
CAAM : A Model of Resource-Bounded Reasoning Agent for Terrain

Analysis in C3I Systems

Thierry SALVANT (1&2), Sttphan BRUNESSAUX (1) and Alain GRUMBACH

(1) MATRA Sys~mes & Information
6, rue Dewoitine B P 14 - 78142 Vtlizy Cedex - FRANCE

E-Mail: tiri@matra-ms2i.fr, stephan@mcs-vdr.fr
Tel: (33)1.34.63.76.03 - Fax: (33)1.34.63.76.23

(2) Ecole Nationale Suptrieure des Ttltcommunications
46, rue Barrault 75634 Paris Cedex 13 - FRANCE

Abstract
The multi-agent approach has been successfully used for
solving more and more complex problems. Recent work
carried out in that field has shown the benefits it provides
for building decision support applications in a complex real-
time environment.
We will herein present some work in the field of Command,
Control, Communications and Information (C3I) systems,
that has been carried out in the context of the $30 million
European EUCLID RTP6.1 project.
We describe agent-based techniques that have been
developed for providing time-critical decision support in a
realistic operational context. This has been done by
integrating and adapting anytime reasoning techniques to a
multi-agent framework. The main objectives of the
Cooperative Anytime Agent Model (CAAM) we have
proposed were to allow agents to make use of time and
computational resources in an optimal manner, and to allow
the overall system to take time constraints into account by
adapting the accuracy of its results to the time available.

Introduction

The multi-agent approach has been successfully used for
solving more and more complex problems. Recent work
carried out in that field has shown the benefits it provides
for building decision support applications in a complex
real-time environment. We will present in this paper results
of experiments we have been carried out to assess a model
of resource-bounded reasoning agent called CAAM
(Cooperative Anytime Agent Model), that has been
implemented for performing time-critical terrain analysis in
the context of route planning. Such a terrain analysis
includes line-of-sight visibility calculations, calculation of
the shortest viable route between two points and
extrapolation of possible future movements considering
kinematic properties [Salvant, 1997]. All these calculations
are applied on a 60km x 60km coastal area of Norway,
with a military-required optimal precision of 100m x 100m

for terrain elevation data, and may have to be performed
taking account of time constraints.

This work has been applied in the field of Command,
Control, Communications and Intelligence systems (C3I)
and has been carried out in the context of the $30 million-
worth EUCLID RTP6.1 project. EUCLID, which stands for
EUropean Coordination for the Long term In Defence, is a
European research programme started in 1990. The 5-year
long RTP6.1 project has been carried out by the GRACE
consortium grouping together 18 companies within 7
nations. It aims at defining future intelligent C3I
workstations.

Motivation for using resource-bounded
reasoning

The agents we will describe in this paper are part of the
GRACE multi-agent based decision support system which
run on 4 Ethernet-networked Sun Sparc workstations. Such
a decision support system includes other agents specialized
in providing support for: compiling the current tactical
picture, analyzing the tactical threat, generating orders and
so on. All these last activities may also have to be
performed under time pressure, but their nature and the
techniques available make far less difficult their
implementation considering deadlines, if we compare to
the implementation of terrain analysis calculations that we
will detail below.

The point here is that, as responsible for the
implementation of agents for terrain analysis, we are not
able to consider as many computation resources as we
would like to. This is due to economical reasons, combined
with the fact that such functionalities could have to be
added later to existing systems, with non extensible
computation resources. Given the architecture of the
GRACE system and the constraints related to the use of the

From: AAAI Technical Report WS-97-06. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

underlying hardware resources, the work we will describe
has been done considering agents with one non-shared
computational resource, and capable of performing
concurrently terrain analysis calculations.

Our terrain analysis calculations have two main
characteristics that make their use very limited in time-
constrained situations.

Firstly, there is a very high variance between the
computation time required for each type of calculation. In
our context, a line-of-sight visibility calculation can use
from 5 to 60 CPU seconds and from 40 seconds to 8
minutes considering a maximum range of respectively
10Km and 25Km (these measures have been made on
75MHz SS20 processor).

For a given range, the CPU time is directly related to the
shape of the terrain where the calculation is made. The
calculation will take far less time in a very narrow fjord
than from a location with few obstacles around.

