From: AAAI Technical Report WS-97-08. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

Structured Reachability Analysis for Markov Decision Processes

Craig Boutilier, Ronen I. Brafman, and Christopher Geib
Department of Computer Science
University of British Columbia
Vancouver, BC, CANADA, V6T 124
email: {cebly,brafman,geib} @cs.ubc.ca

Abstract

Recent research in decision theoretic planning has focussed
on making the solution of Markov decision processes (MDPs)
more feasible. We develop a set of algorithms for structured .
reachability analysis of MDPs that are suitable when an
initial state (or set of states) is known. Using compact,
structured representations of MDPs (e.g., Bayesian networks),
our methods---which vary in the tradeoff between complexity
and accuracy---produce structured descriptions of (estimated)
reachable states that can be used to eliminate variables or
variables values from the problem description, reducing the
size of the MDP and making it easier to solve. Furthermore,
the results of our methods can be used by existing (exact and
approximate) abstraction algorithms for MDPs.

1 Introduction

While Markov decision processes (MDPs) have proven to be
useful as conceptual and computational models for decision
theoretic planning (DTP), there has been considerable effort
devoted within the Al community to enhancing the compu-
tational power of these models. One of the key drawbacks
of classic algorithms such as policy iteration [10] or value
iteration [1] is the need to explicitly ‘‘sweep through’’ state
space: since state spaces grow exponentially with the number
of problem features, such methods are wildly impractical for
realistic planning problems. -

Recent research on the use of MDPs for DTP has focussed
on methods for solving MDPs that avoid explicit state space
enumeration while constructing optimal or approximately
optimal policies. These techniques can be roughly catego-
rized into two classes: those based on aggregation of states;
and those based on reachability analysis.! In aggregation,
certain states are clustered and treated as a single state. Re-

cent automatic abstraction methods work by detecting the

irrelevance of certain variables and eliminating those vari-
ables from consideration, effectively clustering states that
differ on irrelevant (or approximately irrelevant) variables
{3, 5, 4]. Reachability analysis exploits the fact that, given
some initial state (or state set), certain states may not be
reachable. The choices at such unreachable states have no

'A third approach is decomposition (see, e.g., [9]), which does
not preclude the enumeration of all states, but saves computation
through the reduced interaction of states.

17

bearing on the optimal policy choice or value at the start
state or any reachable state. This idea can be extended to
deal with approximate reachability [7].

We investigate the integration of reachability analysis with
abstraction techniques. In particular, we develop techniques
whereby knowledge of an initial state (or certain initial
conditions) and the concomitant reachability considerations
influence the abstractions produced for an MDP, forming
what is termed by Knoblock [11] a problem specific ab-
straction. We assume that the MDP is described in terms
of random variables using dynamic Bayes nets (DBNs) [5]);
we also assume an initial state has been given. Our ap-
proach works as follows: the initial state is used to perform a
rough reachability analysis, telling us which variable values
{or which combinations of values) can arise with nonzero
probability. The results are then used to reduce the DBN
description of the MDP by deleting mention of certain vari-
able values (or entire variables). The resulting simplified
description represents an MDP with a reduced state space
in which some, and perhaps all, unreachable states have
been removed. This reduced MDP can now be solved using
standard abstraction techniques [3, 5, 4].

Our approach gives rise to a family of algorithms in which
the computational effort and accuracy of the reachability
analysis is varied depending on the quality of the solution
required and computational resources available. We describe
two particular approaches: one is conceptually simple, very
tractable, but can fail to detect certain unreachable states;
the second is based on the GRAPHPLAN algorithm (2], and
requires more computation, but will generally discover more
states to be unreachable, thus resulting in smaller MDPs.

In Section 2, we review MDPs, Bayes net representations
of MDPs, and briefly discuss techniques for policy construc-
tion that exploit the structure laid bare by this representation.
In Section 3, we describe in detail two algorithms for struc-
tured reachability analysis and show how to produce reduced
MDP descriptions. We conclude in Section 4 with additional
discussion.

