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Abstract

Applications of machine learning have shown re-
peatedly that the standard assumptions of uni-
form class distribution and uniform misclassifi-
cation costs rarely hold. Little is known about
how to select classifiers when error costs and class
distributions are not known precisely at train-
ing time, or when they can change. We present
a method for analyzing and visualizing the per-
formance of classification methods that is robust
to changing distributions and allows a sensitivity
analysis if a range of costs is known. The method
combines techniques from ROC analysis, decision
analysis and computational geometry, and adapts
them to the particulars of analyzing learned clas-
sifters. We then demonstrate analysis and visual-
ization properties of the method.

Introduction

Existing classifier learning methods are rarely sen-
sitive to skewed class and cost distributions. Even
methods that are sensitive break down when class
and cost distributions are not known precisely at
training time, which they rarely are, or when the
distributions can change. Furthermore, when ap-
plying classification algorithms to real-world tasks,
typically many different classfiers are generated by
varying algorithm parameters, training distribu-
tions, or the learning algorithm itself. This leads
potentially to a very large number of classifiers to
be evaluated. It is important not only to identify
the best classifier under fixed conditions, but also to
understand how classifiers compare in general and
how recommendations would change if conditions
change.

This paper’s contribution is a method for ana-
lyzing and visualizing classifier performance. The
method accomodates imprecise and changing class
and cost distributions. It can handle a large num-
ber of classifiers and allows sensitivity analysis if
bounds can be placed on the distributions.

The ROC convex hull method combines tech-
niques from ROC analysis, decision analysis and
computational geometry. The method decouples

classifiers’ performance from specific class and cost
distributions, and may be used to visualize the sub-
set of methods that are optimal under any cost and
class distribution assumptions. Constraints on the
cost and class distributions sectionalize the hull into
regions containing the optimal classifiers under the
given constraints. The method is incremental and
easily incorporates new and varied classifiers, in-
cluding classifiers hand-crafted by human experts.

After discussing background, motivation, and ex-
isting methods from decision theory and ROC anal-
ysis, we present the ROC convex hull method,
which is a hybrid of these techniques. We then
demonstrate its usefulness visually through a series
of examples taken from a fraud detection applica-
tion.

The Inadequacy of Accuracy

A tacit assumption in the use of accuracy as a clas-
sifier evaluation metric is that the class distribution
among examples is constant and relatively balanced.
In the real world this is rarely the case. Classifiers
are often used to sift through a large population of
normal or uninteresting entities in order to find a
relatively small number of unusual ones; for exam-
ple, screening blood samples, looking for defrauded
customers, or checking for defective parts. Because
the unusual or interesting class is rare among the
general population, the class distribution is very
skewed (Ezawa, Singh, & Norton, 1996; Fawcett 
Provost, 1996; Saitta, Giordana, & Neri, 1995).

Evaluation based on accuracy breaks down as the
class distribution becomes more skewed. Consider
a domain where the classes appear in a 999:1 ra-
tio. A simple rule, always classify as the maximum
likelihood class, yields a 99.9% accuracy. Presum-
ably this is not satisfactory if a non-trivial solution
is sought. Skews of 102 are common in fraud de-
tection and skews greater than 106 have been re-
ported in other classifier learning work (Clearwater
& Stern, 1991).

Evaluation by classification accuracy also tacitly
assumes equal error costs--that a false positive er-
ror is equivalent to a false negative error. In the
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real world this is rarely the case, because classifica-
tions lead to actions. Actions may be as disparate
as informing a patient of a disease, routing a let-
ter to a specific bin, or moving the control rods
of a nuclear reactor. Actions have consequences,
sometimes grave, and rarely are mistakes evenly
weighted in their cost. Indeed, it is hard to imagine
a domain in which a learning system may be indif-
ferent to whether it makes a false positive or a false
negative error. In such cases, accuracy maximiza-
tion should be replaced with cost minimization.

The problems of unequal error costs and uneven
class distributions are closely related. Indeed, it
has been suggested that high-cost instances can
be compensated for by increasing their prevalence
in an instance set (Breiman, Friedman, Olshen, 
Stone, 1984). Unfortunately, very little work has
been published on either problem. There exist sev-
eral dozen articles (Turney, 1996) in which tech-
niques are suggested, but little is done to evaluate
and compare them (the article of Pazzani, et al.
(1994) being the exception). Furthermore, the lit-
erature provides little guidance in situations where
cost and class distributions are not known precisely
or can change.

