
Correlated Action Effects in Decision Theoretic Regression

Craig Boutilier and Richard Dearden
Department of Computer Science

University of British Columbia
Vancouver, BC, CANADA, V6T lZ4

emaih {cebly, dearden} ~cs.ubc.ca

Abstract

Much recent research in decision theoretic planning
has adopted Markov decision processes as the model of
choice, and has attempted to make their solution more
tractable by exploiting problem structure: Structured
policy construction algorithms achieve this by a deci-
sion theoretic analogue of goal regression, using action
descriptions based on Bayesian networks with tree-
structured conditional probability tables. At present,
these algorithms are unable to deal with actions with
correlated effects. We describe a new decision theo-
retic regression operator that corrects this weakness.

Īntroduction

Recent research in the use of Markov Decision Prob-
lems (MDPs) for decision-theoretic planning (DTP)
has focussed on solution methods that avoid explicit
enumeration of the state space while constructing (ap-
proximately) optimal policies. Such techniques include
the use of reachability analysis to eliminate unreach-
able states (Dean et al. 1993; Barto, Bradtke, & Singh
1995), and state aggregation, whereby various states
are grouped together and treated as a single state. Re-
cently, methods for automatic aggregation have been
developed in which certain problem features are ig-
nored, making certain states indistinguishable (Chap-
man & Kaelbling 1991; Boutilier & Dearden 1994;
Dearden & Boutilier 1997; Boutilier, Dearden, & Gold-
szmidt 1995; Tsitsiklis & Roy 1996).

In some of these aggregation techniques, the use
of standard AI representations such as STRIPS or
Bayesian networks to represent actions in an MDP
can be exploited to help construct the aggregations.
In particular, they can be used to help identify which
variables are relevant to the determination of value or
to the choice of action. This connection has lead to the
insight that the basic operations in computing optimal
policies for MDPs can be viewed as a generalization
of goal regression (Boutilier, Dearden, & Goldszmidt
1995). A Bellman backup (Bellman 1957) for a specific
action a is a regression step where, instead of deter-
mining the conditions under which one specific goal
proposition will be achieved when a is executed, we

determine the conditions under which a will lead to a

number of different "goal regions" (each having differ-
ent value) such that the probability of reaching each of
these regions is fixed by the conditions so determined.
Any set of conditions so determined for action a is such
that the states having those conditions all accord the
same expected value to the performance of a. The net
result of this decision theoretic regression operator is
a partitioning of state space into regions that assign
different expected value to a.

A decision theoretic regression operator of this form
is developed in (Boutilier, Dearden, & Goldszmidt
1995). The value functions being regressed are repre-
sented using decision trees, and the actions that are
regressed through are represented using Bayes nets
with tree-structured conditional probability tables. As
shown there (see also (Boutilier & Dearden 1996)),
classic algorithms for solving MDPs, such as value it-
eration or modified policy iteration, can be expressed
purely in terms of decision theoretic regression, to-
gether with some tree manipulation. Unfortunately,
the particular algorithm presented there assumes that
actions effects are uncorrelated, imposing a restriction
on the types of Bayes nets that can be used to repre-
sent actions.The aim of this paper is to correct this de-
ficiency by describing a decision theoretic regression al-
gorithm that handles such correlations in the effects of
actions. Although this paper does not offer much in the
way of a conceptual advance in the understanding of
the decision theoretic regression, and builds directly on
the observations in (Boutilier, Dearden, & Goldszmidt
1995; Boutilier & Dearden 1996), the modifications of
these approaches to handle correlations are substan-
tial enough, both in technical detail and in spirit, to
warrant special comment.

