
Tradeoff in Rule Induction for Semantic Query Optimization

Chun-Nan Hsu
Department of Computer Science and Engineering

Arizona State University
PO Box 875406,Tempe, AZ 85287

mailto:chunnan~asu.edu
http://www.isi.edu/sims/chunnan/

Abstract

Semantic query optimization (SQO) is a promising
approach to the optimization of increasingly complex
query plans in global information systems. The idea
of SQO is to use semantic rules about data to reformu-
late a query into an equivalent but less expensive one.
Since it is difficult to encode required semantic rules,
a complete SQO system also includes a rule induc-
tion system and a rule maintainer. To maximize the
net utility of learning, a rule induction system needs
to learn those rules that are effective in reducing the
query execution cost while robust against data changes
to minimize the rule maintenance cost. This paper
focuses on this tradeoff between effectiveness and ro-
bustness in the rule induction for SQO. The solution
is to explicitly estimate the degree of the robustness of
rules. The system can use the estimated robustness to
make decisions to guide rule construction, guide rule
repair, and control the size of a rule set. This paper
also briefly reviews how robustness can be efficiently
estimated and reports the initial experimental results.

Learning for Semantic Query
Optimization

Semantic query optimization (SQO) (King 1981)
promising query optimization technique for intelligent

information mediators (Wiederhold 1992; Arens et al.
1993; Levy, Srivastava, & Kirk 1995) that integrate
heterogeneous information sources because it can com-
plement conventional query optimization techniques to

overcome the heterogeneity and considerably reduce
query execution cost. The essential idea of semantic
query optimization is to use semantic rules about data
to reformulate a query into a more efficient but seman-
tically equivalent query.

Example 1: Suppose we have a query that retrieves
the ship classes and the maximal draft of the ships
in those classes which satisfy the following conditions:
the ships in the class are capable of carrying contain-
ers, and their draft is less than 50 feet. This query is
specified as follows:

query (?ship_class, ?draft) :
1 : ship_class (?ship_class, _, ?draft, _, ?ctnr),

2: ship (_, ?ship_class ,_, _, ?status),
3: ?ctnr ---- "Y",
4: ?status ---- "active",
S: ?draft < BO.
In addition to the query, suppose the system possesses
a set of semantic rules. Among them two rules are
applicable to this query:
RI: IF ship(_,?class,?status,_,_)

ship_class (?class, _, ?draft, _,_) &
?draft < 50

THEN ?status = "active"
R2: IF ship_class(?class ?ctnr)

?ctnr = "Y"
THEN ship (_,?class)

R1 states that If the mamimum draft of a ship is less

than 50, then its status is active. R2 states that If
a ship class has container capability, then there must
emist some ships that belong to that ship class in the
database.

Given these rules, a semantic query optimizer can
derive a set of equivalent queries and search for the
one that is the optimal. In this example, the optimizer
infers that literal 4 and 2 are redundant and eliminates
these llterals from the query. This yields the optimized
query as below:
query (?ship_class, ?draft) : -

ship_class (?ship_class ,_, ?draft, _, ?ctnr),
?ctnr = "Y",
?draft < 50.

This new query is equivalent to the original query, be-
cause literal 4 is redundant according to R1, and from
R2 literal 2 is also redundant. Therefore, the opti-
mized query will still return the same answer. Since
the system does not need to evaluate the redundant
comparisons and relational joins, executing the opti-
mized query will save much query execution cost. []

A set of high utility semantic rules is crucial to
the performance of a semantic query optimizer. Since
it is difficult to encode sufficient semantic rules, re-
searchers have proposed several approaches to rule in-
duction for semantic query optimization (Siegel 1988;

61

From: AAAI Technical Report WS-97-06. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

Yu & Sun 1989; Shekhar et al. 1993; Hsu & Knoblock
1994). A rule maintenance approach is also neces-
sary because the learned rules may become inconsis-
tent with data after updates to the database, and the
number of rules may grow so large that they may slow
down the optimization and reduce the savings. There-
fore, a complete semantic query optimization system
should include three components -- a query optimizer,
a semantic rule learner and rule maintainer.