These measures show the limitation of such calculations
for its use in time-critical situations. Indeed, in real
situations, the user may ask many requests to be performed
concurrently: it is for example realistic in our context that
the user asks for more than 5 terrain calculations and waits
for all the results to be able to take a decision. This can at
least imply non acceptable delays for delivery of the
results, if we consider the limited number of CPU
available. Indeed, given the rate at which a tactical
situation evolves, a result is rarely useful for the user if
delivered after 2 or 3 minutes, and even less if the situation
is particularly critical.

Secondly, the limitation is related to predictions of CPU
consumption. The limitations are at the level of each
calculation, and at the level of the number of requests that
may need to be performed concurrently.

For the former, the key element that makes a good and
quick prediction difficult to make is the terrain. For line-of-
sight visibility calculations, at a given range, the CPU
consumption is directly function of the resulting area that
can be seen. A precise prediction can therefore be
potentially as difficult to obtain and as time consuming as
the calculation itself. The same happens considering path
calculation or extrapolation of possible movements.
Intuitively, the solution is to have an "idea" of the shape -
i.e. an approximation - of the optimal result that needs to
be precise enough to have an acceptable prediction, but not
too precise to get it in a sensible delay.

For the later, the key element is the external situation that
the user can of course not entirely control. The number or
requests he may have to start can therefore not be
predictable, because situation dependent. It can be very
small for a long period, making the delays for getting the

optimal solutions (at the 100mxl00m precision) almost
always acceptable. But this number can suddenly very
high, making the optimal solutions not feasible in time.

These two limitations, related to high variance between the
computation time required and their estimation, make not
feasible and not desirable to compute the optimal answer. It
is not feasible considering deadlines, and not desirable
considering the predictions of required CPU.

Approach to the problem

The approach has been presented in [Salvant, 1997].
Basically, it consists in implementing each of the terrain
based calculation as an anytime algorithm.

tp
QUality of result

Depth 1

Depth 2 I Level 3

tL~el ~’

Reference

Level 4

Time
Level 1

Figure 1: Chosen 4-level profile

This has been done by introducing 3 more terrain
representations obtained after approximation of the optimal
one, and executing the same algorithm successively on
each of these representation (figure 1). Each approximated
representation also covers the same 60Km x 60Km square
area. Their precision are respectively 200x200m (depth
approximation - 300x300 cells), 400x400m (depth 2)
800x800m for the most approximated one (depth 3).

Control Activity/Task
AAC (Anytime Agent Controller)

Anytime Domain Related Task

Figure 2 : Anytime agent tasks

Each CAAM agent has one control activity/task for
controlling the anytime tasks with such a profile (figure 2).
This task is performed by a so called Anytime Agent
Controller (AAC). It is responsible for terminating the
anytime tasks on the deadline, for providing the available

75

results if required and scheduling them [Salvant, 1997] - a
modified version of the Earliest Deadline First algorithm
[Chetto, 1989] as well a modified version of the
Deliberative Scheduling algorithm [Boddy and Dean,
1994] have been implemented.

A mode can be set for the control task allowing it to deliver
multiple intermediate results before the deadline. This
might be required considering some cases where a
progressive/anytime task requires, to perform a calculation
at a given approximation level, a result from another task at
the same level. This might be also required by the user who
might need intermediate results.

For example, a user may need to compute a path to go from
one location to another, avoiding as much as possible
entering in the areas that can be seen from the destination.
Here, the task for path calculation needs first to know what
are these visible areas, that have to be computed by another
task performing line-of-sight visibility calculations. In
order to perform each calculation of the various
approximation levels, the first task needs the corresponding
results of the line-of-sight visibility calculation made at the
destination location (figures 3a, 3b, 3c). Each of these
figures shows the results calculated at the 3 first levels of
approximation. On that example, the criteria for the path
calculation is to enter as late as possible into the visible
area. The total CPU times to get these results shown in the
figures are respectively 2 see., 15 see. and 1.5 min. At the
level of reference (no approximation), 11 min. are
required.