MDPs and Their Representation

We assume that the system to be controlled can be de-
scribed as a fully-observable, discrete state Markov de-
cision process (Bellman 1957; Howard 1960; Puterman
1994), with a finite set of system states S. The control-
ling agent has available a finite set of actions A which
cause stochastic state transitions: we write Pr(s, a, t)
to denote the probability that action a causes a transi-
tion to state t when executed in state s. A real-valued
reward function R reflects the objectives of the agent,

23

From: AAAI Technical Report WS-97-08. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

Figure 1: (a) Action network (no correlations); (b) Action network (correlations); and (c) Reward Tree. Left
in trees are assumed to be labeled "true", and right arrows "false".

with R(s) denoting the (immediate) utility of being
state s.1 A (stationary) policy ~r : S ~ A denotes a
particular course of action to be adopted by an agent,
with ~r(s) being the action to be executed whenever
the agent finds itself in state s. We assume an infinite
horizon (i.e., the agent will act indefinitely)and that
the agent accumulates the rewards associated with the
states it enters.

In order to compare policies, we adopt expected total
discounted reward as our optimality criterion; future
rewards are discounted by rate 0 < f~ < 1. The value
of a policy ~r can be shown to satisfy (Howard 1960):

V,(s) = R(s) Z Pr(s,r(s),t). V,(
IEs

The value of ~r at any initial state s can be computed
by solving this system of linear equations. A policy 7r

¯ is optimal if V, (s) ___ V,, (s) for all s E S and policies
7r’. The optimal value]unction V* is the same as the
value function for any optimal policy.

A number of techniques for constructing optimal
policies exist. In value iteration (Bellman 1957)
produce a sequence of n-step optimal value]unctions
Vn by setting V° = R, and defining

Vi+1 (s) = mea~{R(s) + Pr(s , a, t). Vi(t)} (1)
tEs

The sequence of functions Vi converges linearly to V*
in the limit. Each iteration is known as a Bellman
backup. By performing Bellman backups with a fixed
policy 7r, we can compute the value of ~r. We define
the Q-function (Watkins & Dayan 1992), which maps
state-action pairs into values, as follows:

Q(s,a) = {R(s) +B~-~Pr(s,a,t). V(t)} (2)
tEs

1More general formulations of reward (e.g., adding ac-
tion costs) offer no special complications.

This denotes the value of performing action a at state
s and subsequently executing a policy of value V. We
use Qa to denote the Q-function for a particular ac-
tion a (i.e., Qa(s) = Q(s,a)). Value iteration and
successive approximation can be implemented by re-
peated construction of Q-functions (using the current
value function), and the appropriate selection of Q-
values (either by maximization at a particular state,
or by using the policy to dictate the correct action and
Q-value to apply to a state).

Action and Reward Representation

One of the key problems facing researchers regarding
the use of MDPs for DTP is the "curse of dimen-
sionality:" the number of states grows exponentially
with the number of problem variables, as does the
size of the representation of the MDP and the com-
putational requirements of solution techniques. Fortu-
nately, several good representations for MDPs, suitable
for DTP, have been proposed. These include stochastic
STRmS operators (Kushmerick, Hanks, & Weld 1994;
Boutilier & Dearden 1994) and dynamic Bayes nets
(Dean & Kanazawa 1989; Boutilier, Dearden, & Gold-
szmidt 1995). We will use the latter.

We assume that a set of variables V describes our
system. To represent each action we use a dynamic
Bayes net (DBN) with one set of nodes representing
the system state prior to the action (one node for each
variable), another set representing the world after the
action has been performed, and directed arcs represent-
ing causal influences between these nodes. We write X’
to denote that variable X after the occurrence of the
action and X to denote X before the action. Each
post-action node has an associated conditional proba-
bility table (CPT) quantifying the influence of the ac-
tion on the corresponding variable, given the value of
its influences (see (Boutilier, Dearden, & Goldszmidt
1995; Boutilier & Goldszmidt 1996) for a more detailed

24

discussion of this representation).2 Figures l(a) and
(b) illustrate this representation for two different ac-
tions. We use II(X ~) to denote the parents of node X~

in a network and val(X) to denote the values variables
X (or X’) can take.

The lack of an arc from a pre-action variable X to a
post-action variable Y~ in the network for action a re-
flects the independence of a’s effect on Y from the prior
value of X. We capture additional independence by as-
suming structured CPTs; that is, we exploit context-
specific independence (Boutilier et al. 1996). In par-
ticular, we use a decision tree to represent the function
that maps’combinations of parent variable values to
(conditional) probabilities. For instance, the trees
Figure l(a) show that Z influences the probability
Y becoming true (as a consequence of the action), but
only if X is true. We refer to the tree-structured CPT
for node X~ in the network for action a as Tree(X~, a).
We make special note of the existence of the arc be-
tween Xt and Y~ in Figure l(b). This indicates that
the effects of action a on X and Y are correlated.

