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Abstract

Many important physical phenomena, such as temper-
ature distribution, air flow, and acoustic waves, are
described as continuous, distributed parameter fields.
Controlling and optimizing these physical processes
and systems are common design tasks in many sci-
entific and engineering domains. However, the chal-
lenges are multifold: distributed fields are concep-
tually harder to reason about than lumped parame-
ter models; computational methods are prohibitively
expensive for complex spatial domains; the underly-
ing physics imposes severe constraints on observability
and controllability.
This paper develops an ontological abstraction and
an aggregation-disaggregation mechanism, in a frame-
work collectively known as spatial aggregation
(SA), for reasoning about and synthesizing distributed
control schemes for physical fields. The ontological
abstraction models physical fields as networks of spa-
tial objects. The aggregation-disaggregation mecha-
nism employs a set of data types and generic oper-
ators to find a feasible control structure, specifying
control placement and associated actions that satisfy
given constraints. SA abstracts common computa-
tional patterns of control design and optimization in
a small number of operators to support modular pro-
gramming; it builds concise and articulable structural
descriptions for physical fields. We illustrate the use
of the SA ontological abstraction and operators in an
example of regulating a thermal field in industrial heat
treatment.

Keywords. Qualitative reasoning; Spatial reason-
ing; Ontologies; Decentralized control; Distributed AI;
Programming languages.

Introduction
Continuous, distributed parameter fields are common
physical phenomena: consider the temperature field in
a building, the air flow around an airplane wing, or the
noise from a copy machine. There are enormous prac-
tical benefits to reasoning about and controlling these
physical processes and systems. For instance, the drag
on an airplane can be reduced by analyzing and con-
trolling the air flow around the wings. Temperature in

a "smart" building can be regulated to maximize oc-
cupant comfort while minimizing energy consumption.
Because of the rapid advance in micro-fabrication tech-
nology that can integrate and produce micro-electro-
mechanical system (MEMS) devices on a massive scale,
we are becoming increasingly reliant on large networks
of sensors, actuators, and computational elements to
augment our ability to interact with and control the
physical environment (Berlin 1994).

However, there is enormous challenge in controlling
and optimizing physical fields using networks of sen-
sors and controllers. The difficulties arise from three
sources. First, a distributed parameter field is con-
ceptually harder to reason about and model than a
lumped parameter system such as a circuit. Spatial
topology, metric, material properties and physical laws
all come into play, in addition to the combinatorial
structures. The underlying physical processes might
be nonlinear and defy analytic, closed form solution.
Second, numerical methods developed for designing
and controlling physical fields require solving large sys-
tems of equations and hence are prohibitively expen-
sive for large, irregular geometric domains and highly
non-uniform, nonlinear phenomena. Third, physical
laws constrain the ability of spatially distributed, local
agents to sense and affect the environment (Seidman
1996). Local sensors and control elements measure
and interact with small neighborhoods around them.
Macroscopic consequences are aggregated from local
actions. Consequently, the design, programming, and
coordination of distributed computational agents im-
mersed in physical media require abstraction mecha-
nisms, inference methods, and programming languages
different from those for reasoning about and control-
ling centralized, lumped parameter models.

In this paper, we develop an ontological abstraction
for physical fields and an aggregation-disaggregation
mechanism for reasoning about and synthesizing dis-
tributed control schemes for physical fields. The onto-
logical abstraction encodes neighborhood relations and
equivalence classes and describes the structure and be-
havior of a field in multiple layers of spatial objects.
The aggregation-disaggregation mechanism finds a lea-
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sible control design for a physical field Specifying con-
trol placement and associated actions that meet given
design objectives; it employs spatial object, field,
and ngraph data types and generic operators such as
aggregate, disaggregate, classify, interpolate,
redescribe, and update that manipulate and trans-
form objects. The ontological abstraction, generic
operators, and aggregation-disaggregation mechanisms
are collectively called spatial aggregation (SA); 
have implemented the spatial aggregation language
(SAL) to support modular programming in this frame-
work. SA transforms higher-level control objectives
into local control actions using divide-and-conquer, ex-
ploiting physical constraints of fields manifested as lo-
cality, continuity, and spatial and temporal scales. We
illustrate the use of the SA ontological abstraction and
operators in an example of temperature regulation of a
thermal field from an ifidustrial heat treatment prob-
lem. This work has significantly extended the pre-
viously developed SA framework for data interpreta-
tion (Yip & Zhao 1996; Bailey-Kellogg, Zhao, & Yip
1996) to address new problems arising from control and
optimization of distributed parameter physical fields.

