
Resource-Bounded Reasoning for Complex Embedded Systems

Mark S. Boddy

Automated Reasoning Group

Honeywell Technology Center

3660 Technology Drive

Minneapolis, MN 55418

{boddy} @src.honeywell.com

1 Complex embedded systems
My current interest in resource-bounded reasoning primar-
ily concerns applications to the control of complex embed-
ded systems. Examples of such systems include manufac-
turing control systems, autonomous spacecraft, operations
planning for an airline, or integrated avionics for commer-
cial airliners. Most of the work to date on "applications" of
resource-bounded reasoning has addressed abstract func-
tions (e.g., heuristic search, probabilistic inference, vision
processing). In some cases, these capabilities are then ap-
plied to stand-alone applications such as path planning,
diagnosis, or user interface configuration. I do not mean
by this description to denigrate either the generation of
stand-alone applications or work on understanding how
to implement specific forms of reasoning under resource
bounds. These activities are essential.

However, there are some aspects of large, complex con-
trol systems which impose special requirements which will
not be addressed by work on stand-alone applications.
First and foremost is the fact that in such a system, the
function you propose to add will have to be integrated with
existing functions, which were designed in the absence of
that capability. Worse, it may well be the case that the
problem you propose to solve is sufficiently important that
it is already being addressed, which imposes additional
constraints based on the fact that in replacing the exist-
ing function, you must conform to interfaces designed for
a different, and presumably less capable, implementation.

For example, consider the implementation of an auto-
mated system for tank management at a refinery. Tank
management is already being done, most likely manually,
perhaps with the aid of an Excel spreadsheet. Decisions
about transfers from tank to tank interact with production
planning decisions, made using large LP codes at several
levels of granularity (years, quarters, or months), as well
as with day-to-day operations (ships arriving either late
or early), and on-line optimization of the refining process
to address current weather conditions and the actual as
opposed to estimated behavior of the system with a given
input crude composition.

In an ideal world, it might be possible to construct a
global optimizer that integrates tank management with
production planning so as to maximize the profit the re-
finery will make by providing the most accurate possi-
ble model of capacity available over time, taking into ac-
count as well a first-principles model of refinery operation,
and perhaps stochastic models for weather prediction and
ship arrival times. In a slightly less unrealistic situation,
perhaps we could implement a tank management system
that could interact intelligently with production planning

above, and refinery control below, adjusting these inter-
actions as needed to cope with unforeseen events. This
scenario is still overoptimistic: the reality is that current
legacy code is fairly stupid. More to the point, subsystem
interfaces are designed to reflect this fact.

The end result is that the insertion of new capabilities
into complex systems is constrained to be an incremental
process, in the sense that no more information or control is
likely to be available than was initially assumed to be nec-
essary. What’s more, the "problem" to which you propose
to provide a "solution" may very well have been engineered
out of existence.

2 The need for resource-bounded
reasoning for complex systems

Resource-bounded reasoning is already being done in com-
plex embedded systems. As above: if a given capability is
needed, it will be implemented in some form. Currently,
solution quality is traded for time or other resources either
through fixed resource bounds ("give me the best sched-
ule you can by noon Monday"), or through simplifying the
problem ("don’t worry about maintenance, that’s not im-
portant at this level"). These tradeoffs are almost invari-
ably implicit, and buried either in a hunk of code some-
where, or in someone’s head, depending on the level of
automation involved.

These tradeoffs occur in many, many different places.
Each one represents a possible opportunity to improve
system operation by providing a more principled trade-
off decision, subject, of course, to the engineering difficul-
ties outlined above. The next sections provides a brief set
of examples of potential applications for resource-bounded
reasoning as part of larger systems

3 Applications
3.1 Refineries

Refining operations have been automated from top-level
production planning and purchasing decisions, down to
minute-by-minute control of refining and product blend-
ing operations. At the level of refinery operations, there is
a need for capabilities including:

¯ State estimation and diagnosis, using some combina-
tion of model-based and rule-based systems, some-
times both at the same time for different parts of the
plant. This is complicated by the fact that sensors fail
more often than any other part of the plant

¯ Recovery planning, given the current state estimation
output.

97

From: AAAI Technical Report WS-97-06. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved. 



¯ Predictive reasoning for evaluating planning decisions
or control inputs (e.g., for refinery control or product
blending).

3.2 Distributed Air Traffic Management

Distributed air traffic management involves making deci-
sions on time scales ranging from minutes to hours, regard-
ing what planes take off, where they will fly, and where and
when they will land. The cost for making a tardy decision
regarding some potential conflict is fairly high. The kinds
of reasoning necessary here include:

¯ Conflict detection, including complex reasoning about
4-dimensional trajectories.

¯ Trajectory generation and optimization.

¯ Scheduling, for example ordering planes onto a run-
way.

¯ Communication and negotiation of commitments be-
tween adjacent air traffic control sectors.

3.3 Avionics and other integrated

systems

Aircraft avionics are one example of a class of "integrated
systems" in which the resource tradeoffs are more general.
The people who design these integrated hardware/software
systems recognize the interactions between hardware de-
signs and software implementations, and as yet have no
systematic approach to the problem.

This domain is somewhat less dynamic than the others
listed above, in that frequently the tradeoffs being made
are made at design time, not run time. However, it has
a richer structure: the resource bounds in this case may
involve (at the hardware level) any or all of power, weight,
communication bandwidth, or cost. These constraints de-
termine the limits on the system that can be built: is
it more important to maximize the throughput of some
set of general purpose processors, or to buy an expensive
special-purpose chip? Given the current software function
definitions, is the system memory-limited, CPU limited, or
bus-limited?

Of course, the software design feeds back into this as
well. It is hard enough to answer questions such as "given
a fixed amount of memory, what is the best set of tradeoffs
I can make among these various functions?" This problem
is even worse: "given the space of possible tradeoffs, how
much extra memory is it worth buying?"

98