Evaluating and Visualizing Classifier
Performance

Let p(PII) be the estimated probability that in-
stance I is positive. Let NFp and NFN be the
total number of false positive and false negative er-
rors, respectively, on a test set and let c(FP) and
c(FN) be the cost of a single false positive and false
negative error, respectively. The true positive rate,
TP, and false positive rate, FP, of a classifier are:

TP = p(Classify Positive I Positive)

positives correctly classified
total positives

FP = p(Classify Positive I Negative)

negatives incorrectly classified
total negatives

If a classifier produces posterior probabilities,
decision analysis gives us a way to produce cost-
sensitive classifications from the classifier (Wein-
stein & Fineberg, 1980). Classifier error frequencies
can be used to approximate probabilities (Pazzani
et al., 1994). For an instance I, the decision to emit
a positive classification is:

[1 - p(PII)] . c(FP) < p(PII) c(FN)

Regardless of whether a classifier produces prob-
abilistic or binary classifications, its cost on a test
set can be evaluated empirically as:

Cost = NFp. c(FP) + NFN" c(FN)

IF_____
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Figure 1: An ROC graph of four classifiers

Given a set of classifiers, a set of examples, and a
precise cost function, most work on cost-sensitive
classification uses an equation such as this to rank
the classifiers according to cost and chooses the
minimum.1

However, practical classifier evaluation is still
problematic because the learning context is often
uncertain. In practice, error costs can seldom be
stated exactly; distributions and error costs change
over time, and in some domains the actions of
the classifier feed back to its environment. In
our fraud detection work, the specification of costs
is imprecise and class distributions change regu-
larly (though short-term forecasts can be relatively
good). One cannot ignore either type of distribu-
tion, nor can one assume that the distributions are
precise and static.

A further limitation of decision-theoretic evalu-
ation is that it does not provide a means of high-
level visualization, and sensitivity analysis is com-
plex. Identifying the best classifier under fixed con-
ditions is important, but we must also understand
how classifiers compare in general and how recom-
mendations would change if conditions change--
either slightly or dramatically. What is needed is
a method of analysis of classifier performance that
accomodates the dynamics and imprecision of real-
world environments.

Receiver Operating Characteristic (ROC) graphs
have long been used in signal detection theory to
depict tradeoffs between hit rate and false alarm
rate (Egan, 1975). ROC analysis has been extended
for use in visualizing and analyzing the behavior of
diagnostic systems (Swets, 1988), and is used for
visualization in medicine (Beck & Schultz, 1986).
ROC graphs are occasionally mentioned in classifier
learning work (Ezawa et al., 1996; Catlett, 1995).

We will use the term ROC space to denote the

ZFor simplicity of presentation, we assume that cor-
rect classifications do not have associated costs and that
benefit information is folded into error cost.
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classifier performance space used for visualization
in ROC analysis. On an ROC graph, TP is plotted
on the Y axis and FP is plotted on the X axis.
These statistics vary together as a threshold on
a classifier’s continuous output is varied between
its extremes, and the resulting curve is called the
ROC curve. An ROC curve illustrates the error
tradeoffs available with a given classifier. Figure 1
shows a plot of the performance of four classifiers,
A through D, typical of what we see in the creation
of alarms for fraud detection (Fawcett & Provost,
1996).

For orientation, several points on an ROC graph
should be noted. The lower left point (0, 0) repre-
sents the strategy of never alarming; this yields no
false alarms but no true positives. Similarly, the
upper right point (1, 1) represents the strategy 
always alarming. The point (0, 1) represents per-
fection: no false alarms are issued and all possible
true alarms are issued. The line y = x (not shown)
represents the strategy of random guessing.

Informally, one point in ROC space is better than
another if it is to the northwest (TP is higher, FP is
lower, or both). An ROC graph allows an informal
visual comparison of a set of classifiers. In Figure I,
curve A is better than curve D because it dominates
in all points.

ROC graphs illustrate the behavior of a clas-
sifier without regard to class distribution or error
cost, and so they decouple classification perfor-
mance from these factors. Unfortunately, while an
ROC graph is a valuable visualization technique,
ROC analysis does a poor job of aiding the choice
of classifiers. Only when one classifier clearly dom-
inates another over the entire performance space
can it be declared better. Consider the classifiers
shown in Figure 1. Which is best? The answer de-
pends upon the performance requirements, i.e., the
error costs and class distributions in effect when the
classifiers are to be used.

Some researchers advocate choosing the classifier
that maximizes the product (1 - FP) ¯ TP. Geo-
metrically, this corresponds to fitting rectangles un-
der every ROC curve and choosing the rectangle of
greatest area. This and other approaches (Swets,
1988; Beck & Schultz, 1986) calculate average per-
formance over the entire performance space. These
approaches may be appropriate if costs and class
distributions are completely unknown, but typi-
cally some domain-specific information is available.
In such cases, we can do better by folding class and
cost distribution information into the visual analy-
sis.