A decision tree Tree(R) is also used to represent the
reward function R, as shown in Figure l(c). Similar
trees are also used for value and Q-functions.

Regression with Uncorrelated Effects
In (Boutilier, Dearden, & Goldszmidt 1995; Boutilier
& Dearden 1996) structured versions of modified pol-
icy iteration and value iteration are developed in which
value functions and policies are represented using deci-
sion trees, and the DBN representation of the MDP is
exploited to build these compact policies. 3 The key to
these algorithms is a decision theoretic regression op-
erator used to construct the Q-function for an action
a given a specific value function. If the value function
is tree-structured, this algorithm produces a Q-tree, a
tree-structured representation of the Q-function that
obviates the need to compute Q-values on a state-by-
state basis.

Let a be the action described in Figure l(a), and let
the tree in Figure l(c) correspond to some value func-
tion V (call it Tree(V)). To produce the Q-function
Qa based on V according to Equation 2, we need to
determine the probabilities with which different states
s make the conditions dictated by the branches of
Tree(V) true. 4 It should be clear, since a’s effects on
the variables in Tree(V) exhibit certain regularities (as
dictated by its network), that Qa should also exhibit
certain regularities. These are discovered in the fol-
lowing algorithm for constructing a Q-tree represent-

2To simplify the presentation, our examples use binary
variables.

SSee (Dietterich & Flann 1995) for a similar, though less
general, method in the context of reinforcement learning
(determinism and specific goal regions are assumed).

4We ignore the fact that states with different reward
have different Q-values; these differences can be added eas-
ily once the future reward component of Equation 2 has
been spelled out.

X

Z y Z Y

A A A A
Y’ 0.9 Y Y" 1.0 Y" 0.0 Y’ 0.9 Y Z Y’ 0,0

A w’o.8 A A
Y’O,9 Y’O.I Y’0.9 Y’O.I Y’0.8 Y’l,O

w. 1.0 w. 0.o w.o.s w. 1.0
(a) (b)

Figure 2: Decision theoretic regression: no correlations

ing (the future value component of) Qa given Tree(V)
and a network for a.

1. Generate an ordering Oy of variables in Tree(V).
2. Set Tree(Qa) -- 0
3. For each variable X in Tree(V) (using ordering Ov):

(a) Find C, the set of contexts (partial branches)
Tree(V) that lead to an occurrence of X.

(b) At any leaf of Tree(Qa) such that Pr(c) >
for some c E C: replace the leaf with a copy of
Tree(X, a) at that leaf (retain Pr(X) at each leaf
Tree(X, a); remove any redundant nodes from this
copy; for each Y ordered before X such that Pr(Y)
labeled this leaf of Tree(Qa), copy Pr~Y) to each
leaf of Tree(X, a) just added.

4. At each leaf of Tree(Q~), replace probabilities labeling
leaf with ~cEc Pr(c)V(c), using these probabilities to
determine Pr(c) for any context (branch) Tree(V).

We illustrate the algorithm on the example above.
We will regress the variables of Tree(V) through ac-
tion a in the order Y, W (generally, we want to re-
spect the ordering within the tree as much as pos-
sible). We first regress Y through a, producing the
tree shown in Figure 2(a). Notice that this tree ac-
curately reflects Pr(Y~) when a is executed given that
the previous state satisfies the conditions labeling the
branches. We then regress W through a and add the
results to any branch of the tree so far where Pr(Y) >
(see Figure 2(b)). Thus, Tree(W,a) is not added to
the rightmost branch of the tree in Figure 2(a) since
if Y is known to be false, W has no impact on re-
ward, as dictated by Tree(V). Notice also that be-
cause of certain redundancies in the tests (internal
nodes) of Tree(Y, a) and Tree(W, a), certain portions of
Tree(W, a) can be deleted. Figure 2(b) now accurately
describes the probabilities of both Y and W given that
a is executed under the listed conditions, and thus dic-
tates the probability of making any branch of Tree(V)
true. The (future component of the) expected value
performing a can be computed at each leaf of this tree
using ~’~ { Pr(c) V (: c ¯ branches(Tree(V))}.

