
Computer-generated Dialog as a Resource-bounded Activity

Toby Donaldson and Robin Cohen
{tjdonald,rcohen}@uwaterloo.ca

Department of Computer Science
University of Waterloo

Introduction
Resource bounds abound in conversation. Conversants
must work under time pressure, they have working
memory limitations, and they often have incomplete or
uncertain information about the state of the conversa-
tion. Fortunately, conversation can tolerate errors and
misconceptions: if you do not understand something
the speaker says, then you can initiate a clarification
dialog, or, if you recognize an error on the speaker’s
part, you can interrupt them to propose a repair.

In this abstract, we discuss some past work on
resource-bounds in conversation and describe our own
work on modelling conversation as a dynamic con-
straint satisfaction problem.

Resource Bounds in Conversation

The most immediate and common resource bound in
conversation is time. In real-time human-human con-
versation, there tends to be very few pauses, and peo-
ple must often speak before they have settled upon
~just the right thing" to say. Dialog is thus a time-
pressured activity. Carletta (1992) proposes that time-
pressure can be combatted by taking conversational
risks. An interesting example of such "risk" is evi-
denced by self-repairs, where a speaker catches himself
in mid-utterance, e.g. Go to the left -- uh -- the right
of the swamp.. This research has motivated the de-
velopment of a systemic natural language generation
system that is capable of anytime language processing
(Carletta et al. 1993). The system is seeded with de-
fault values for all possible output, and so if the system
is interrupted prematurely, it can always say something
by using its defaults, or by purposely inserting a hesi-
tation if a certain level of solution quality has not been
achieved. Fillers can easily be taken from a list of stock
phrases and hesitations are usually preferable to caus-
ing a long pause, or giving a default answer that would
have serious consequences if incorrect.

Time is not the only resource bound in conversa-
tion. Humans have working memory limitations, and
(Walker 1994) shows that limited working memory af-
fects a discourse strategy’s utility. In particular, her
computer experiments show that informationally re-

dundant utterances help agents handle their memory
limitations. Importantly, Walker demonstrates that
the efficiency, or quality, of a dialog depends on the
complexity of the task. Minimizing the number of ut-
terances is important, but it is not the only concern in
dialog; better dialogs can sometimes result by slightly
increasing the length of the dialog through the careful
insertion of redundant utterances.

Carletta and Walker’s work both show that discourse
behaviour changes significantly when resource bounds
are taken into account. Their work contrasts with
much computational discourse research, which has usu-
ally not taken resource bounds into consideration, but
instead has assumed that agents will have all the time
and memory they need to decide what to say. How-
ever, with an increasing focus on real-time dialog sys-
tems using voice (e.g. Mostow et al. 1994 ), GUIs (e.g.
Rich & Sidner 1996 ), and virtual reality (e.g. Rickel 
Johnson 1997 ), resource bounds must be dealt with.
While Walker and Carletta et al. both focus on mod-
elling resource bounds in humans, they are interested
in developing practical systems that can interact with
humans in a natural way. Such work is a good first step
towards practical systems, but ultimately we want to
develop discourse systems that are both sensitive to
human resource limitations, and take full advantage
of the computer’s superior speed and more accurate
memory.

Constraint-based Discourse Agents

Our research focuses on developing a model for turn-
taking in discourse which can be applied to the design
of intelligent agents that interact with users (or pos-
sibly other agents). The model is designed to specify
how and when to take a turn in a discourse regardless
of whether the form of communication is natural lan-
guage or something more visually oriented (e.g., GUIs).
Previous research in discourse processing has examined
how to analyze utterances produced by other conver-
sational participants and how to generate appropriate
cooperative responses, e.g. (Chu-Carroll & Carberry
1994; van Beek, Cohen, & Schmidt 1993).

Conversation is ultimately a real-time process, so our

i01

From: AAAI Technical Report WS-97-06. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved. 



model explicitly takes time constraints into account.
We treat a conversational agent as consisting of three
separate and concurrent processes:

* A pre-proeessing module that takes raw speech (or
key clicks, or mouse movements, etc.) as input and
converts that into a form the agent can reason with;

. A thinking module that solves a turn-taking problem;
the solution to a turn-taking problem is effectively
the system’s next utterance;

. A listening module that looks for the appropriate
turn-endlng and turn-yielding signals from the cur-
rent speaker. An agent needs to know if its current
solution is of high enough quality to be used, but
it needs to know if the current speaker is willing to
give up the floor.