2 MDPs and Their Representation
2.1 Markov Decision Processes

We assume that the system to be controlled can be described
as a fully-observable, discrete state Markov decision process

[1, 10), with a finite set of system states S. The controlling
agent has available a finite set of actions A which cause
stochastic state transitions: we write Pr(s, @, t) to denote the
probability action a causes a transition to state ¢ when exe-
cuted in state s. A real-valued reward function R reflects the
objectives of the agent, with R(s) denoting the (immediate)
utility of being in state s. A (stationary) policyn : S — A
denotes a particular course of action to be adopted by an
agent, with m(s) being the action to be executed whenever
the agent finds itself in state s. We assume an infinite hori-
zon (i.e., the agent will act indefinitely) and that the agent
accumulates the rewards associated with the states it enters.

In order to compare policies, we adopt expected total
discounted reward as our optimality criterion; future rewards
are discounted by rate 0 < # < 1. The value of a policy =
can be shown to satisfy {10]:

Va(s) = R(s)+ B Y Pr(s, m(s),8) - Vu(2)
tes

The value of 7 at any initial state s can be computed by
solving this system of linear equations. A policy is optimal
if Ve (s) > Vai(s) forall s € S and policies #’. The optimal
value function V* is the same as the value function for any
optimal policy. A number of good state-based techniques for
constructing optimal policies exist including value iteration
(1] and policy iteration [10].

2.2 Structured Representation & Computation

One of the key problems facing researchers regarding the use
of MDPs for DTP is Bellman’s ‘‘curse of dimensionality:”’
the number of states grows exponentially with the number
of problem variables. Fortunately, several good representa-
tions for MDPs, suitable for DTP, have been proposed that
alleviate the associated representational burdens. We adopt
dynamic Bayes nets in this paper [8, 5].

We assume that a set of variables V describes our system.
To represent actions and their transition probabilities, for
each action we have a dynamic Bayes net (DBN) with one
set of nodes representing the system state prior to the action
(one node for each variable), another set representing the
world after the action has been performed, and directed
arcs representing causal influences between these sets. Each
post-action node has an associated conditional probability
table (CPT) quantifying the influence of the action on the
corresponding variable, given the value of its influences (see
{5, 6] for a more detailed discussion of this representation).
Figure 1(a) illustrates this representation for a single action.

The lack of an arc from a pre-action variable X to a
post-action variable Y in the network for action a reflects the
independence of a’s effect on Y from the prior value of X.

We capture additional independence by assuming structured

CPTs. In particular, we use a decision tree to represent the
function that maps combinations of parent variable values
to (conditional) probabilities. For instance, the tree in
Figure 1(a) shows that W influences the probability of HCU
becoming true only if L, HCR are true and HCU is false (left
arrows denote ‘‘true’’ and right arrows *‘false’’).2 A similar

2Certain persistence relations can be exploited in the specifi-

18

(&) (L1

HCU

(a) (b)

Figure 2: (a) Reward Tree; and (b) Reduced Tree

representation can be used to represent the reward function
R, as shown in Figure 2(a).

The example in the figures above is taken from [3, 51,
and describes a robot that runs across the street to a coffee
shop to get coffee, but it gets wet when it is raining outside
unless it has an umbrella. The action in Figure 1(a) describes
delivering coffee: the user gets coffee (HCU) with reasonably
high probability if the robot has coffee (H C'R) and is in the
right location (but wetness increases the chance of slippage).
The reward function in Figure 2(a) gives a substantial reward
for HCU and a slight penalty for W (and slightly larger
penalty for dripping on the office floor).

Apart from the naturalness and conciseness of representa-
tion offered by DBNs and decision trees, these representa-
tions lay bare a number of regularities and independencies
that can be exploited in optimal and approximate policy
construction. Methods for optimal policy construction can
use compact representations of policies and value functions
in order to prevent enumeration of the state space.

In [5] a structured version of modified policy iteration is
developed, in which value functions and policies are repre-
sented using decision trees and the DBN representation of the
MDP is exploited to build these compact policies. Roughly,
the DBN representation can be used to dynamically detect
the relevance of various variables under certain conditions
at any point in the computation, thus allowing states to be
aggregated by ignoring irrelevant variables. For instance,
in the example described above, states where W holds are
never distinguished by the truth values of U or R, since once

cation of actions: the ‘‘starred’’ leaves correspond to persistence
distributions where the variable retains its value after the action; we
refer to [6] for a detailed discussion of persistence in DBNs.

W holds these facts are irrelevant to value or the optimal
choice of action. The method can be extended to deal with
approximation by using ‘‘degrees’’ of relevance as well [4].