It is important to note that the justification for this
very simple algorithm lies in the fact that, in the net-
work for a, lzt and Wt are independent given any
context k labeling a branch of Tree(Qa). This en-
sures that the term Pr(Y’lk) Pr(W’lk) corresponds to
Pr(Y’, W~lk). Since no action effects are correlated,

25

X’

A
Y’ 0.8 Y

Y’I.O Y’O.O

(a)

Xy

Y Y

x’Y’ 0.72 x’Y’ 0.72 x’Y’ 0.16 x’Y’ 0.16
x’-Y’ 0.18 x’-Y’ 0.18 x’-Y’ 0.04 x’-Y’ 0.04
-x’Y’ 0.07 ~x’Y’ 0.04 -x’Y’ 0.56 -x’Y’ 0.32

-x’-Y" 0.03 -x’-Y’ 0.06 -x’-Y’ 0.24 ~x’-Y’ 0.48
(b)

X’

y Y
A A

Z Z Z Z
A A A A

(c)

Figure 3: Decision theoretic regression with correlations

the effect of a on any variable is independent given
knowledge of the previous state (i.e., the post-action
variables are independent given the pre-action vari-
ables).

Regression with Correlated Effects
As noted above, the fact that action effects are uncor-
related means that knowledge of the previous state ren=
ders all post-action variables independent. This is not
the case when effects are correlated as in Figure l(b),
leading several difficulties for decision theoretic regres-
sion. The first is that although we want to compute
expected value of a given only the state s of pre-action
variables, the probability of post-action variables that
can influence value (e.g., Y’) is not specified solely in
terms of the pre-action state, but also involves post-
action variables (e.g., X’). This difficulty is relatively
straightforward to deal with, requiring that we sum
out the influence of post-action variables on other post-
action variables.

The second problem requires more sophistication.
Because action effects are correlated, the probability of
the variables in Tree(V) may also be correlated, so de-
termining the probability of attaining a certain branch
of Tree(V) by considering the "independent" probabil-
ities of attaining the variables on the branch is doomed
to failure. For instance, if both X and Y lie on a single
branch of Tree(V), we cannot compute Pr(X’ls) and
Pr(YIIs) independently to determine the probability
Pr(X’,YIIs) of attaining that branch. To deal with
this, we construct Q-trees where the joint distribution
over certain variables is computed.

Consider action a in Figure l(b) and Tree(V) in Fig-
ure l(c). Using the algorithm from the previous sec-
tion to produce Tree(Q~), we would first regress Y’
through a to obtain the tree shown in Figure 3(a).
Continuation of the algorithm will not lead to a legit-
imate Q-tree, since it involves a post-action variable
X’, so we must replace the occurrence(s) of X’ with
Tree(X’, a). Since X~ and Y~ are correlated, we need
a separate probability for each combination of their
values at each leaf. To compute these probabilities
we merge the probabilities from Tree(X’,a) and Fig-
ure 3(a), resulting in Figure 3(b). For example, in
leftmost branch, Pr(XI) is 0.9 from Tree(X’,a), and

Pr(Y’IX’) is 0.8, so Pr(X’,Y’) is 0.72.5

As with the previous example, we must now regress
W through a and add the result to any branches on
which Pr(Y’) > 0 (in this case, all the branches).
final tree (minus the labels on its leaves) appears
Figure 3(c).

Each leaf in Figure 3(c) records the tables of prob-
abilities for X’ and Y’, as well as a probability for
W’. If there are a large number of correlated vari-
ables, these tables of probabilities can grow very large.
Fortunately, it is often possible to reduce the size of
the tables by summing out variables. In the Figure,
we note that although X’ appears in the table, it does
not appear in Tree(V), and therefore is not required
to calculate the new value tree. Therefore we can sum
X’ out of the tables, reducing each table to a single
probability.