As other optimization problems, semantic query op-
timization needs to balance a variety of tradeoffs under
the resource constraints. For example, the query opti-
mizer must trade off the time spent for the optimiza-
tion and the quality of the resulting query. Previously,
Shekhar et al. (Shekhar, Srivastava, & Dutta 1988)
presented an approach to the tradeoff in the query op-
timizer. This paper focuses on the tradeoff in the rule
induction.

Tradeoffs between Effectiveness and

Robustness

The rule induction problem for SQO is to learn a set
of high utility semantic rules that maximize the net
performance of the optimizer, that is, the learner must
derive high utility rules that are effective in producing
high savings for a wide range of queries while incur-
ring minimal cost to be used. The cost to use seman-
tic rules includes the storage space for the rules, the
computation time to match and apply the rules during
the optimization, and the cost to maintain inconsistent
rules in the presence of database changes. Inconsistent
rules are not useful for SQO because using inconsis-
tent rules the optimizer may reformulate a query into
a new query not equivalent to the original query and
cause the system to produce incorrect results.

In real-world applications, database usage can be
modeled as a stochastic sequence of queries and data
modification transactions over time. If a learning ap-
proach can always learn invariant semantic rules 1 that
are consistent with all possible database states 2 re-
gardless of how a database changes, then the cost of
maintaining inconsistent rules can be eliminated. How-
ever, it is prohibitive to guarantee that all the learned
rules are invariants, because it is impossible for the
learner to verify whether a rule is invariant without
complete knowledge about the database application
domain. A more practical solution to deal with data
changes is to learn robust semantic rules. A semantic
rule is robust if it is unlikely to become inconsistent in

lInvariant semantic rules are also referred to as semantic
integrity constraints.

2A database state at a given time t is the collection of
the instances present in the database at the time t.

new database states after data changes. An invariant
semantic rule is extremely robust.

However, robust rules may not be effective in cost
reduction. A set of semantic rules is extremely effec-
tive if, for any query, it allows the optimizer to refor-
mulate the query into the optimal equivalent query.
Intuitively, an optimal equivalent query is the one that
returns the same answer and can be executed with the
lowest possible cost. If we take database changes into
account, an optimal equivalent query in one database
state might not be equivalent to a given query in an-
other database state, especially when the semantic
rules used to infer the equivalent queries are not invari-
ant. Therefore, a set of effective rules might not be ro-
bust. In fact, semantic rules that %verfit" the data can
usually produce large savings in query optimization,
but they are useful only in one or two database states
and learning these rules may increase rule maintenance
cost. Therefore, the learner must balance these two
factors -- effectiveness and robustness -- to maximize
the net utility of learning.

Using Robustness Values for Resource

Control

I have developed a general solution (Hsu 1996) to deal
with the tradeoff in the rule induction for SQO. The
solution is to develop an approach to estimating the de-
gree of robustness of semantic rules (Hsu & Knoblock
1996). A query optimization system can use the esti-
mated results to make decisions in the following man-
ners.

Rule Pruning The rule induction system can apply
the robustness estimation to guide the pruning of par-
tially constructed rules. The rule pruning may include
pruning the antecedent literals of rules or pruning low
robust rules from a rule set. The basic idea is to search
for a subset of antecedent literals to remove until any
further removal will yield an inconsistent rule. The ap-
proach applies a beam search strategy to retain the top
robust rules for each set of pruned rules with the same
length and then selects a subset of pruned rules with
a good combination of length and robustness based on
how often the database changes. As a result, for each
set of equally short rules, the pruner will search for
the rule that is as robust as possible while still being
consistent. Pruning antecedent literals also increases
the applicability and thus the effectiveness of a learned
rule. Therefore, the resulting rules will be highly ro-
bust and widely applicable. This approach has been
implemented into a system and incorporated into a
query optimization system (Hsu & Knoblock 1996;
Hsu 1996).

62

Rule repair We can also apply the robustness es-
timation approach to rule maintenance in a manner
similar to the rule pruning. When an inconsistent rule
is detected, the rule maintenance system may propose
and search through a set of rule repair operators (e.g.,
modify a condition) to fix the rule. The maintenance
system can use the estimated robustness of the result-
ing partially repaired rules to search for the best se-
quence of repair operators so that the repaired rule is
more robust than the original one. Since the rules are
increasingly robust, eventually the need of rule repair
can be eliminated.