SA differs from existing numerical design and op-
timization methods in several important ways. First,
numerical methods build a discretization for a physical
field. In contrast, SA constructs an explicit structural
description for the field from a numerical discretiza-
tion, measurements, or other sources. This structural
description can be abstracted and articulated to sup-
port a variety of inference, explanation, and tutoring
tasks. Second, numerical methods optimize parame-
ter values of distributed control problems, while SA
solves for structural design problems, specifying con-
trol configurations including the number and locations
of controls. Third, SA performs local computation on
networks of spatial objects, without the need to con-
struct an explicit, global model. Numerical methods
typically require a global model for a field. Finally, SA
encapsulates many pieces of domain-specific knowledge
in its generic operators, while hiding low-level details.

A Spatial Aggregation Model of
Physical Fields

Fields abstract a wide range of continuous, distributed
physical phenomena such as temperature, velocity, and
image data. Formally, a field maps one continuum to
another. A temperature field in a room maps a loca-
tion to temperature, i.e., R3 -~ R1. Many important
reasoning and controlling tasks for physical fields re-
quire compact structural and behavioral descriptions
of the fields.

Consider a problem from manufacturing: heat treat-
ment of a metal sheet (Jaluria & Torrance 1986), 
shown in Figure 11. As part of the manufacturing pro-

1A similar problem arises from temperature control in
semiconductor manufacturing, in which the oven temper-
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Figure 1: Industrial heat treatment of a metal sheet.
The control objective is to heat the material to a
desired temperature at a small number of locations,
shown as dark circles, so as to minimize temperature
fluctuation across the material.

cess, the temperature distribution over the sheet must
be regulated at some desired profile over a period of
time to minimize damage to the material. To describe
the thermal process in the metal sheet, we need to
specify physical laws, geometry, material properties,
and boundary conditions. In addition, the control ob-
jective specifies a desired thermal ’profile over the ma-
terial.

Physical laws governing fields are described by par-
tial differential equations. For instance, the physical
process of isotropic, steady-state heat diffusion is gov-
erned by the Poisson equation:

kV2¢ ÷ Q = 0 (1)

where V2 is the Laplace operator, ¢ is the temperature,

k is material conduction coefficient, and Q is the source
value representing heat per unit time and volume. The
Poisson equation also governs other physical phenom-
ena such as gravity and electrostatics. In fluid dynam-
ics, the motion of fluid is governed by the Navier-Stokes
equation, another well-known partial differential equa-
tion. Traditionally, detailed, labor-intensive numerical
simulations are employed to elaborate consequences of
these models. In contrast, our objective is to construct
a qualitative physics model for spatial physical fields
so that behaviors of the fields can be inferred using a
small number of operations on a discrete representa-
tion and explained in terms of object interaction and
evolution.

A physical field exhibits multiple temporal and spa-
tial scales due to physical properties of the domain,
geometry, boundary conditions, and external forces.
Mechanical vibrations travel at the speed of sound in
a piece of material. Temperature decays with varying
rates along different directions, determined by material
property and geometric shape. Acoustic waves mix and
reflect, according to wave lengths and boundary con-
ditions. The scales and locality permit a continuous,
distributed parameter field to be abstracted as a set
of discrete objects by suppressing irrelevant details.
Consequently, the field can be understood by inter-

ature over a surface of semiconductor wafer must be reg-
ulated by a set of spatially distributed heating lamps to
ensure high yield. This is a challenging control problem in
rapid thermal processing (RTP) of semiconductor wafers
because temperature non-uniformity often leads to chip de-
fects (Kailath & others 1996).