While we can sum out variables after constructing
the new tree, we can also sum them out while tree-
construction is proceeding. For example, as we are
building the tree in Figure 3(b), we can observe that
the probability of X’ is unnecessary, and sum out its
influence on Y’ immediately as follows:

Pr(Y’ls) = ~,evat(x’) Pr(Y’lx’,s). Pr(x’lX)
= ~]~,eval(x,) Pr(Y’]x’, Y). Pr(x’lX)

How can we decide when to sum out the influence
of a variable, and when to retain the (local) joint rep-
resentation? Intuitively, we want to retain the joint
distribution for a variable if we are going to "need"
it again in the future. Any variable that appears in
Tree(V) (or Tree(R)) will obviously be needed, but as
Figure 4 shows, not all other variables can be summed
out.

In Figure 4(a), assuming that Tree(V) is as before,
when we regress Y’ through a, we introduce a tree in
which both XI and Z’ appear. If we then substitute
Tree(X’) for X’, we might be tempted to sum out X’

as in Figure 3. In this example however, we "need" X~

later since Y’ is not independent of X’ given Z’ and

5This local joint distribution need not be computed or
represented explicitly. Any factored representation, e.g.,

storing directly Pr(Y’) and Pr(W’IY’), can be used. In
fact, when a number of variables are correlated, we gener-
ally expect this to be the approach of choice.

® ®
(a) (b) (c)

Figure 4: When to sum out variables, and when to
keep their joint distribution.

II(X~). When we later substitute Tree(Z~) for Zt, we
will need the joint distribution of XJ and Y~ in order
to compute the correct joint distribution of all three.
Once all the substitutions are complete, we can then
safely sum out X~ since it is not required to compute
the actual value of each leaf in the new tree.

Figure 4(b) illustrates a similar issue. When
regress Y~ through a here, we obtain a tree contain-
ing node X~, which subsequently gets replaced by
Tree(X~, a). The term Pr(Y~) should be computed ex-
plicitly by summing the terms Pr(Y’lx~)¯ Pr(x’ IX) over
values x’. However, looking at the Tree(V), we see
that Z~ will be regressed wherever Pr(Y~) > 0, and
that Z’ also depends on X’. This means that (ignor-
ing any context specific independence) ~ and Y~ are
correlated given the previous state s. This dependence
is mediated by X’, so we will need to explicitly use
the joint probability Pr(Yt, Xt) to determine the joint
probability Pr(Y’, Zt). In such a case, we say that
is needed and we do not sum out its influence on Y~.
In an example like this, however, once we have deter-
mined Pr(Y~, X~, Z~) we can decide to sum out X~ if it
won’t be needed further.

Finally, suppose that Z~ depends indirectly on X~,
but that this dependence is mediated by Y~, as in Fig-
ure 4(c). In this case, we can sum out ~ and claim
that Xt is not needed: X’ can only influence Z~ through
its effect on Y~. This effect is adequately summa-
rized by Pr(Y’IX); and the terms Pr(Y~, X’IX) are not
needed to compute Pr(Y’, Z’IX) since Z’ and X~ are
independent given Y’. We provide a formal definition
of need in Section.

Figure 4(a) illustrates another important issue. Sup-
pose we proceed as described above, first regressing Y~
through a, then substituting Tree(Xt) for X~, and then
Tree(Z~) for Z~. At this point we have reintroduced X’
into the tree, since it is a parent of Z~, and must now
eliminate it again. To prevent this occurring, we re-
quire that when a variable Y~ is regressed through a,
if any two of its post-action parents lie on the same
branch of Tree(Y~), these nodes in Tree(Y~) must be
replaced by their trees in an order that respects the de-
pendence among post-action variables in a’s network.
More precisely, let a post-action ordering OF for ac-

tion a be any ordering of variables such that, if X~ is
a parent of Z’, then Z~ occurs before X~ in this order-
ing (so the ordering goes against the direction of the
within-slice arcs). Post-action variables in Tree(Y~),
or any tree obtained by recursive replacement of post-
action variables, must be replaced according to some
post-action ordering OR.