A simpler abstraction technique developed in [3] does an
a priori analysis of the problem (as opposed to a dynamic
analysis) to delete irrelevant or marginally relevant variables
from the problem description. For instance, the fine differ-

ences in reward associated with W and L in Figure 2(a) can -

be ignored by deleting these variables. The DBN description
of actions allows one to easily detect that variables W, R,
and U have no impact, through any ‘‘causal chain’’ (or
sequence of actions), on the truth of HCU, which is the only
remaining immediately relevant variables (i.e., determiner of
reward). The abstract MDP uses only the three remaining
variables and is much smaller (hence easier to solve)---the
price is that the resulting policy will usually be nonoptimal.

3 Problem Specific Abstraction

One of the distinguishing features of MDPs vis-a-vis classical
planning models is the need to construct policies that describe
appropriate actions at all states. If we know the initial state
(e.g., as in a planning problem), computational effort may
be ‘‘wasted’” in the determination of appropriate actions for
states that can never be realized given the initial state, even
if abstraction methods are used.

However, it is often the case that we can rather easily
determine that certain variable values or combinations cannot
be made true given the initial state. Any such knowledge
of reachability can be exploited to reduce the range of
dynamic programming. Furthermore, if this reachability
analysis can be performed in a structured manner, the results
can be combined with the policy construction methods and
abstraction techniques described above. For instance, in our
simple example, if the initial state satisfies R, then values
of variables R and W cannot be changed (we assume W
is also known of the initial state). As a result, one can
legitimately remove all mention of these variables from the
MDP description, resulting in a reduced MDP. The reward
function description for this reduced MDP is shown in
Figure 2(b). A reduced action description (for delivering
coffee) is shown in Figure 1(b). Intuitively, this reward and
action refer to the MDP whose states vary over the four
listed variables, but whose values of R and W are fixed to
be false. We now describe two algorithms that reflect these
considerations.

3.1 Reachability Analysis without Interactions

We begin with a simple and efficient algorithm, REACH-
ABLE], for determining the set of reachable variable values
given an initial state description and a set of DBNs charac-
terizing the MDP dynamics. The initial state is s1mply an
assignment of specific values to variables.> The output is a
set, for each variable, of the values of that variable that (we
treat as if they) can be made true with positive probability
given that the process begins in the initial state. Roughly,
the reachable set Rch; for variable V' is instantiated with

3The extension to a set of possible initial states is obvious.

19

. Tnput: Initial State V¥ = vj (1 < i < n)

Output: Reachable Value List Rch; for each variable V'*

LetRch; = {v}} foreachi < n (initial state)
Loop until no change in any Reh;
Forcach V' (i = lton)
For each value uk € Rchi (k = 1wom;)
If there is action a, asst. A to parents of V'* in DBN(a) s.t.:
Pr(V' = v}|a, A) > O:and cachclementv] € A isin Rchj; then
Add vy 10 Reh;

Figure 3: Algorithm REACHABLE]

Vi's mmal value. We then sweep through the actions a and

variable-value pairs V* = v; one at a time to determine if

there is an assignment A of values to the parents of V' in
the DBN for a such that Pr(v) > 0and A is consnstent

with the set of current reachable value list; if so vJ- is added

to the reachable list for V*. The algorithm is described in
Figure 3. In our running example, with initial state satisfying
R, variables R and W will be discovered to be removable:
their values cannot be changed from those in the initial state.

It is easy to show the algorithm will converge to a fixed
point reasonably quickly:

Proposition 1. Algorithm REACHABLE] runs in O(n’d%a)
time, where n is the number of problem variables, d is the
maximum domain size for any variable, and a is the number
of actions.

We note that this analysis holds only for the very naive
version of REACHABLEL shown in Figure 3. Clever in-
dexing schemes, or even straightforward use of persistence
relationships, will make this algorithm much faster in prac-
tice. In fact, we can easily construct an algorithm that
runs in O(ndb) time, where b is the size of the nontrivial
(nonpersistent) portion of the DBN action descriptions.