Controlling the size of the rule set A large rule
set may increase the match cost and slow down the
optimization. Hence, it is beneficial to control the size
of the rule set. During the rule pruning, the system
may adjust the beam size of the search to control the
number of generated rules. The rule maintainer can
remove the learned rules whose robustness is below a
threshold of minimum robustness to control the size of
the rule set. The maintainer may also use the statistics
of rule utility coupled with the estimated robustness for
this purpose.

Estimating Robustness
We have defined that a rule is robust against database
changes if it is unlikely to become inconsistent after
database changes. This can be expressed as the proba-
bility that a database is in a state consistent with a rule
and estimated by the ratio between the number of all
possible database states and the number of database
states consistent with a rule. However, this is based on
an unrealistic assumption that all database states are
equally probable. Also, since the number of database
states is intractably large even for a small database,
this may not be a good estimate for robustness. In-
stead, we define the notion of the robustness against
database changes by defining the robustness of a rule
r in a given database state d as

Robust(rid) Pr(~t[d) -- 1 -Pr(t [d),

where t represents the data modification transactions
on d that invalidate r. This definition localizes the
database states of concern to those that are accessi-
ble from a given database state, and thus allows a rule
discovery system to estimate the robustness efficiently.
The robustness estimation problem otherwise would be
intractable because the system must estimate combina-
torial numbers of database states that are inconsistent
with a rule.

The robustness estimation approach estimates prob-
abilities of rule invalidating transactions in a relational
database environment. This approach decomposes the

Figure 1: Bayesian network model of transactions

probability of a transactions into local probabilities
based on a Bayesian network model of database modi-
fications as illustrated in Figure 1. The local probabil-
ities are estimated using Laplace law or m-probability.
Users do not need to provide additional information
for the estimation because the estimator can utilize in-
formation such as transaction logs, database schema,
and ranges of attribute values that are available from
a database management system. Even if the informa-
tion is incomplete or unavailable, the approach can still
derive a reasonable estimation. The approach can ac-
curately estimate the robustness of Horn-clause rules.

Experimental Results
This section describes the initial empirical evaluation
on the proposed approaches to dealing with the trade-
off between effectiveness and robustness. For this pur-
pose, the approach were implemented in a learning sys-
tem and a query optimization system and incorporated
with an information mediator that integrates hetero-
geneous databases.

The evaluation consists of three experiments. The
first experiment is to evaluate the effectiveness of the
rules generated by the learning approach when they
are applied to optimize queries in a static database
state. The experiment compares the optimization per-
formance produced by the learned rules with hand-
coded rules.

The second experiment is to evaluate our approach
to dealing with database changes. Since we do not
have access to a sequence of data modification trans-
actions that is sufficiently long to simulate real-world
database usage, we cannot fully demonstrate the net
savings yielded by applying our learning and optimiza-
tion approach. However, by showing the accuracy of
the robustness estimation, it suffices to affirm that a
learner can minimize its effort in rule learning and
maintenance while provide high utility rules for the
optimizer.

The third experiment examines the interaction be-
tween effectiveness and robustness of a semantic rules.
The experiment compares a variety of properties of the
learned rules -- optimization performance, robustness
and applicability.

63

Environment for the Experiments The rule in-
duction system BASIL3 is an implementation of the
learning approach to the acquisition of high utility
semantic rules for SQO. BASIL learns semantic rules
for PESTO,4 an implementation of the query plan opti-
mization approach. PESTO uses semantic rules learned
by BASIL tO optimize query plans for an information
mediator. These systems are developed to empirically
evaluate the approaches developed in this research (see
(Hsu 1996) for more information on these systems).
They are incorporated with the SIMS information medi-
ator (Arens et al. 1993; Knoblock, Arens, & Hsu 1994;
Arens, Knoblock, & Shen 1996). sIMS applies a va-
riety of AI techniques to build an integrated intelli-
gent mediator between users and distributed, hetero-
geneous multidatabases so that users can access those
databases without knowing the implementation details
such as their locations, query languages, platforms,
etc. SIMS invokes PESTO to optimize query plans, and
PESTO in turn invokes BASIL to learn the required se-
mantic rules.