A Hybrid Method: The ROC Convex
Hull

In this section, we combine decision analysis with
ROC analysis, and adapt them for analyzing and

oA o.s i~)o 0.2 0.6
False Positive rate

Figure 2: The ROC convex hull

visualizing the performance of learned classifiers.
The method is based on three high-level principles.
First, the ROC space is used to separate classifica-
tion performance from class and cost distribution
information. Second, decision-analytic information
is projected onto the ROC space. Third, we use a
convex hull to identify the subset of methods that
are potentially optimal under any conditions.

Iso-performance lines

Decision theory gives us a precise way to quan-
tify the performance of classifiers under fixed class
and cost distribution assumptions, but organizing
and visualizing this information can be difficult.
By separating classification performance from class
and cost distribution assumptions, we can project
the decision goal onto ROC space for a neat visu-
alization. Formally, let the prior probability of a
positive example be p(P), so the prior probability
of a negative example is p(N) = 1 - p(P); let the
cost of a false positive error be c(FP), and let the
cost of a false negative error be c(FN). The ex-
pected cost of the classifier represented by a point
(TP,FP) in ROC space is:

p(P) (1- TP). c( FN) + p( N). FP . 

Therefore, two points, (TP1 ,FP1 )
(TP2,FP2), have the same performance if

TP2 - TP1 _ p(g)c(FP)
FP2 - FPt p(P)c(FN)

and

This equation defines the slope of an iso-
performance line, i.e., all classifiers correspond-
ing to points on the line have the same expected
cost. Each set of class and cost distributions
defines a family of iso-performance lines. Lines
"more northwest"--having a larger TP-intercept--
are better because they correspond to classifiers
with lower expected cost.
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Figure 3: The ROC hull and two iso-performance
lines

The ROC convex hull

Consider the ROC plots of a large set of classi-
tiers under different conditions (parameter settings,
training regimens, output threshold values, etc.).
The optimal classifiers are those on the best iso-
performance line defined by the target class and
cost distributions. In most real-world cases the
target distributions are not known precisely so it
is valuable to be able to identify what subset of
classifiers is potentially optimal under any condi-
tions. Each set of conditions defines a family of
iso-performance lines, and for a given family, the
optimal methods are those that lie on the "most-
northwest" iso-performance line. Thus, a classi-
fier is potentially optimal if and only if it lies on
the northwest boundary (i.e., above the line y=x)
of the convex hull of the set of points in ROC
space. Space limitations prohibit a formal proof,
but one can see that if a point lies on the convex
hull, then there exists a line through that point
such that no other line with the same slope (which
defines a family of iso-performance lines) through
any other point has a larger TP-intercept, and thus
the classifier represented by the point is optimal un-
der any distribution assumptions corresponding the
that slope. If a point does not lie on the convex hull,
then for any family of iso-performance lines there is
another point that lies on an iso-performance line
with the same slope but larger TP-intercept, and
thus the classifier can not be optimal.

The convex hull of the set of points in ROC
space will be called the ROC convex hull of the
corresponding set of classifiers. Figure 2 shows the
curves of Figure 1 with the ROC convex hull drawn
(CH, the border between the shaded and unshaded
areas). By the previous argument, neither B nor 
is optimal under any circumstances, because none
of the points of the ROC curve of either classifier
lies on the convex hull. We can Mso remove from
consideration any points of A and C that do not lie

on the hull.
Consider these classifiers under two distribution

scenarios. In each, negative examples outnumber
positives by 10:1. In scenario fit, false positive and
false negative errors have equal cost. In scenario B,
a false negative is 100 times as expensive as a false
positive (e.g., missing a case of fraud is much worse
than a false alarm). Each scenario defines a family
of iso-performance lines. The lines corresponding
to scenario fit have slope 10; those for B have slope
! Figure 3 shows the convex hull with two iso-
10"
performance lines, a and 8, drawn on it. Line a
is the "best" line with slope 10 that intersects the
convex hull; line fl is the best line with slope
that intersects the convex hull. Each line identifies
the optimal classifier under the given distribution.

Generating the ROC Convex Hull

We call the visualization and analysis of classifier
performance based on the ROC convex hull and
iso-performance lines the ROC convex hull method.

1. For each classifier, plot TP and FP in ROC
space. For continuous-output classifiers, vary a
threshold over the output range and plot the
ROC curve.