This model does not require any one particular kind
of implementation strategy, although we are interested
in modelling complex interaction as a kind of dynamic
constraint satisfaction problem (DCSP) that can 
solved by local search methods. At any time in a con-
versation, an agent will have some number of goals
to consider, and one (or more) must be chosen to 
achieved. More concretely, at any one time, an agent
is considering which goal to act upon from a list of
goals Gi,..., G~. The problem is for the agent to find
the n (usually < k) goals that can be placed in the
order that results in the fewest penalty points. A fixed
number of slots, labelled V1,..., V, are used, and it is
known that when the agent is required to act, it will
first try to achieve the goal in slot V1, and then V2,
and so on. Ordering constraints can be put on pairs
of goals, such that if two constrained goals are out of
order, a penalty is incurred. A perfect ordering would
have 0 penalty points. We model this problem as a
DCSP, which is a natural and flexible framework for
representing such an ordering problem. It is dynamic
since, new goals/constraints may be added/dropped,
based on what the other conversant says and how the
conversation progresses.

It is important to note that we are assuming a local
search method will be used to solve the DCSP. Classi-
cal backtracking methods could be used (Tsang 1993),
hut local search is preferable for at least three reasons:
local search algorithms are usually anytime algorithms;
local search methods work on over-constrained CSPs
without modification; and, when the structure of the
DCSP changes, i.e. a constraint or goal is changed,
then the best solution found for the previous CSP can
be used to seed the current caP.

As mentioned, the constraints are between pairs of
goals, and they generally refer to the types of goals.
For example, repair type goals should usually be satis-
fied before information-seeking goals, because the re-
pair could affect the correctness of the information be-
ing sought. Other constraints based on time, causal-
ity, user preferences, the domain, etc. can also be
taken into consideration. More details on the par-

ticular DCSP we are solving and the relevant con-
straints can be found in (Donaldson & Cohen 1997a;
1997b).

Example Dialog

What follows is a simplified example of how the DCSP
framework works. Suppose a student goes to a course
advisor for help choosing a schedule of courses. The
student begins by asking

STUDENT: I’m a part-time engineering major.
Can I take CSIO0 for credit?

As the student is speaking, the advisor is listening and
we assume that question type goals are triggered in
the advisor. Question-type goals are less specific than
the goal-types given in (Donaldson & Cohen 1997b),
but they are adequate to handle the current example.
We suppose that 4 yes/no question goals are triggered
roughly in the order given:

¯ GI: "Are you in electrical engineering?" (electrical
engineering students cannot take CS100)

¯ G2: "Are you minoring in mathematics?" (math
minor students cannot take CSl00)

¯ G3: "Do you mean CSl00 on-campus?" (CS100 is
an ambiguous name)

¯ G4: "Have you taken a CS course for credit?" (you
cannot take CSIO0 if you’ve taken any other CS
course)

The problem is to put G1,...,G4 in the order that
minimizes the length of the dialog. For this example,
the only concern is to answer the question posed by the
user; moreover, the answer to G3 does not alter the ul-
timate advice to the student. Goals G1 and G2 are trig-
gered because the system believes by default that an
engineering or math student must have already taken
a CS course. Question G4 "covers" Gi and G2, and
we can see that it is the best question to ask first. The
idea of minimizing the number of questions asked was
first used by van Beek et al. (1993) to direct the design
of clarification subdialogs when inferring a user’s plan.
The DCSP formalism we represent here is more gen-
eral, since it deals with arbitrary constraints between
general turn-taking goals, and allows for anytime pro-
cessing. Without being able to fully reason about the
set of possible goals, the system could, for instance,
produce the dialog below (based on the goal ordering
G1, G2, G3, G4):
ADVISOR: Are you in electrical engineering?
STUDENT: No.
ADVISOR: Are you minoring in mathematics?
STUDENT: NO.
ADVISOR: Do you mean CSIO0 on-campus?
STUDENT: Yes.
ADVISOR: Have you taken a CS course for credit?
STUDENT: Yes.
ADVISOI~: Since you’ve already taken a CS course,

you cannot take CSIO0 for credit.