Two important properties of reachability algorithms are
completeness and soundness. An algorithm is sound if every
state considered unreachable by the algorithm is, in fact,
unreachable (or equivalently, all reachable states are said to
be reachable by the algorithm). This is important for accurate
solution of an MDP: if all reachable states are included in the
reduced MDP, the optimal policy for the reduced MDP will
be an accurate reflection of optimal behavior with respect
to the given initial state. More specifically, let M denote a
reduced version of MDP M obtained by removing all states
deemed unreachable by a reachablhty algorithm A. Let
5 - S be the state space for M let 7 be an optimal policy
for M, and let V* denote the optimal value function for M.
If A is sound, we are assured of the following:

Theorem 2 Let w be any policy for M that extends T* (i.e.,

n(s) = 7« (s) for any s € §). Then, forany s € S, we
have: V-~ (s) = Vx(s) = V*(s)

An algorithm is complete if all unreachable states are said to
be unreachable by the algorithm, i.e., all unreachable states
are recognized. Completeness ensures that no unreachable
states are included in the reduced MDP, and it has the effect

of keeping the reduced MDP small, though, on its own, does
not guarantee an optimal solution.*

The output of REACHABLE] is interpreted as follows:
any state consisting of variable values that are in the reach-
able value lists is accepted as a reachable state. On this
interpretation, REACHABLE 1 is sound.

Theorem 3 If state t = (v}, ,2 ---vf') is reachable from
initial state s, then each value v" that makes up state

t is on the reachable list for vk retumed by algorithm
REACHABLEL.

Thus, the reduced MDP is suitable for the planning problem
posed. However, REACHABLEL is not complete, so the
reduced MDP can be larger than necessary. We discuss this
further in the next section.

Once the set of reachable states is produced, we have
implicitly determined an abstract MDP whose states consist
of those assxgnments returned by REACHABLEL. To exploit
this fact in the algorithms that use DBN representations of

' MDPs, we would like to reduce the DBNs (and reward tree)
of the MDP. This process is reasonably straightforward.
Intuitively, we remove any unreachable variables values
from the reward tree or CPT-trees, as shown in Figures 2(b)
and 1(b), by removing any edges in the tree labeled with
unreachable values. If this results in a node with only one
outgoing edge, the variable itself is removable (i.e., has only
one reachable value), and is deleted from the tree (the subtree
attached to the remaining edge is promoted). Any removable
variables can be completely deleted from the DBNs as well.
The reduction of this MDP representation can be performed
in linear time, and results in reward tree and set of DBNs
that accurately reflects the reduced MDP. By retaining the
structured nature of the representation, the resuit can be used
by any standard abstraction algorithm (Section 3.3). In our
coffee-serving robot example, REACHABLE1 will discover
that the values of the variables ¥ and R are uncontrollable,
leading to a four-fold reduction in the size of the MDP. In
addition, using a single backwards sweep, as performed by
any basic abstraction techniqite, the variable U will be found
to be irrelevant. This leads to an overall eight-fold reduction
in the MDP size, from 64 to 8 states.

3.2 Reachability Analysis with Interactions

As noted above, REACHABLE] is not complete: some
unreachable states may not be recognizes as such, and may
be deemed reachable. This is due to the fact that it does
not take into account interactions among action effects or
‘‘exclusion relations’” among the conditions that lead to
specific effects. For instance, if a light can only be on if the
switch is on, REACHABLE] will not detect the correlation
and judge a state where, say, switch-on and light-offhold to be
reachable. The advantage of ignoring such interactions is the
computational efficiency gained. We now -describe a more
sophisticated (and computationally expensive) algorithm that
extends REACHABLE] by accounting for certain interactions

“*Notice that the terms sound and complete are w.r.t. statements
of unreachability, which is really what we are interested in.

20

Input: Initial State Visvid <s1<n)
Output: Reachable Value ﬂlst Values together with exclusion relationships Exc/ on
pairs of values for distinct variables.

Let Vaiues = {v} : i £ n} (initial state)
LetExcl = @
Loop until no change in Values
Set ActNodes, ExclActs = @
For each action a, variable V and nontrivial C s.t.
C C Values; and no pair (¢, y) of valuesin C is in Excl
Add ca-node (a, C, V') to ActNodes.
Foreachv € Valuex
Add ca-node (N oop(v), v, V') to ActNodes.
For each (a1, C1, V1), (a2, Cz. Vi) € ActNodes
If a) there is some vy € Cy, vz € Cz such that (vy, v3) € Exclior
-~ if b) an effect of ay; C; conflicts with C2 or an effect of a2; Ca:
Add ({a1, C1), (a2, C2)} to ExclActs
Set Values, Excl =
Foreach {a, C, V) € ActNodes
Add effects v. to Values; record {a, C, V) as *‘a way to achieve'' v,
For each v, ,v € Values (where V* # vh
Add (v¥, ,) to Excl if all ways of achieving v¥
are marked as exclusive of all ways of achieving u