Figure 2: Temperature distribution in the dumbbell-
shaped material, heated at the centers of heavy ends.
The temperature gradient is described by isotherms.

preting a compact structural and behavioral represen-
tation. For instance, after examining the thermal field
in dumbbell-shaped material heated at the heavy ends
(Figure 2), we discover that the isotherms are more
sparse along the narrow channel of the dumbbell, indi-
cating a very small temperature decay. Intuitively, the
heat flux is constrained by the ¯narrow geometry of the
channel. More formally, physics tells us this direction
corresponds to the weakest coupling direction of the
temperature field 2. In order to control the field using
a collection of decentralized sources, the field must be
decoupled into constituent regions. We need to develop
abstractions and operators that formalize the physical
intuition so as to explicitly model field granularity and
permit principled and programmed trade-offs among
different design choices.

SA provides the field ontology that represents a
¯ physical field as a network of spatial objects (Yip 

Zhao 1996; Bailey-Kellogg, Zhao, & Yip 1996). Each
spatial object comprises a geometric description for its
spatial extent and a feature description for its values.
For instance, a spatial object in a temperature field
describes a location and the temperature at that loca-
tion. The spatial objects are governed by interaction
rules relating objects to each other, along with con-
straints on feature values. The major elements of the
SA ontology are summarized in Table 1. The field on-
tology is specialized for the control and optimization
tasks discussed in this paper. We deploy two partic-
ularly useful field discretizations that represent a field
either as a grid of points (Figure 3(a)) or as a 
angular mesh of elements (Figure 3(b)). Each 
tial object abstracts geometry and physics over a finite
region. A neighborhood graph encodes spatial adja-
cencies among the objects. Local constraints, derived
from a finite difference approximation to the Laplace
operator at grid points or conservation properties over
elements in a mesh, govern the evolution of the objects.
The field values are determined by a local relaxation
method that iteratively updates spatial objects using
the local constraints. With these two field partitions,
the SA abstraction mechanism subsumes the finite dif-
ference and finite element models commonly used in
engineering and science for numerically approximating
a field (Vichnevetsky 1981). We note that SA sup-
ports many important reasoning and controlling tasks

2To be precise, this gives the smallest positive eigenvalue
of the Laplacian graph of the field (Spielman ~: Teng 1996).

* Spatial Objects
- Geometric description

"2_
- Feature description

Examples: temperature; pressure; velocity
. Constitutive Laws

Examples:

- Fourier’s law: heat.flux = --k~T~T

- Ohm’s law: charge_flux = -’)’-i~av

- Hooke’s law: stress = E~
e Spatial Neighborhood Structures

Examples:
- Minimal spanning tree
- Regular grid neighborhood graph
- Delaunay mesh neighborhood graph

e Interaction Rules
Examples:
- Causal interaction
- Consistency rules
- Update rules

Table 1: Spatial Aggregation field ontology.

for physical fields, in addition to approximating the
field. SA can also take advantage of existing numerical
analysis software3.

Building upon the spatial object abstraction, SA
provides an aggregation-disaggregation mechanism for-
reasoning about structures in control and optimiza-
tion of physical fields. Figure 4 illustrates the bi-
directional mapping between lower- and higher-level
objects within each spatial aggregation layer. SA em-
ploys a sequence of such bi-directional mappings to
mediate the input fields and higher-level compact de-
scriptions. In the aggregation process, SA operators
aggregate, classify, and redescribe build a hierar-
chy of increasingly more abstract spatial object neigh-
borhood graphs (N-graphs) and equivalence classes.
During disaggregation, the operators disaggregate
and flatten open up higher-level aggregate objects
to permit control over finer component objects of the
field. The interpolate operator transfers information
between coarser and finer objects4. Additional opera-
tors act on the objects, fields, and N-graphs, to search,
map, filter, update, form correspondences, and main-
tain consistency.

For control and optimization tasks, the input to SA

aWe have already incorporated the widely used numer-
ical linear algebra software package LAPACK in SAL.