SIMS takes as input a query expressed in the LOOM
knowledge representation language (MacGregor 1990),
which is also used as the representation language to
build an integrated model of databases. To optimize
queries for SIMS, PESTO has a component to translate a
LOOM subquery into an internal representation similar
to Datalog to facilitate optimization, and a component
to translate the result back to LOOM. The semantic
rules are expressed in the same internal representation.
By attaching different translation component, PESTO
can optimize queries in other query languages. BASIL

uses the same internal representation to express the
semantic rules it learns. When it needs to read data
or information about database (e.g., schema), BASIL
sends a query to SIMS to obtain the required informa-
tion.

For the purpose of our experiments, SIMS iS con-
nected with two remote ORACLE relational databases
via the Internet. These databases originally are part
of a real-world transportation logistic planning ap-
plication. Table 1 summarizes the contents and the
sizes of these databases. Together with the databases,
there are 29 sample queries written by the users of the
databases. We also have 3 queries written for the pur-
pose to test different functionalities of the SIMS query
planner, and 4 queries to test PESTO, especially to test
its ability to detect null queries (i.e., queries that re-
turn an empty set). That is a total of 36 queries.
Among these 36 queries, 18 are multidatabase queries
that require access to multiple databases to retrieve

3BAyesian Speedup Inductive Learning.
4Plan Enhancement by SemanTic Optimization.

the answer. To train the learner, BASIL, 23 queries are
selected to serve as the training queries. The selection
is based on the similarity of queries. Because we found
that BASIL learns nearly identical sets of rules using
similar queries, to save experimentation time, we re-
move some similar queries from the training set. In
addition to the learned rules, PESTO uses 271 range
facts compiled from the databases for the optimization.
SIMS, PESTO and BASIL were running on a Sun SPARC-
20 workstation during the experiments. We synthe-
sized 123 sample transactions that represent possible
transactions of the experimental databases based on
the semantics of the application domain to evaluate
the accuracy of the robustness estimation. The set of
transactions contains 27 updates, 29 deletions and 67
insertions, a proportion that matches the likelihood of
different types of transactions in this domain.

Effectiveness of Learned Rules The first experi-
ment is to evaluate whether the learning approach can
generate effective rules for cost reduction in a given
database state. This experiment applies a k-fold cross
validation (Cohen 1995) to test the effectiveness of the
learned rules. The 23 training queries were randomly
divided into four sets, three of them contain 6 queries,
and one contains 5 queries. For each set of queries,
BASIL took the remaining three sets of queries as train-
ing queries to learn a set of semantic rules. The se-
lected set of queries was combined with the 13 addi-
tional queries to form the test set of queries. Next,
SIMS took the test set as input and invoked PESTO to
optimize the queries using the learned semantic rules.
After collecting performance data, the learned rules
were discarded and the process repeated for the next
set of queries. The experiment thus generated four sets
of performance data.

Prior to this experiment, we have hand-crafted a set
of 112 semantic rules to demonstrate the effectiveness
of the query plan optimizer PESTO, These rules were
carefully designed after several iterations of debugging
and modifications to allow the optimizer to explore as
much optimization opportunity as possible for the sam-
ple queries. We report the optimization performance
produced by the hand-coded rules for the purpose of
comparison.

The collected performance data contains the total
elapsed time of each query execution, which includes
the time for database accesses, network latency, as well
as the overhead for semantic query optimization. To
reduce inaccuracy due to the random latency time in
network transmission, all elapsed time data are ob-
tained by executing each query 10 times and then com-
puting their medians. Then for each query~ the per-
centage time savings are obtained by computing the

64

I Databases]Contents]Relations [Tuples] Size(MB) I Server I

I Geo I Geographicallocations I 15 561214 10-48 I HPO00Os IAssets Air and sea assets 10 0.51 Sun SPARC 4

Table 1: Sample databases in a transportation logistic planning domain

ratio of the total time saved due to the optimization
over the total execution time without optimization.

Table 2 shows the average of the savings for all
queries, the average of savings for multidatabase
queries and the standard deviations. The data shows
that the learned rules can produce a significant sav-
ings on the test queries, with a ten percent higher sav-
ings for multidatabase queries. The data also shows
that the learned rules outperform hand-coded rules in
all four tests. We note that some of our test queries
are already very cost-effective, and there is not much
room for optimization for those queries. But for some
expensive multidatabase queries, the savings can reach
as high as 70 to 90 percent.