Figure 4: Algorithm REACHABLE2

among values using exclusion constraints. The algorithm is
inspired largely by the graph building phase of GRAPHPLAN
{2] for STRIPS planning, but deals with the more complex
notion of nondeterministic reachability. In particular, it
extends GRAPHPLAN by dealing with both conditional
action effects and, more substantially, with nondeterministic
effects.

 The Bayes net representation of actions described in Sec-
tion 2.2 assumes that the effect an action has on the value
of each proposition is independent. Hence, an action can
be thought of as having multiple aspects, one with respect
to each proposition. More generally, an action’s aspects
can encompass multiple propositions (e.g., see [3]). In the
following discussion, we assume that each action definition
contains only a single aspect. That is, for each condition, we
specify the joint effect of this action on all propositions. This
does not restrict the generality of the algorithm presented, as
it is straightforward to convert the Bayes net action repre-
sentation to the above representation. However, this is likely

* to result in a significant increase in the number of actions

and therefore the size of the search space. Our algorithm can
be extended to directly handle the more compact Bayes net
representation; this will be discussed in a full version of this
paper.

We begin with some preliminary definitions. Let B be
the network for an action a, let ¥V be some variable, and

. let CPT(a, V) denote the tree quantifying a’s effect on V.

A nontrivial condition for action a with respect to variable
V is any branch of CPT(a,V) whose leaf is not labeled
with a persistence distribution for V. The conditional effect
of action a on variable V under condition C is the set of
variable values {v;} such that Pr(V = v|C,a) > 0 (ie.,
the set of values that V might take if a is executed when C
holds).

The algorithm REACHABLE? is sketched in Figure 4. As
with GRAPHPLAN, we construct a ‘‘graph’’ whose nodes

are arranged in levels, alternating propositional levels with
action levels. A propositional level contains a number of
value nodes (v-nodes) labeled with variable values, and a
set of exclusion constraints --- each such constraint is a pair
of variable values (for distinct variables) labeling v-nodes
at that level. Intuitively, each value labeling a v-node is
reachable, but any pair of values marked as exclusive cannot
occur together in any reachable state (at least at that stage of
the process).

An action level contains conditional action nodes (ca-
nodes), each labeled with a tuple (a, C, V), where a is some
action and C is a nontrivial condition for a with respect to
variable V. Intuitively, we think of each condition-action
pair as a distinct action that has ‘‘precondition’’ C. Action
levels also contain exclusion constraints. Intuitively, two
. (conditional) actions are marked as exclusive if one *‘inter-
feres’” with the execution of the other. For instance, if they
have conflicting effects or if one destroys the preconditions
of the other, two actions will be marked as exclusive. In-
tuitively, any set of actions at a particular action level that
are not marked by any exclusions can all be performed in
sequence (at that stage of the process), in any order, and the
resulting state will be one in which the effects of each of
these actions holds.

The ‘‘graph’’ is constructed by REACHABLE?2 as follows.
Level Ois a propositional level consisting of a v-node for each
variable value comprising the initial state. At this initiallevel,
there are no exclusion constraints. For a given propositional
level, we create a subsequent action level: for each action
a, variable V and nontrivial condition C in CPT(a, V), we
add a ca-node labeled (e, C, V), as long as: value X = z;
occurring in C exists at the previous propositional level;
and no pair of values X = z; and Y = y; occurring in C
is marked as exclusive at the previous propositional level.
In addition to these nontrivial ca-nodes, we add, for each
value v; occurring at the previous propositional level, a
ca-node labeled (No-op(v;), vi, V) to the action level. This
corresponds to a No-op action with respect to v;, whose
precondition is v; and whose only effect is to ensure v;
persists in value to the next stage of the process.