102



For example, the student might speak so quickly that
the advisor has no chance to perform any goal-ordering
while the student is speaking. Advising sessions are
not typically highly time-pressured situations, but ex-
amples do arise where a student will deliver a lot of
information quite quickly; in this situation, the advi-
sor might hesitate in order to buy some more thinking
time. We could follow the suggestion of Carletta et al.
and decide when to hesitate instead of trying to achieve
the first goal, by checking if the goal-ordering is above
a domain-dependant quality threshold Ohe.ltate.1 Then,
if the system is forced to act2 and the solution quality
is below Ohe.itate, it can hesitate by saying, for instance,
Let me think about that..., in the hope that in the time
it takes to say this an acceptable goal ordering will be
found. If the system has not found a better goal or-
dering, then it can hesitate again, although eventually
the system should give up and say something like I’m
sorry, could you re-phrase your questionf. Now sup-
pose that in our example the quality of the ordering
G1, G2, Gs, G4 is above ~hesitate. In this case, question
G1 would be asked, and the advisor would keep or-
dering the goals while the exchange continues, so in
that time it could come to achieve the better order
of G4, G2, Gs. It would then ask G4 and G2, so in
retrospect the system acted as if it had found the sub-
optimal, but adequate, ordering GI, G4, G2, G3 at the
beginning.

Using DCSPs also allows us to handle the case where
the student realizes what the advisor is getting at and
so cuts a subdialog short by directly providing the
sought-after information. In our sample dialog, if after
the systems asks Gs the student happens to answer his
own original question and responds Oh, I see, I can’t
take CSIO0 because I’ve already taken CS102, then the
advisor can drop all of its goals with respect to answer-
ing the student’s question, ending the dialog.

Discussion
Carletta et al. (1993) suggest another possibility 
for taking advantage of a performance profile: along
with a lower quality bound of 0hesitate , an upper qual-
ity bound of 0~p~ak can be used to let the system decide
when to speak in cases where it can speak, but is not
absolutely required to do so. Such cases arise when a
speaker issues a turn-yielding signal, that is, an indi-
cation that they might be willing to give up the floor.
Because conversation is a dynamic activity where new
information is coming in all the time, we do not ex-
pect that using 08peak will prove useful. In general, it
appears to be better to wait until the circumstances
of the conversation require you to speak, in order to
gather all the information you can for deciding what

1 An ordering with fewer penalty points is said to be of

higher quality.
2For instance, if the current pause length is unaccept-

able.

to say. Also, interrupting a speaker is a delicate issue,
since too many interruptions from a computer system
can irritate a person to the point where they want to
turn the system off.

We are Mso interested in the idea of using a "work-
ing memory" of goals to help make the system act ef-
ficiently. At any one time, the system has n goals in
memory, but only k (< n) goals are put in working
memory. Local search is applied to working memory,
and a separate and concurrent process is used to de-
cide which goals in "long term" memory should be pro-
moted to working memory. For large numbers of goals,
this scheme could prove more efficient than performing
local search on all goals.

References

Carletta, J.; Caley, It.; and Isard, S. 1993. A sys-
tem architecture for simulating time-constrained lan-
guage production. Technical Report rp-43, Human
Computer Research Centre, University of Edinburgh.

Carletta, J. 1992. Risk-taking and recovery in task-
oriented dialogue. Ph.D. Dissertation, University of
Edinburgh Dept. of Artificial Intelligence.
Chu-Carroll, J., and Carberry, S. 1994. A plan-based
model for response generation in collaborative task-
oriented dialogues. In Proceedings of AAAI-94, 799-
805.

Donaldson, T., and Cohen, It. 1997a. Constraint-
based discourse agents. In AAAI-97 Workshop on
Constraints and Agents.

Donaldson, T., and Cohen, It. 1997b. A constraint
satisfaction framework for managing mixed-initiative
discourse. Presented at AAAI-97 Symposium on
Mixed-Initiative Interaction.
Mostow, J.; froth, S.; Hauptmann, A.; and Kane,
M. 1994. A prototype reading coach that listens. In
Proceedings of AAAI-94, 785-792.

Rich, C., and Sidner, C. 1996. Adding a collaborative
agent to graphical user interfaces. In UIST’96.
Itickel, J., and Johnson, L. 1997. Integrating ped-
agogical capabilities in a virtual environment agent,.
In Proceedings of the First International Conference
on Autonomous Agents.

Tsang, E. 1993. Foundations of Constraint Satisfac-
tion. Academic Press.

van Beck, P.; Cohen, It.; and Schmidt, K. 1993. From
plan critiquing to clarification dialogue for coopera-
tive response generation. Computational Intelligence
9(2):132-154.
Walker, M. 1994. Experimentally evaluating commu-
nicative strategies: The effect of the task. In Proceed-
ings of AAAI-94, 86-93.

103




