washington, 1987.

[10] Lesser V.R., Pavlin J. and Durfee E.H. Approximate
processing in real-time problem solving. Artificial Intelligence
Magazine, vol. 9, n°l, pp. 49-61, 1988.

[11] Liu, Lin, Shih and Yu. "Algorithms for Scheduling
Imprecise Computations". IEEE Computer, pp 58-68,
1991.

[12]Russel S.J. and Subramanian D. Provably bounded-
optimal agents. Journal of Artificial Intelligence Research,
vol. 1, pp. 1-36, 1995.

[13] Tagliarini G.A., Christ J.F. and Page E.W. Optimization
using Neural Networks. IEEE transactions on computers, vol.
40, pp. 1347-1358.

[14]Zilberstein and Russell. Efficient Resource-Bounded
Reasoning in AT-RALPH, Proc. first AIPS, pp260, 266, 1992.

54