Figure 3a : Level 1

Figure 3b : Level 2

Figure 3c : Level 3

This scenario can appear when considering one agent
capable of both calculations, or two different agents, each
of them capable of performing one of the two. We will
discuss this point later.

This implies a strong requirement on the way the solutions
evolves. Indeed, the approximations always have to be
conservative compared to reality, ensuring that the cruder
the approximation is, the more conservative the result is.
By conservative, we mean that, for a specific problem, if
an acceptable decision can be made by a task part of an
agent (human or software), based on a result calculated
another agent at a given level of approximation, this
decision will always be acceptable even if not optimal. It
will still not invalidated by subsequent, more accurate
results, although these may identify better solutions.

For a line-of-sight visibility calculation, considering a
hostile - respectively a friend position - the deeper the
approximation is, the larger -respectively the smaller - the
resulting visible area has to be. Moreover, for every level,
the corresponding area has to be included into the area at
the next - respectively the previous - level. For a path, if
the criteria is the length, the paths given successively at
each level have to be shorter - respectively longer -
considering a friendly - respectively hostile - unit.

For the specific example of figures 3x, the criteria for the
path is to enter as late as possible into the visible area. The
decision to go to the destination location will be taken
depending on the distance between this location and the
location where the mobile enters into the area. Either this
distance is bellow a given threshold, and it is safe to go, or
it is above the threshold and it may be dangerous to try to
reach the destination.

For the line-of-sight visibility calculation, ensuring that the
deeper the approximation is, the larger the resulting visible
area is, and ensuring that each area at one level is included
in the area calculated at the following level, will guarantee
that this distance will decrease with the time allocated to
the calculation.

For that purpose, two types of approximation have been
done at each level: one considering the terrain always

76

higher from one approximation to a deeper one, and the
other lower. The former is called approximation max, the
later approximation min.

Limitations and benefits of the approach

We present some measures that have been done to assess
the approach considering the evolution of the successive
results, and the benefits it provides in order to make
predictions of CPU consumption during run-time.

Line-of -sight visibility calculation
By nature of the representation, it is not possible to
guarantee at 100% that the resulting areas will evolve as
required.

Table 1 gives the measures to assess this error on an
approximation max. For this type of approximation, the
error corresponds to the percentage of area that is not
included in the one at the next level (the results are
comparable for the approximation min). The values show
that these errors are acceptable.

Table 1 Approximation max 120 measures)
Levels Average Average Min. Max.

error difference Error Error
(%) to the (%)

average
(%)

error
0-> 1 7.66 2.55 0.00 20.00
1 -> 2 4.87 1.36 0.93 13.23
2 -> 3 3.03 1.10 0.00 10.64

Table 2 gives average values of the coefficients to get the
CPU consumption at one level knowing the one at the
previous level.

Table 2 Approximation max (120 measures)
Levels Average Average Average

coefficient difference difference(%)
1 -> 2 7.88 0.419 5.31%
2 -> 3 8.02 0.197 2.45 %
3 -> 4 8.05 0.114 1.42 %

These measures show some very interesting benefits of this
simple approach considering predictions of CPU
consumption. Indeed, for a range between 10Km and
25Km, the CPU needed measured in seconds at the first,
second and third levels are respectively in [0.05 : 0.9], [0.4
: 6.3] and [3.5 : 50]. This means that it is possible to make
"very" quickly a prediction after the first level of
approximation with an average error of 5.3%, then refine
progressively at run-time this prediction as other levels are
performed.

Path calculation
The algorithm we have implemented is a modified version
of the Dijkstra algorithm to find an optimal path in a graph.
Several criteria can be used to find a path, such as length,
average altitude along the path, and minimum penetration
in a given area. For the first criteria, the terrain
approximations guarantee that the length will either always
get shorter (if we consider the friend forces) or longer (if
we consider the hostile forces) as long as the algorithm
finds the optimal solution for one level. For the second
criteria, they will guarantee that the average altitude will be
lower (if we consider the friend forces) or higher (if
consider the hostile forces). For the last criteria, it will
depend on the area to be avoided, that results from a line-
of-sight visibility calculation. Further studies will consider
the evolution of results combining altogether these criteria.