Accuracy of Robustness Estimation This ex-
periment evaluates the accuracy of robustness estima-
tion so as to establish the claim that using the robust-
ness estimation allows a learner to minimize the cost
of dealing with database changes. The experiment de-
sign can be outlined as follows: train BASIL tO learn
a set of rules and estimate their robustness, use the
123 synthesized data modification transactions to gen-
erate a new database state, then check if high robust
rules have a better chance to remain consistent with
the data in the new database state.

To investigate the relation between the estimated
robustness of rules and their consistency status in the
new state, We classified the discovered rules into four
robustness groups, according to their probabilities of
consistency after the completion of 123 transactions.
These probabilities were derived from their estimated
robustness. The classification was made such that if
the probability of consistency of a rule is greater than
0.75 then it is classified as a "high" robust rule, if the
probability is between 0.75 to 0.50 then it is "medium"
robust, if the probability is between 0.50 to 0.25 then
it is "low" robust, otherwise, it is considered a "very
low" robust rule.

In this experiment, BASIL was adjusted to exhaust its
search space during the rule discovery and generated
355 rules. Meanwhile, BASIL estimated the robustness
of these rules. We used all 23 training queries to train
BASIL, and resulted in 355 rules. After generating the
rules and collecting their robustness, we applied the
set of 123 transactions to the two relational databases
connected to SIMS and generate a new database state.

Next, we checked the consistency of all 355 rules and
identified 96 inconsistent rules in the new database
state. Table 3 shows the number of rules in each levels
of robustness against the number of actual consistency
of rules. We performed a statistic significance test on
the result in the table. Since we obtain X~ = 19.4356
from this table, and under the null hypothesis that
the consistency of a rule and its estimated robustness
are independent, the probability to get a X2 value this
high is less than 0.01, we conclude with a 99 percent
confidence that the robustness estimation accurately
reflects the likelihood of whether a rule may become
inconsistent after data modification transactions.

In order to evaluate the predictive power of the ro-
bustness estimation, we define two measures

[I N L[
recall =]i]

[INn[precision =
ILl

where I is the set of inconsistent rules and L is the set
of rules that are estimated as likely to become incon-
sistent. The definitions are analogous to their defini-
tions in natural language processing and information
retrieval research. Intuitively, recall indicates the pro-
portion of inconsistent rules being identified as likely
to become inconsistent rules, and precision indicates
the proportion of the estimatedly low robust rules that
actually become inconsistent.

Consider that a threshold for low robust rules is set
to the level "high," that is, if the estimated probabil-
ity of consistency for a rule is less than 0.75, then it
is predicted to become inconsistent after 123 transac-
tions. From Table 4, this threshold produces a recall
of 92.7 (= 89 / 96) percent and a precision of 28.89
(= 89 / 308) percent. That is, with this threshold,
BASIL can accurately point out 92.7 percent of incon-
sistent rules. But on the other hand, among all those
rules that are classified as likely to become inconsis-
tent, only 28.89 percent actually become inconsistent.
This is not surprising because the robustness estima-
tion may overestimate the probability of invalidating
transactions of a rule in situations where enumerat-
ing all possible invalidating transactions is too expen-
sive. In fact, by raising the threshold, we can obtain a
higher recall while maintain the precision to be around

65

Test Average hand-coded
1 2 3 4 savings rules

All 28.99% 31.60% 33.94% 29.86% 31.07% 25.84%
Multidb 39.43% 42.51% 42.61% 39.63% 41.05% 36.19%
of Rules 101 119 106 118 111 112
opt time (s) 0.038 0.047 0.041 0.054 0.045 0.044

Table 2: Performance data of learned rules and hand-coded rules

Consistent Inconsistent I Total

high 4O 7 47
medium 49 13 62
low 19 22 41
very low 151 54 205
Total 259 96 355

Table 3: The joint distribution of the actual and estimated robustness

28 percent. For example, if we set 0.95 as the thresh-
old, then we can obtain a high recall of 98.95 percent,
and a precision of 28.27 percent. Consequently, since
the robustness estimation can accurately point out low
robust rules, by properly adjusting the threshold, the
estimated robustness values can provide the sufficient
information for rule learning and maintenance to deal
with database changes.