2. Find the convex hull of the set of points repre-
senting the predictive behavior of all classifiers
of interest. For n classifiers this can be done
in O(nlog(n)) time by the QuickHull algorithm
(Barber, Dobkin, & Huhdanpaa, 1993).

3. For each set of class and cost distributions of in-
terest, find the slope (or range of slopes) of the
corresponding iso-performance lines.

4. For each set of class and cost distributions, the
optimal classifier will be the point on the convex
hull that intersects the iso-performance line with
largest TP-intercept (ranges of slopes specify hull
segments).

Using the ROC Convex Hull

We are often faced with the task of managing and
evaluating classifiers learned by a wide variety of
different learning algorithms. We experiment with
different algorithm parameters to determine the
effect on classifier performance. For continuous-
output classifiers we vary output threshold values.
We also experiment with different training regi-
mens; for example, should we use the distribution
present in the sample at hand, or should we equal-
ize class distributions for training?

The ROC Convex Hull can be used for manag-
ing the classifier set. Figures 2 and 3 demonstrate
how the performance of multiple classifiers can be
visualized under different cost and class distribu-
tions. We now demonstrate additional benefits of
the method.
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Figure 4: Classifiers E, F and G added

False Positive rate

Figure 5" C nearly optimal through entire range

Managing a variety of classifiers

The ROC convex hull method accomodates both
binary and continuous classifiers. Binary classi-
tiers yield individual points in ROC space. Con-
tinuous classifiers produce continuous numeric out-
puts which can be thresholded, yielding a series of
(FP, TP) pairs comprising an ROC curve. Each
point may or may not contribute to the ROC con-
vex hull. Figure 4 depicts the binary classifiers E, F
and G added to the previous hull. E may be optimal
under some circumstances because it contributes to
the convex hull. Classifiers F and G will never be
because they do not extend the hull.

New classifiers can be added incrementally to an
ROC convex hull analysis, as demonstrated above
with the addition of classifiers E,F, and G. Each
new classifier either extends the existing hull or
does not. In the former case the hull must be up-
dated accordingly, but in the latter case the new
classifer can be ignored. Therefore, the method
does not require saving every classifier (or saving
statistics on every classifier) for re-analysis under
different conditions--only those points on the con-
vex hull. No other classifiers can ever be optimal,
so they need not be saved. For the purposes of com-

parison and sensitivity analysis, it is often useful to
save the entire ROC curves for classifiers that con-
tribute to the ROC convex hull. Figure 3 showed a
situation in which no classifier is even close to op-
timal over the entire hull. By contrast, in Figure 5,
while A and C are each optimal over a portion of
the range, C is nearly optimal over the entire range.

Changing distributions and costs

Class and cost distributions that change over time
necessitate the reevaluation of classifier choice. In
fraud detection, costs change based on workforce
and reimbursement issues; the amount of fraud
changes monthly. With the ROC convex hull
method, visualizing the effect of a new distribu-
tion involves only calculating the slope(s) of the
corresponding iso-performance lines and intersect-
ing them with the hull, as shown in Figure 3.

The ROC convex hull method scales gracefully to
any degree of precision in specifying the cost and
class distributions. If nothing is known about a dis-
tribution, the ROC convex hull shows all classifiers
that may be optimal under any conditions. Fig-
ure 2 showed that, given classifiers A,B,fi and D of
Figure 1, only A and fi can ever be optimal.

With complete information, the method identi-
fies the optimal classifier(s). In Figure 3 we saw
that classifier A (with a particular threshold value)
is optimal under scenario A and classifier fi is op-
timal under scenario B. Next we will see that with
less precise information, the ROC convex hull can
show the set of possibly optimal classifiers.

Sensitivity analysis

Imprecise distribution information defines a range
of slopes for iso-performance lines. This range of
slopes intersects a segment of the ROC convex hull,
which allows visual sensitivity analysis. For exam-
ple, if the segment defined by a range of slopes cor-
responds to a single point in ROC space or a small
threshold range for a single classifier, then there
is no sensitivity to the distribution assumptions in
question. Consider a scenario similar to ,4 and B in
that negative examples are 10 times as prevalent as
positive ones. In this scenario, the cost of deMing
with a false alarm is between $5 and $10, and the
cost of missing a positive example is between $500
and $1000. This defines a range of slopes for iso-
performance lines: ~ < m < ~. Figure 6a depicts
this range of slopes and the corresponding segment
of the ROC convex hull. The figure shows that the
choice of classifier is insensitive to changes within
this range (and tuning of the classifier’s threshold
will be relatively small). Figure 6b depicts a sce-
nario with a wider range of slopes: ~ <_ m < 2. The
figure shows that under this scenario the choice of
classifier is very sensitive to the distribution. Clas-
sifiers A,fi, and E each are optimal for some sub-
range.
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Figure 6: Sensitivity analysis using iso-performance lines. (a) low sensitivity, (b) high sensitivity, (c) 
doing nothing is the best strategy