The measures on the coefficients to get the CPU
consumption at one level knowing the consumption at the
previous level give similar results, even if they are less
precise. For each level, the value of the coefficient is
around 5 with an average error of 20%. We will show
measures that show that, even with this error, the
predictions are still better than considering only the
distance between the starting location and the destination.

Mechanisms to control the computational
resources in CAAM

As said in the section describing the approach to the
problem, each agent is able to perform two types of task
scheduling with the profile described. For each, the
scheduling is performed each time a new task is to be run,
or a task has finished to perform a level of approximation
or a task deadline has been modified.

The modified Earliest Deadline First algorithm is as
follows. As soon as there are tasks that have not finished
reasoning at the first level of approximation, the control
task suspends all the other tasks that have finished it, in
order to run concurrently (sharing the agent CPU) only the
tasks at the first level. When all the tasks have performed
their first level of approximation, then the control task
determines all the task levels at the second level that have
not been accomplished, then put them in the schedule
following the "earliest deadline first" rule. A level is
however not put in the schedule if it can not be performed
before the deadline of its task - the estimation of CPU
requirement is then available for each task level and taken
into account. This step is repeated considering,
successively at the third and fourth level, the task levels
that has not been accomplished. After the schedule is
performed, only the first task level of the schedule is
executed on the agent CPU.

77

The adaptation of the Deliberative Scheduling is as
follows: it is the same as the previous one considering the
task levels of the first level. For the other levels, they are
scheduled as described in [Boddy and Dean, 1994],
considering all the slopes equal to zero.

We have measured the CPU used by the control task to
perform these scheduling algorithms. For both, it is small
compared to the CPU used by the progressive/anytime
tasks, and has a negligible influence on the predictions,
compared to those dues to the errors we have measured
(table 2). For both scheduling algorithms, the performance
is related to these errors.

We propose an approach to address the problem we have
already mentioned. This problem considers a task
performing a path calculation that needs as input at a level
an area to avoid which is calculated by a task performing
line-of-sight visibility calculation on the same level
(figures 3x).

We have considered two cases: one agent performing all
the terrain based calculations, and more than one agent,
each one being able to perform a sub-set of these
calculations, but being the only one with these capabilities.

In the first case, the scheduling is performed simply by
taking these dependencies into account. In the second case,
the idea is to make the server agent sending some
predictions about real-time delay at which it is able to
deliver intermediate results, given its current scheduling.
These predictions are then used by the client waiting for
the server results at each level, in order to optimize its own
scheduling. Taking the example we have described above,
the agent with line-of-sight visibility calculation
capabilities will send, at run-time and after each
scheduling, its expectations about the delivery of the
results at each level, taking the new scheduling into
account (figure 4). These predictions will then be used
the agent with path calculation capabilities that has made
the request in order to compute a path avoiding as much as
possible the visible area.

predictions

i "
J quests requests~

LOF : Line.Of-Sight Visibility

CAAM Agent

Figure 4 : Agents cooperation

The main assumption behind this is that both agents may
have also to answer to unpredictable requests made by
other agents of the system. If one agent knows when some
tasks should receive the answers they are waiting for, it
will be able to know that for example one other task, with
lower priority but ready to be executed/continued, should
not be started even if the CPU time it requires to finish its
current level is smaller than the delay before its deadline.
It could realize that this CPU required is still too important
considering the time when the waiting tasks with higher
priority will receive the answer to their requests, and
considering the CPU they will required by to finish their
current level. Indeed, with the predictions, the agent will be
able to assess when and for how long time the task ready
to be executed will be interrupted, and then maybe realize
that it will not be able to finish its current level. In that
case, it will execute the next task in the schedule with
lower priority that has some chance to provide another
result before its own deadline.

We have made some statistics to assess the benefits of
using the modified Earliest Deadline First scheduling
policy we have proposed.

The test has consisted in generating a script of 500 requests
like the one illustrated on figures 3x, to be answered by a
system of 2 CAAM agents. One performing line-of-sight
visibility calculation, the other performing path calculation.
Each request is sent to the first agent that makes a request
to the second in order to get the visible areas it needs to
compute an optimal path. Each request has a deadline of 3
minutes, and follows the previous one after a random
generated delay between 30 seconds and 3 minutes. This
simulates a realistic use of this decision support facility by
one user for more than 10 hours.