The most crucial distinction between REACHABLE2 and
GRAPHPLAN is the way in which actions are marked as
exclusive, reflecting the nondeterminism of effects. In
order to guarantee the soundness of our algorithm, we must
ensure that actions that possibly do not interfere with one
another (under certain conditions) will not be marked as
exclusive; only actions that necessarily conflict will be
marked exclusive. More formally, nodes (a;,C}, V) and
(a2, Cy, V3) are marked as exclusive if:

(a) Their conditions C| and C, are marked as exclusive
at the previous propositional level (some value in C is
exclusive of one of C,’s values)

(b) Some effect of a, given Cy conflicts with C5, or with
the effects of C,

The first condition is the same as in GRAPHPLAN. The
second is interpreted as follows: if a; has effect S =
{v},v3,---} on some variable V3 when C, holds, and C,

21

re?uircs that V3 ¢ S, or the effect of a; (under C?) on
V¥ does not intersect S, then the ca-nodes are marked as
exclusive. Intuitively, if there is some ca-node (a2, C3, Vag
such that C; |= C; and the effect (set of possible V

values) of a; under C3 has no values in common with S
then (a1, C1) “‘clobbers’ (a2, C2) and they are marked as
exclusive (similarly, if the effect of a; clobbers C; itself).

Finally, to complete the specification of graph construc-
tion, given some action level, we create a subsequent propo-
sitional level as follows: for each ca-node (a, C, V), we add
a v-node for each value v; such that Pr(V = v;|a,C) > 0;
and for any pair of v-nodes v;, z; so added, we add the
exclusion constraint (v;, z;) if every way of achieving v; at
the previous action level is marked as exclusive of every way
of achieving z;.

There are several more superficial differences between
REACHABLE2 and GRAPHPLAN that we elaborate on in a
longer version of the paper. These include several differences
due to the use of DBNs rather than STRIPS rules: the
distributed nature of action effects requires some subtlety in
conflict detection, and the conditional nature of actions also
necessitates certain differences with GRAPHPLAN. There
are also differences due to the infinite horizon nature of
our problem. In particular, we do not keep track of a
complete *‘graph’’ but only the leading frontier of action and
propositional levels. We are simply trying to determine those
variables values that are reachable with positive probability

" at any stage of the process.

The use of suitable data structures and other shortcuts will
make this algorithm quite efficient. For instance, the data
structures used in [2] can be exploited by REACHABLE2,
and testing for exclusion among all pairs of action nodes at a
given level need not require exhaustive comparisons for all
pairs---a single test can suffice for many different pairs. As
it stands the algorithm converges reasonably quickly. We
consider the set of reachable states to be those formed from
assignments using values in the final propositional level that
respect exclusions. The reachable states determined by the
sequence of propositional levels increases monotonically,
and the algorithm must terminate within O(n?d?) iterations,
with a running time polynomial in n, d and a.

We note that REACHABLEZ is sound. It is also ‘‘more
complete’” than REACHABLE1:

Theorem 4 If state t = (v} ,v} .- v}) is reachable from
initial state s, then each value vf‘k that makes up state
t is on the reachable list for V* returned by algorithm
REACHABLEZ. Furthermore, no two values v}, and vf, are

marked as exclusive.

Proposition 5 If S) is the set of reachable states returned by
REACHABLE] and S, is the set of reachabie states returned
by REACHABLE2 (for a fixed initial state s), then S, C S).

The reduced MDP is constructed using the output of
REACHABLEZ2 in much the same fashion as REACHABLEL.
The key distinction lies in the use of the exclusion constraints,

3We note that testing for conflicting effects can be done with
various degrees of complexity, as we describe in a longer version.

so that tree edges can be deleted if the labeling value conflicts
with values earlier in the branch. The reduction is not local
‘but can still be implemented in one pass through the tree.
These constraints may be used also directly in algorithms
like those in [5, 4] (see next section).

3.3 Abstraction and Reachability Combined

The most important aspect of our algorithms for MDP
reduction through reachability analysis is the fact that they

produce compact DBN representations of the reduced MDP. -

" As a result, one can directly apply structured abstraction
techniques to the reduced MDP in order to solve it. The
advantage of first producing a reduced MDP is that the
descriptions are generally smaller (and can certainly be no
larger). This generally results in fewer distinctions being
made by the structured algorithm used. If one needs only
solve a planning problem (for a given initial state or set of
initial states) rather than the complete policy construction
problem, this can provide considerable advantages.