Decision Theoretic Regression Algorithm
To formalize the algorithm, we assume that an action a
in network form has been provided with tree-structured
CPTs (that is, Tree(X~, a) for each post-action variable
X~), as well as a value tree Tree(V). We let Oy be an
ordering of the variables within Tree(V), and Op some
post-action ordering for a. The following algorithm
constructs a Q-tree for Qa with respect to Tree(V).
1. Set TreeCQa) -- @
2. For each variable X in Tree(V) (using Ov):

Ca) Find C, the set of contexts (partial branches)
TreeCV) that lead to an occurrence of X.

(b) At any leaf I of Tre¢(Qa) such that Pr(c) >
for some c E C, add simplify(Tree(X’,a),l,k) to i,
where k is the context in Tree(Qa) leading to l (we
treat I as its label).

3. At each leaf of Tree(Qa), replace the probability terms
(of which some may be joint probabilities) labeling the
leaf with ~cecPr(c)V(c), using these probabilities to
determine Pr(c) for any context (branch) Tree(V).
The intuitions from our earlier examples are part of

the algorithm that produces simplify(Tree(X’, a), l, k
Recall that I is a leaf of thecurrent (partial) Tree(Qa)
and is labeled with (possibly joint) probabilities
some subset of the variables in Tree(V): Context k
is the set of conditions under which those probabilities
are valid; note that k can only consist of pre-action
variables. Simplification involves the repeated replace-
ment of the post-action variables in Tree(V) and the
recording of joint distributions if required. It proceeds
as follows:
1. Reduce Tree(X’, a) for context k by deleting redundant

nodes.
2. For any variables Y~ in Tree(X’,a) whose probability

is part of the label for l, replace Y’ in Tree(X’,a),
respecting the ordering Op in replacement. That is,
for each occurrence of Y’ in Tree(X’,a): Ca) merge
the subtrees under Y~ corresponding to values y of Y’
that have positive probability, deleting Y’; (b) compute
Pr(X’[Y’, m). Pr(Y’) for each leaf in the merged subtree
(let this leaf correspond to context m = k A k’, where
k’ is the branch through Tree(X’, a)); (c) if Y’ has
regressed at l or is needed in context m, label this leaf of
the merged tree with the joint distribution over X~, Y~;
otherwise, sum out the influence of Y’.

3. For any remaining variables yr in Tree(Xt, a), replace
Y’ in TreeCX’, a), respecting the ordering Ol, in replace-
ment. To do.this: (a) replace each occurrence of ys with
Tree(YS,a) (and reduce by context n -- k A k’, where
kS is the branch through TreeCX’,a) leading to Y’); (b)
to each leaf l’ of the Tree(Y’, a) just added, merge the
subtrees under Y’ corresponding to values y of Y’ that
have positive probability at 1’; (c) proceed as in Step

27

4. Repeat Step 3 until all new post-action variables intro-
duced at each iteration of Step 3 have been removed. For
any variable removed from the tree, we construct a joint
distribution with X’ if it is needed, or sum over its value
if it is not.

These steps embody the intuitions described earlier.
We note that when we refer to Pr(YI) as it exists in
the tree, it may be that Pr(Y’) does not label the leaf
explicitly but jointly with one or more other variables.
In such a case, when we say that Pr(XI, y’) should
be computed, or Y’ should be summed out, we intend
that X’ will become part of the explicit joint involving
other variables. Any variables that are part of such
a cluster are correlated with Y’ and hence with X’.
Variables can be summed out once they are no longer
needed.

The last requirement is a formal definition of the
concept of need---as described above, this determines
when to retain a joint representation for a post-action
variable that is being removed from Tree(Qa). Let l
be the label of the leaf where X~ is being regressed, k
be the context leading to that leaf, Y~ be the ancestor
of X~ being replaced, and k~ the context labeling the
branch through (partially replaced) Tree(X~, a) where
the decision to compute Pr(X~) or Pr(X’, Y’) is being
made. We say that Y~ is needed if:

1. there is a branch b of Tree(V) on which Y~ lies, such
that b has positive probability given l; or

2. there is a branch b on which Z lies, such that b has
positive probability given l; Pr(Z~) is not recorded
in l; and there is a path from Y~ to Zt in a’s network
that is not blocked by (X’, k, k’}.