Effectiveness versus Robustness Intuitively, a
low robust rule that expresses specific data regular-
ity in a given database state might produce a high
cost reduction, while a high robust rule such as an in-
tegrity constraint on the gender of pregnant patients
in a hospital information system might not be effective
for query optimization. However, there is no empirical
data that verifies this intuition. This section describes
an empirical study of the interaction between effective-
ness and robustness of semantic rules. For the purpose
of this study, BASIL uses the four robustness levels as
in the previous experiment to filter learned rules into
four different levels of robustness. We designed three
experiments to compare the utility of the learned rules.
The first experiment compares their average savings.
The second experiment compares the converging rate
of the coverage of the learned rules. The third exper-
iment verifies our assumption on the interaction be-
tween the robustness, length and applicability of the
learned rules.

We note that it is possible that an individual rule
yields high cost reduction together with a set of rules
but low with another set. Since how much an indi-
vidual rule can contribute to the cost reduction can
only be determined in the context of the entire rule set

used for the optimization, we do not have any exper-
iment to compare the effectiveness and robustness on
an individual rule basis.

In the first experiment, for each level of robustness
threshold, BASIL was modified so that it would discard
a partially pruned rule if its estimated robustness was
below the threshold during the rule pruning search.
Then we applied a k-fold cross-validation as described
earlier to obtain the average savings produced by the
learned rules. Table 5 shows the average performance
data with the standard deviations. The data show that
the rules learned with the robustness thresholds may
not produce savings as high as those with no robustness
threshold. However, since there are more than twice as
many rules in the "very low" (i.e., no threshold) case
as in other cases, the low savings might be ascribed to
the lack of sufficient number of rules. It is remarkable
that using the set of 28.5 very high robust rules can
still produce a 12.54 percent savings.

We applied the incremental k-fold cross-validation
to obtain the data on the converging rate for different
robustness thresholds. Figure 2 shows the plot of the
data. Interestingly, the four curves for different thresh-
olds have almost the same shape, that is, they converge
at about the same rate. But with higher thresholds,
the number of optimized queries is smaller than the
case where no robustness threshold is applied.

Our rule pruning approach use length to measure the
applicability of a rule and we assume that robustness
may also interact with applicability. The next experi-
ment attempts to verify this hypothesis. In this exper-
iment, PESTO used the 355 rules learned for the previ-
ous experiment to optimize all of our 36 queries. We

66

C°nsis’°n**nc°°sis*°n*l
High robust 40 7 47
(--L)
Low robust 219 89 308 precision =
(L) 28.89%
Total 259 96 355

recall = 92.70%

Table 4: The joint distribution of the actual and estimated robustness

Average Average Avg opt.
savings # of rules time (s)

high 12.54% s=1.89% 28.5 s=6.45 0.0287 s=0.008
medium 13.11% s=2.71% 50.25 s=10.24 0.0393 s=0.010
low 13.54% s=0.93% 63.0 s--ll.1 0.0362 s=0.004
very low 31.07% s=2.20% 111.0 s--8.91 0.038 s=0.038

Table 5: Performance data of rules with different robustness thresholds

S 10 18 20 25 30
Number Of training tdgger quod~

Figure 2: Rule coverage rates for rules of different ro-
bustness levels

25

20 X

x

 l,r, ,
~1 x

x xx
x: ,;x ::, i,xIx)1(

x x

0~ 0:1 012 013 0’.4 " 015 O’.d" 017 "0:8" 0:9 ~1
Prol~olllty of consistency after 123 transactions

Figure 3: Relation between application frequency and
estimated robustness

counted the application frequency for each rule, that
is, how many times a rule is located as an applicable
rule during the query optimization. Based on the data,
we produced a scatterplot to visualize the relation be-
tween the the estimated probability of consistency and
the applicability of a rule, as shown in Figure 3. As we
expected, for most of rules, the probability of consis-
tency is inversely proportional to their application fre-
quency, because a high density of the rule population
is distributed below the curve y = 1Ix. We note that
there is a significant population of rules positioned on
the right-upper corner -- they are both effective and
robust. Figure 4 shows the scatterplot of the length of
rules against their application frequency. The plot sug-
gests that with few exceptions, widely applicable rules

are short, but short rules are not necessarily widely
applicable.