For example, in the 64-state example described above, the
algorithm of [5] produces a tree-structured policy and value

function with 8 and 18 leaves respectively. When augmented -

by REACHABLE], the same algorithm, for 48 of the 64
possible initial states, produces trees (for both the policy
and value function) that have at most 5 leaves, exploiting
the irrelevance of certain propositions given knowledge
of specific initial states. For instance, if R is known
to be false, REACHABLEL fixes the value of R and W
and this policy algorithm will never use the variable U
(detecting its complete irrelevance). We note that algorithms
like these must be augmented slightly to fully exploit the
output of REACHABLEZ2: since these algorithms put together -
combinations of variables dynamically, they may start to
compute policy values for states satisfying variable values
that are marked as exclusive. It is simple to add tests
that use the constraints returned by REACHABLE2 to rule
out unrealizable variable value combinations when building
policy and value trees. .

The simpler abstraction algorithm of [3] also benefits.
When variables W, R and U are deleted from the problem
description, an approximate policy results with a given error
(bounded by the algorithm). However, when REACHABLE1L
is used, the same variables are deleted and no loss of value
is accrued (and this fact is known) given specific starting
states. The effect, in general, is to allow more aggressive
pruning of variables within acceptable error tolerances.

4 Concluding Remarks

We have described techniques for performing a structured
reachability analysis using compact, Bayesian network MDP
representations, the result of which is areduced MDP descrip-
tion in which only reachable values or value combinations
are specified. This analysis can be exploited by abstraction
methods since the structured nature of the representation is
retained, and provides the advantage of reducing the num-
ber of distinctions required in different abstraction methods.
These algorithms bring together two distinct approaches
to addressing the computational difficulties associated with

22

solving MDPs and illustrate the synergistic relation between
the two. One cannot expect reachability to play a substantial
role in reducing the size of MDPs in all cases; but there are
many circumstances in which reachability analysis will be
significant, for example, where rewards are conditional, or
a number of variables (observables) are uncontrollable (like
the weather, road conditions, interest rates).

In a longer version of the paper, we describe how other
algorithms fit into this framework. For instance, REACH-
ABLE2 explores only pairs of conflicting values, though
more sophisticated interactions could be dealt with at greater
computational expense, ranging up to full-fledged (sound

~ and complete) reachability analysis. We also discuss ideas

pertaining to unsound reachability algorithms, leading to
MDPs whose solution may not be optimal, but which may be
solved more quickly by the elimination of reachable states
(e.g., states with low probability of being reached).

We note that these ideas can be applied to other represen-
tations (e.g., STRIPS) and planning algorithms. For instance,
our results suggest how GRAPHPLAN can be extended to
deal with nondeterministic or probabilistic planning, or how
it might deal with more than pairwise constraints on actions
and propositions. This is the topic of future investigations.

References

{11 Richard E. Bellman. Dynamic Programming. Princeton
University Press, Princeton, 1957.

[2] Avrim L. Blum and Merrick L. Furst. Fast planning
through graph analysis. In Proc. 14th 1JCAl, 1995.

[3] Craig Boutilier and Richard Dearden. Using abstrac-
tions for decision-theoretic planning with time con-
straints. In Proc. 12th Nat. Con. on Al, 1994.

{4] Craig Boutilier and Richard Dearden. Approximating
value trees in structured dynamic programming. In
Proc. 13th Int. Conf. .on Machine Learning, 1996.

[51 Craig Boutilier, Richard Dearden, and Moises Gold-
szmidt. Exploiting structure in policy construction. In
Proc. 14th 1JCAl, 1995.

[6] Craig Boutilier and Moises Goldszmidt. The frame
problem and Bayesian network action representations.
In 11th Biennial Canadian Conf. on Al, 1996.

[7] Thomas Dean, Leslie Pack Kaelbling, Jak Kirman, and
Ann Nicholson. Planning with deadlines in stochastic
domains. In Proc.11th Nat. Conf. on Al, 1993.

[8] Thomas Dean and Keiji Kanazawa. A model for rea-
soning about persistence and causation. Computational
Intelligence, 5(3):142--150, 1989,

[9] Thomas Dean and Shieu-Hong Lin. Decomposition
techniques for planning in stochastic domains. In Proc.
14th IJCAI 1995.

{10] Ronald A. Howard. Dynamic Programming and
Markov Processes. MIT Press, Cambridge, 1960.

{11] Craig A. Knoblock. Automatically generating abstrac-
tions for planning. Art. Int., 68:243--302, 1994.