A particularly interesting question in any do-
main is, When is doing nothing better than any
of my available methods? The ROC hull method
gives a straightforward visualization of the answer.
Consider Figure 6c. The point (0,0) corresponds
to doing nothing, i.e., issuing negative classifica-
tions regardless of input. Any set of cost and class
distribution assumptions for which the best hull-
intersecting iso-performance line passes through the
origin (e.g., line ~) defines a scenario where this null
strategy is optimal. In the example of Figure 6c,
the range of scenarios is small for which the null
strategy is optimal; the slopes of the lines quantify
the range.

Limitations and Implications

The ROC convex hull method enables analysis and
visualization of classifier performance when class
and cost distributions are not known precisely.
However, the method has limitations with respect
to universal use. In this paper, we have simplified
by assuming there are only two classes and that
costs do not vary within a given type of error. The
first assumption is essential to the use of a two di-
mensional graph; the second assumption is essential
to the creation of iso-performance lines. We have
not investigated weakening these assumptions.

Furthermore, the method is based upon the max-
imization of expected value as the decision goal.
Other decision goals are possible (Egan, 1975). For
example, the Neyman-Pearson observer strategy
tries to maximize the hit rate for a fixed false-
alarm rate. In the ROC convex hull framework,
a Neyman-Pearson observer would find the vertical
line corresponding to the given FP rate, and inter-
sect it with a "non-decreasing" hull, rather than
the convex hull, (and move left horizontally, if pos-

sible).
The tradeoff between TP and FP rates is sim-

ilar to the tradeoff between precision and recall,
commonly used in Information Retrieval (Bloedorn,
Mani, & MacMillan, 1996). However, precision and
recall do not take into account the relative size of
the population of "uninteresting" entities, which is
necessary to deal with changing class distributions.

Existing cost-sensitive learners are brittle with
respect to imprecise or changing distributions. Ex-
isting methods can be categorized into four cate-
gories: (i) the use of cost distribution in build-
ing a classifier, e.g., for choosing splits in a de-
cision tree (Breiman et al., 1984; Pazzani et al.,
1994; Draper, Brodley, & Utgoff, 1994; Provost &
Buchanan, 1992); (ii) the use of the cost distribu-
tion in post-processing the classifier, e.g., for prun-
ing a decision tree (Breiman et al., 1984; Pazzani
et al., 1994; Draper et al., 1994), for finding rule
subsets (Catlett, 1995; Provost & Buchanan, 1995),
or for setting an output threshold; (iii) estimate the
probability distribution and use decision-analytic
combination (Pazzani et al., 1994; Catlett, 1995;
Draper et al., 1994; Ezawa et al., 1996; Duda &
Hart, 1973); and (iv) search for a bias with which
a good classifier can be learned (Turney, 1995;
Provost & Buchanan, 1995). Of these, only (iii) 
handle changes in cost (or class) distribution with-
out modifying the classifier. If any such method
estimates the posterior probabilities perfectly, then
it will give the optimal ROC curve under any class
and cost distributions.

It is unlikely that a perfect method that is also
practical will be found. Typically, no method dom-
inates all others (Pazzani et al., 1994). Therefore
robust methods for analysis and comparison of clas-
sifiers are needed. As future work, we propose a
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search similar to that taken by (iv) above, except
that the goal is to find classifiers that extend the
ROC convex hull. Thus, the resultant set of classi-
fiers will be robust to imprecise and changing dis-
tributions.

Conclusion

The ROC convex hull method combines techniques
from decision theory, ROC analysis and computa-
tional geometry, and adapts them to the analysis
and visualization of classifier performance. The
method has many desirable properties. It is graph-
ical, intuitive, and provides a view of classifier per-
formance both in general and under specific distri-
bution assumptions. It is powerful enough to rule
out classifiers over all possible scenarios. Due to
its incremental nature, new classifiers can be incor-
porated easily, e.g., when trying a new parameter
setting, and it handles binary as well as continuous
classifiers.

It has been noted many times that costs and class
distributions are difficult to specify precisely. Clas-
sifier learning research should explore flexible sys-
tems that perform well under a range of conditions,
perhaps for part of ROC space. We hope that our
method for analysis of classifiers can help free re-
searchers from the need to have precise class and
cost distribution information.
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