Conclusions
This paper has discussed a tradeoff between effective-
ness and robustness in the learning problem of seman-
tic query optimization and briefly described a solution
to balance the tradeoff. The solution is to explicitly
estimate the degree of robustness of the learned se-
mantic rules. The estimation approach can be applied
in rule pruning during the learning stage, in rule re-
pair, and in evaluating the performance of the learned
rules to control the size of the rule set. As a result, the
system can effectively use the storage space and re-
duce rule maintenance cost. To more accurately eval-

67

:t
x

x
x
x
x x
x

f x x x

l lC X X
X x X
X X X

x X X x
x x X x

X x X X X X
x x x X x
x x X X X X

2 3 4 8 8 7
L~h

Figure 4: Relation between application frequency and
length of rules

uate this approach, we plan to conduct a large scale
long term experiment on real-world information sys-
tems and compare the net savings of applying the ro-
bustness estimation with other approaches.

Acknowledgements

The research reported here was supported in part
by the National Science Foundation under Grant No.
IRI-9313993 and in part by Rome Laboratory of the
Air Force Systems Command and the Advanced Re-
search Projects Agency under Contract No. F30602-
94-C-0210 This work was partly done while the first
author worked as a graduate research assistant at

USC/Information Sciences Institute.

References

Arens, Y.; Chee, C. Y.; Hsu, C.-N.; and Knoblock, C. A.
1993. Retrieving and integrating data from multiple infor-
mation sources. International Journal on Intelligent and
Cooperative Information Systems 2(2):127-159.

Arens, Y.; Knoblock, C. A.; and Shen, W.-M. 1996. Query
reformulation for dynamic information integration. Jour-
nal of Intelligent Information Systems, Special Issue on
Intelligent Information Integration.

Cohen, P. R. 1995. Empirical methods for artificial intel-
ligence. Cambridge, MA: The MIT Press.

Hsu, C.-N., and Knoblock, C. A. 1994. Rule induction
for semantic query optimization. In Machine Learning,
Proceedings o f the 11th International Conference(ML-9,1).
San Mateo, CA: Morgan Kaufmann.

Hsu, C.-N., and Knoblock, C. A. 1996. Discovering robust
knowledge from dynamic closed-world data. In Proceed-
ings of the Thirteenth National Conference on Artificial
Intelligence (AAAI-96). Portland, Oregon: AAAI Press.

Hsu, C.-N. 1996. Learning Effective and Robust Knowl-
edge for Semantic Query Optimization. Ph.D. Disser-
tation, Department of Computer Science, University of
Southern California.

King, J. J. 1981. Query Optimization by Semantic Reason-
ing. Ph.D. Dissertation, Stanford University, Department
of Computer Science.

Knoblock, C. A.; Arens, Y.; and Hsu, C.-N. 1994. Co-
operating agents for information retrieval. In Proceedings
of the Second International Conference on Intelligent and
Cooperative Information Systems.

Levy, A. Y.; Srivastava, D.; and Kirk, T. 1995. Data
model and query evaluation in global information systems.
Journal of Intelligent Information Systems, Special Issue
on Networked Information Discovery and Retrieval 5(2).

MacGregor, R. 1990. The evolving technology of
classlficatlon-based knowledge representation systems. In
Sown, J., ed., Principles of Semantic Networks: Explo-
rations in the Representation of Knowledge. Morgan Kauf-
mann.

Shekhar, S.; Hamidzadeh, B.; Kohli, A.; and Coyle, M.
1993. Learning transformation rules for semantic query
optimization: A data-driven approach. IEEE Transac-
tions on Knowledge and Data Engineering 5(6):950-964.

Shekhar, S.; Srivastava, J.; and Dutta, S. 1988. A for-
mal model of trade-off between optimization and execu-
tion costs in semantic query optimization. In Proceedings
of the 14th VLDB Conference.

Siegel, M. D. 1988. Automatic rule derivation for semantic
query optimization. In Kerschberg, L., ed., Proceedings of
the Second International Conference on Expert Database
Systems. Fairfax, VA: George Mason Foundation. 371-
385.

Wiederhold, G. 1992. Mediators in the architecture of
future information systems. IEEE Computer.

Yu, C. T., and Sun, W. 1989. Automatic knowledge acqui-
sition and maintenance for semantic query optimization.
IEEE Trans. Knowledge and Data Engineering I(3):362-
375.

68