The same script has been used firstly with the 2 agents not
performing and then performing the modified Earliest
Deadline First scheduling policy. In the former case, the
tasks share the agent CPU until their deadline without
being preempted.

The results are shown in table 3. The second row of the
table gives the average number of levels reached before the
deadlines. The third row gives the average delay needed to
get the results at each level.

Table 3 Without / With Scheduling
Levels 1 2 3 4

Average 500 / 500 500 / 500 412 / 500 21 / 170
reached +0% +0% +21% +700%
Average 5.2 / 4.4 25.4 / 16.9 100/95 161 / 125

delay (sec.) - 15% -33% -5% -22%

This table shows that using the scheduling improves the
average quality of the answers delivered by the system

78

(170 calculations were able to reached the last level
compared to 21). Moreover, it improves the reactivity
allowing the system to provide results quicker.

Acknowledgments. This work has been done in the
context of the GRACE EUCLID RTP6.1 collaboration
agreement.

References

Adelantado M.; and Boniol F. 1993. Programming
distributed reactive systems: a strong and weak
synchronous coupling. In Proceedings of the 7th Workshop
on distributed algorithms, Lausanne.

Body M.; and Dean T.L. 1994. Deliberation scheduling for
problem-solving in time-constraint environments. Artificial
Intelligence V67 no 2, June 1994.

Brunessaux S.; Charpillet F.; Haton J.P.; and Le Mentec
J.C. 1992. ATOME-TR: Une architecture /t base de
connaissances multiples et orient6e temps-r6el, (in
French),Gdnie Logiciel & Systdmes Experts, No 28,
Sept. 1992.

Chetto H.; and Chetto 1989. M. Some results of the earliest
deadline scheduling algorithms. IEEE Transactions On
Software, 6-15, No 10

Cohen P.; Greenberg M.; and Hart D. 1990. Real-Time
problem solving in the Phoenix environment. Coins
Technical Report 90-28.

Horvitz E. 1997. Reasoning about beliefs and actions under
computational resource constraints. In Proceedings of the
Workshop UAI 87.

Ingrand F.F.; Coutance V. 1993. PRS REAKT:
Procedural reasoning versus Blackboard architecture for
Real-Time reasoning. In Proceedings of Avignon.

Lalanda P.; Charpillet F.; and Haton JP. 1992. Une
architecture temps r6el ~ base de tableau noir, (in French),
In Proceedings of. Avignon 92, Vol.1, 671-682.

Mouaddib A; Charpillet F,; and Haton J.P. 1993. Real-time
engine of messages for multi-agents architecture. In
Proceedings of. Avignon, 589-599.

Mouaddib A.; and Zilberstein S. 1995. Knowledge-based
anytime computation. In Proceedings of. IJCAI 95, 775-
781.

Mouaddib A.; and Galone J. 1996. Progressive scheduling
for real-time artificial intelligence tasks. In Proceedings of
the 4th Annual Workshop On Real-Time Applications.

Musliner D.J.; Durfee E.H.; and Shin K.G. 1993. CIRCA: a
Cooperative Intelligent Real-Time Control Architecture.
IEEE Trans.Sys, Man.and Cybernetics, Vol.23, No6,
Nov/Dec 93.

Musliner D.J.; Hendler J.A.; Agrawala A.K.; Durfee E.H.;
Strosnider J.K.; and Paul C.J. 1995. The challenge of real-
time AI. IEEE 0018-9162, Jan 95.

Salvant T., and Brunessaux St. 1997. Multi-Agent Based
Time-Critical Decision Support for C3I Systems. In
Proceedings of. Practical Application of Intelligent Agent
and Multi-Agent Technology, PAAM’97, April 97, London

Salvant T., Brunessaux St. and Grumbach A. 1996.
Coop6ration d’agents anytime pour la plannification en
environnement temps-r6el complexe. Proc. 3i~mes
journ6es francophones IAD&SMA, Port Camargues,
France (in French).

Zilberstein S. 1996. Using anytime algorithms in intelligent
systems. AI Magazine.

79