4The new SA operators disaggregate, interpolate,
and update are introduced here for the purpose of control.
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Figure 3: A field modeled by a network of local spatial
objects: (a) Finite difference grid; (b) Finite element
mesh. The grid or mesh defines spatial adjacency be-
tween a spatial object (solid circle) and its neighbors
(empty circles). The shaded region in the mesh repre-
sents spatial extent of the object. Higher-dimensional
fields can be likewise modeled.
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Figure 4: Spatial aggregation and disaggregation sup-
port bidirectional mapping between lower- and higher-
level spatial objects. SA aggregates lower-level ob-
jects to form a neighborhood graph, classifies them
into equivalence classes, and redescribes the classes
as higher-level objects. Reciprocally, SA disaggregates
higher-level objects into component objects and forms
a neighborhood graph of the objects.

is a physical field modeled as a collection of spatial ob-
jects, a control objective, and a set of optimality con-
straints. SA determines a spatially distributed control
that effectively steers the physical process to meet the
desired criteria 5. To determine the structure and pa-
rameters of the distributed control, i.e., the number,
location, and values of control sources, one needs to
search the large design space subject to performance
constraints. Although many numerical methods exist
for parametric design problems that optimize control
values, structural design that determines the number
and locations of distributed control has remained an
ad hoc practice.

Illustration: Control of a Thermal Field

As an example of how spatial aggregation operators
support modular programming for control applica-
tions, consider the temperature regulation problem for
a rectangular piece of material, similar to that of Fig-
ure 1. The temperature field is represented by thermal
spatial objects (therm_obj) indicating locations and
temperature values. The control objective is to estab-
lish a uniform temperature distribution over the entire
field, using a small set of discrete heat sources, sub-
ject to constraints on the number of control sources,
maximum source output, and acceptable temperature
fluctuations. This global control objective can be for-
mulated locally by constraining each thermal object
to have a temperature within some error tolerance
of its desired temperature. The available control au-
thority consists of point sources, each of which regu-
lates temperature in a local neighborhood. The de-
sign task is to determine the number, locations, and
values of heat sources required to satisfy the objec-
tive. A separate field represents control sources with
spatial objects (src_obj) indicating locations, control
values, and (possibly overlapping) regions of tempera-
tures that each is attempting to control. Neighborhood
graphs explicate spatial adjacencies among thermal ob-
jects and among source objects.

The control design is accomplished by an iterative
aggregation-disaggregation process. Given a source
configuration, aggregation groups sources according to
locality and similarity in control authority, and re-
places a group with a more global source if the re-
placement adequately controls the combined control
regions. Disaggregation splits a single source that does
not adequately control its region, replacing it with mul-
tiple more localized sources that better control sub-
regions. An aggregation-based approach repeatedly
aggregates sources, starting from a dense set, while
a disaggregation-based approach repeatedly disaggre-
gates sources~ starting from a sparse set. The trade-offs

S A dual problem concerns.placement of sensors for max-
imum observability. We will only consider the controllabil-
ity problem in this paper and note that the observability
problem can be likewise solved.

Ii



while control error is too large
for each unsatisfactory control region r

disaggregate:
generate candidate control partitions:

find weak coupling directions
partition r
optimize control locations/values

replace control with best configuration
update field values

Figure 5: Algorithm for disaggregation-based control
configuration design.

between aggregation and disaggregation include the
type of knowledge required (initial configurations; how
to group vs. how to split)and the complexity (poten-
tial amount of work at each level; fan-in vs. fan-out).
An even more advanced strategy interleaves aggrega-
tion and disaggregation so as to exploit the advantages
of both.

The spatial aggregation language provides
aggregate, classify, and redescribe opera-
tors for hierarchically building source aggregates
(Bailey-Kellogg, Zhao, & Yip 1996). For brevity,
we omit the code for aggregation-based design,
concentrating instead on the disaggregation-based
approach.

Figure 5 outlines the algorithm for disaggregation-
based design. Disaggregation-based design is an it-
erative process, repeatedly checking the control error
and disaggregating unsatisfactory sources. To disag-
gregate a source, multiple possible disaggregations are
considered, and the one with the best error profile is
chosen. To form disaggregations, we make use of the
physical knowledge discussed in the preceding section
and illustrated in Figure 2: small gradients indicate
weak coupling. By placing new sources along directions
of weak coupling, a design can optimally "divide-and-
conquer" the problem. The remainder of this section
illustrates how the spatial aggregation language sup-
ports the implementation of this algorithm, providing
operators at the right level of abstraction and encap-
sulating the domain-specific physical knowledge.

The spatial aggregation operator update specifies it-
erative processes by repeatedly applying user-specified
update rules until convergence is reached. The update
rule for source disaggregation checks whether a given
source adequately controls its region and disaggregates
it if the error is too large (see Figure 6(a)). Note 
the algorithm presented here is greedy, but could be
extended to maintain multiple possibilities in a search
tree, or to allow backtracking through a dependency
network.