Concluding Remarks
We have presented an algorithm for the construction of
Q-trees using a Bayes net representation of an action,
with tree-structured CPTs, and a tree-structured value
function. Unlike earlier approaches to this problem,
this algorithm works with arbitrary Bayes net action
descriptions, and is not hindered by the presence of
"intra-slice" arcs. Forcing someone to specify actions
without correlations is often unnatural, and the trans-
lation into a network with no intra-slice arcs (e.g., by
clustering variables) may cause a blowup in the net-
work size and a failure to exploit many independencies
in decision theoretic regression.

We note that this algorithm will behave exactly
as the algorithms discussed in (Boutilier, Dearden,
Goldszmidt 1995; Boutilier & Dearden 1996) if there
are no correlations. While we expect MDPs often to
contain actions that exhibit correlations, it seems likely
that many of these correlations will be localized.

References
Barto, A. G.; Bradtke, S. J.; and Singh, S. P. 1995. Learn-
ing to act using real-time dynamic programming. Artifi-
cial Intelligence 72(1-2):81-138.

Bellman, R. E. 1957. Dynamic Programming. Princeton:
Princeton University Press.
Boutilier, C., and Dearden, R. 1994. Using abstractions
for decision-theoretic planning with time constraints. In
Proceedings of the Twelfth National Conference on Artifi-
cial Intelligence, 1016-1022.
Boutilier, C., andDearden, R. 1996. Approximating value
trees in structured dynamic programming. In Proceedings
of the Thirteenth International Conference on Machine
Learning, 54-62.
Boutilier, C., and Goldszmidt, M. 1996. The frame prob-
lem and Bayesian network action re’presentations. In Pro-
ceedings of the Eleventh Biennial Canadian Conference on
Artificial Intelligence, 69-83.
Boutilier, C.; Friedman, N.; Goldszmidt, M.; and Koller,
D. 1996. Context-specific independence in Bayesian net-
works. In Proceedings of the Twelfth Conference on Un-
certainty in Artificial Intelligence, 115-123.
Boutilier, C.; Dearden, R.; and Goldszmidt, M. 1995.
Exploiting structure in policy construction. In Proceed-
ings of the Fourteenth International Joint Conference on
Artificial Intelligence, 1104-1111.
Chapman, D., and Kaelbling, L. P. 19911 Input generaliza-
tion in delayed reinforcement learning: An algorithm and
performance comparisons. In Proceedings of the Twelfth
International Joint Conference on Artificial Intelligence,
726-731..
Dean, T., and Kanazawa, K. 1989. A model for reasoning
about persistence and causation. Computational Intelli-
gence 5(3):142-150.
Dean, T.; Kaelbling, L. P.; Kirman, J.; and Nicholson, A.
1993. Planning with deadlines in stochastic domains. In
Proceedings of the Eleventh National Conference on Arti-
ficial Intelligence, 574-579.
Dearden, R., and Boutilier, C. 1997. Abstraction and
approximate decision theoretic planning. Artificial Intel-
ligence 89:219-283.
Dietterich, T. G., and Flann, N. S. 1995. Explanation-
based learning and reinforcement learning: A unified ap-
proach. In Proceedings of the Twelfth International Con-
ference on Machine Learning, 176-184.
Howard, R. A. 1960. Dynamic Programming and Markov
Processes. Cambridge: MIT Press.
Kushmerick, N.; Hanks, S.; and Weld, D. 1994. An al-
gorithm for probabilistic least-commitment planning. In
Proceedings of the Twelfth National Conference on Artifi-
cial Intelligence, 1073-1078.

Puterman, M. L. 1994. Markov Decision Processes: Dis-
crete Stochastic Dynamic Programming. New York: Wi-
ley.
Tsitsiklis, J. H., and Roy, B. V. 1996. Feature-based
methods for large scale dynamic programming. Machine
Learning 22:59-94.
Watkins, C. J. C. H., and Dayan, P. 1992. Q-learning.
Machine Learning 8:279-292.

28