The disaggregat e operator replaces a spatial object
with a set of constituent objects, exploring the struc-
ture of the domain and taking advantage of locality

update_source_by_disaggregation(src_obj)
if error(region(src_obj)) max_error

[ new_src_objs ffi disaggregate(src_obj)
[ replace(source_field, src_obj,

I
new_src_objs) .

(a)
partition_ctrl_region(src_obj)

ctrl_reg ffi region(src_obj)
if area(ctrl_reg) < min_area

return empty_set
else

subregs = decouple_along_gradient(ctrl_reg)
new_src_obj_sets ffi

map(subregs,
create_src_objs_at_sample_points)

return
create_sets_with_one_member_from_each

(new_src_obj_sets)

(b)
update_source_by_gradient_descent(src_obj)

grad = gradient(error_in_region, src_obj)
if abs(grad) > min_change

new_ctrl_val =
ctrl_value(src_obj) +step_size*grad

set_dtr1_value(src_obj, ne._ctrl_val)

(c)
update_value_by_fd(therm_obj)

old_temp = temp(therm_obj)
new_temp =

avg(neighbors(therm_ngraph, therm_obj))
+ alpha.source_at(position(therm_obj)))

if abs(old_temp - new_temp) > min_change

i set_temp(therm_obj, new_temp)
(d)

refine(therm_obj)
for_each W, S, SW nbr in

neighbors(therm_ngraph, therm_obj)

new_pos = midpoint(position(therm_obj),
position(nbr))

nev_temp ffi interpolate(new_pos, therm_ngraph,
temperature))

add(therm_field,
create_therm_obj(new_pos, new_temp))

(e)

Figure 6: User-level SA pseudocode for disaggregation-
based temperature regulation design. (a) Update rule
for disaggregating an unsatisfactory source. (b) Gen-
eration of partitions for disaggregation, using physi-
cal knowledge. (c) Update rule for optimizing source
value. (d) Update rule for evaluating thermal field us-
ing finite difference approximation. (e) Update rule for
multigrid-style refinement of temperature field.
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(a)

(b)

(c)

Figure 7: Control a thermal field by successive source
disaggregations, exploiting gradient information. Dark
circles indicate source positions, vertical lines delineate
regions of control, and curves describe isotherms.

and scales determined by geometry and physics. Differ-
ent implementations use different user-specified knowl-
edge to help disaggregate an object. In Figure 6(b), 
user-defined partition function divides a source’s con-
trol region into subregions, decoupling along the gra-
dient as discussed above. It then places new sources at
various points in the new regions and forms the cross
product of the sets of possible new sources, returning
sets of possible disaggregations with one new source
for each subregion. Disaggregate tests the resulting
error in each partition to choose an optimal disaggre-
gation for a source. Figure 7 shows source locations
and isotherms after the first few disaggregations for
the temperature regulation problem. The decoupling
algorithm used here splits in half along the weaker cou-
pling axis when a source does not adequately control
its region. More advanced disaggregation would parti-
tion the field using more refined knowledge of gradients
and other scales; the next section illustrates how spa-
tial aggregation operators can support such knowledge.

The initial values of the new sources in Figure 6(b)
can be determined by proportioning the parent source’s
value according to the areas. An alternative is to ap-
proximate the required source density by applying fi-
nite differences to the control region, and then scaling
by the area the source covers. In either case, the ini-
tial guess can likely be improved. A local adjustment
method, such as gradient descent, can be specified in
terms of an update rule. Figure 6(c) provides code for
an update rule to adjust the value of a source in or-
der to minimize the error in its control region. The
position of a source can be likewise adjusted.

To measure the quality of control, the temperature
field is computed for the specified source configuration.
A local relaxation method is specified by the update

i ! i ~>., ~.®.. : i i
i : : i i

..... : 0 ....o .....i.- : :
i ~

Figure 8: Spatial object refinement using a finite differ-
ence grid approximation. New objects (empty circles)
are inserted between old objects (solid circles); dotted
lines show the finer grid.

operator. The rule in Figure 6(d) updates a thermal
object based on values of neighbors and any source
located at that point. Different implementations of
update update objects sequentially or in parallel; in
this case, that yields the Gauss-Seidel or Jacobi nu-
merical relaxation method.

The computational efficiency of the tempera-
ture solver could be improved by a multi-level
method (Briggs 1987) that uses a solution for coarse
spatial objects as an initial guess for a solution for finer
spatial objects, as shown in Figure 8. The code in Fig-
ure 6(e) refines a coarse thermal object, adding points
between the object and its west, south, and southwest
neighbors in a finite difference grid. The £nterpolate
operator fills in temperatures for the new thermal ob-
jects based on values of neighboring objects in the grid.
Various implementations of interpolate support lin-
ear interpolation, quadratic interpolation, and so forth.

In summary, the spatial aggregation operators pro-
vide powerful building blocks for developing programs
for distributed control problems of thermal fields. The
operators modularize user-specified knowledge and ab-
stract away many low-level implementation details.
Table 2 summarizes the SA operators and their imple-
mentations currently available in the C++-based com-
piler for SAL. The disaggregation-based design pro-
gram runs reasonably efficiently in SAL: using a 500-
object field discretization, 8 candidate source locations
per disaggregation, and fairly strict convergence crite-
ria, it takes 1 to 10 minutes on a 100MHz Pentium
to design the source configuration plotted in Figure 7,
depending on the constraints placed on source values.

A More Complex Example
As we have illustrated for a simple rectangular domain,
the spatial aggregation-disaggregation approach to de-
centralized control exploits the locality of a field to find
a rough solution by divide-and-conquer and then lo-
cally refine the control placement and actions. Control-
ling complex spatial domains requires more detailed
knowledge about the field. In particular, SA operators
are employed to extract information about the thermal
gradient.

For example, consider the problem in Figure 9(a):
an irregularly-shaped metal sheet has a hole near its
right end and a single heat source near the center of
mass. Figure 9(b) shows temperature gradient field di-
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¯ Disaggregate: object ~ objects
Refines object into a set of component objects.
-Generate a single refinement, using user-

provided generator
- Enumerate multiple refinements and choose the

best one, using user-provided generator and se-
lector

- Generate multiple refinements as needed and
choose the first satisfactory one, using user-
provided stream generator and tester

¯ Interpolate: geometry ̄  objects * value_function
value

Determines value for geometry based on values of
objects given by value=function.
- Average of members of a set
- Locally weighted average in a field
- Average of neighbors in an ngraph

¯ Update: objects ¯ update_rule -+ objects
Modifies obj ects by repeatedly applying
update..rule to each.
- Object collection: a set or field
- Temporal order: sequential or parallel
- Convergence criteria: fixed number of times or

until predicate satisfied
¯ Existing SA data types and "operators:

- Spatial object, field, ngraph
-Aggregate, classify, redescribe, search,

map, filter

Table 2: SA data types and operators.

@)
J

(a)

(b)

(c)

Figure 9: A complex thermal domain: (a) Geometry
and heat source location; (b) Directions of the resulting
temperature gradient field; (c) Gradient trajectories
aggregated by SA operators.

rections (a gradient vector is normal to the isotherm
curve) computed from a pointwise description of the
temperature. The gradient vectors are then grouped
into equivalence classes and redescribed as trajectories
using the SA operators classify and redescribe, as
shown in Figure 9(c). Average gradient magnitudes
along trajectories through the source are compared to
find directions of weaker decay; the disaggregate op-
erator splits source objects along such directions as pre-
viously discussed.

Discussion
The SA aggregation-disaggregation mechanism modu-
larizes common computational ideas in data interpre-
tation and control tasks and permits reuse of generic
operators. Using these operators, a problem can be de-
scribed at a level closer to one’s intuitive understand-
ing of the physics. The resulting programs are eas-
ier to understand and modify. The multi-layer spatial
aggregates can be used for automatically generating

14



explanations for why higher-level control decisions are
made. For instance, the field geometry might induce a
weak gradient direction; hence, SA refines spatial ob-
jects along that direction in order to decouple the field.
In contrast, traditional numerical simulations require
humans to interpret and explain the results.

Traditionally, qualitative physics has focused on
lumped parameter models of physical systems (DeK-
leer & Brown 1984; Forbus 1984; Kuipers 1986). For
instance, the device ontology describes an electrical
circuit as a network of components, while abstract-
ing away the spatial dimension. However, many im-
portant physical phenomena are modeled as spatially
distributed parameter systems. The SA field ontology
describes such physical phenomena by encapsulating
the important spatial information in the spatial objects
and the neighborhood structures, permitting efficient
reasoning about these phenomena.

Unlike control design for lumped parameter linear
systems, few analytic design techniques have been
developed for distributed control of large physical
fields (Sandell Jr. et al. 1978). In practice, the design
is often accomplished by brute-force numerical simu-
lations. SA offers a powerful modeling framework and
an alternative mechanism for synthesizing decentral-
ized control. The multi-resolutional SA model is par-
ticularly useful for formulating structural design prob-
lems that are not well addressed by numerical methods.
In addition, the SA mechanism can integrate existing
numerical techniques to solve parametric design prob-
lems.

We believe SA is applicable to a wide variety of prob-
lems in data interpretation and control. For instance,
the patti-game algorithm for learning control strate-
gies in high-dimensional state-spaces can be formulated
in terms of SA operators (Moore & Atkeson 1995).
Similarly, Bradley and Zhao presented several meth-
ods for synthesizing nonlinear control laws in phase
spaces (Bradley & Zhao 1993); their methods partition
phase spaces into manageable subspaces. SA can also
describe adaptive aggregation in dynamic program-
ming where states and their dependencies are grouped
into meta-states according to residual errors (Bertsekas
& Castanon 1989).

We have described steady-state control problems for
a class of physical fields such as heat conduction, grav-
ity, electrostatics, and incompressible fluid flow that
are governed by elliptic partial differential equations.
To apply SA to transient problems, we need to de-
velop techniques for tracking and correlating temporal
objects. Another important class of problems involves
wave phenomena (such as sound) governed by hyper-
bolic partial differential equations. Extending SA to
address wave control problems remains as a future re-
search topic.

Other researchers have developed related frame-
works and systems for reasoning about spatial, ana-
logue representations of the physical world. Williams

and Nayak discussed model-based methods for model-
ing, configuring and programming distributed physical
systems (Williams & Nayak 1996). Lundell presented
a qualitative model for distributed parameter physi-
cal fields (Lundell 1996). Forbus et al. developed the
Metric Diagram/Place Vocabulary (MD/PV) frame-
work for qualitative spatial reasoning (Forbus, Nielsen,
& Faltings 1991). In computer scene analysis, Hum-
mel and Zucker formalized a class of problems called
relaxation labeling that computes a consistent label-
ing for a network of objects (Hummel & Zucker 1983).
In comparison to the above work, the SA framework
focuses on structure recovery and control of spatial
fields. It differs from relaxation labeling in that SA
builds multi-layer spatial aggregates to exploit a vari-
ety of spatial and temporal constraints. It also differs
from many neural net based learning and optimization
methods in that SA explicitly models and exploits field
topological structures. This paper develops SA mech-
anisms for controlling physical fields that significantly
extend the framework developed in (Yip & Zhao 1996;
Bailey:Kellogg, Zhao, & Yip 1996).

Conclusions
This paper advances the state-of-the-art in qualita-
tive physics and spatial reasoning in several ways. It
has developed the SA ontological abstraction for dis-
tributed parameter physical fields and an aggregation-
disaggregation mechanism for synthesizing structures
and parameters for distributed control of the fields. It
has illustrated how a modular program can be written
using the SA generic operators for the control and op-
timization of a thermal field regulation problem. SA
extracts meaningful structures from continuous fields
so that design decisions can be articulated using dis-
crete spatial objects. Furthermore, because spatial ag-
gregates comprise mixed numeric, geometric, and sym-
bolic descriptions, we expect SA to take advantage
of and complement the arsenal of existing numerical
methods.

This research addresses several scientific and engi-
neering concerns central to artificial intelligence. We
expect SA to Shed light on bi-directional mappings
between macroscopic decisions and local actions in
biological and engineered systems. In addition, SA
aims to systematize design principles and program-
ming methodologies for interpreting and controlling
distributed parameter physical fields, and to provide
useful tools for practicing engineers.
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