
Stratified Case-Based Reasoning in Non-Refinable Abstraction

Abstract

Stratified case-based reasoning (ScBR) is a technique
¯ in which case abstractions are used to assist case re-
trieval, matching, and adaptation. Previous work
showed that SCBR can significantly decrease the com-
putational expense required for retrieval, matching,
and adaptation in a route-finding domain character-
ized by abstraction hierarchies with the downward re-
finement property. This work explores the effective-
ness of SCBR in hierarchies without the downward re-
finement property. In an experimental evaluation us-
ing such hierarchies (1) SCBR significantly decreased
search cost in hierarchies without the downward re-
finement property, although the speedup over ground-
level A* was not as great as in refinable hierarchies,
(2) little difference was observed in SCBR search costs
between case libraries created top-down in the process
of P~EFINEMENT and those created bottom-up from a
valid ground solution, and (3) the most important fac-
tor in determining speedup appeared to be a priori
likelihood that a previous solution can be usefully ap-
plied to a new problem.

Stratified Case-Based Reasoning
Stratified Case-Based Reasoning is a technique under
which case abstractions are used to assist case index-
ing, matching, and adaptation. This approach has
been applied to case-based planning (BW95; KH92),
design of control software (SK94; SC92), and route
planning (BA95) (See (BW96) for a comparative 
ysis of previous approaches). Use of case abstractions
has the following potential benefits:

¯ Indexing and retrieval. A more abstract solution
to a problem can provide an accurate index to less
abstract solutions to the problem because it consists
of the most important aspects of the less abstract
solutions.

¯ Matching. Retaining case abstractions permits
cases to be compared in an abstract space in which
matching may be much less expensive than at the
ground level of abstraction.
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¯ Adaptation. An abstraction of a stored case may
be much easier to reuse than the ground-level case
itself. Stratified cases can be reused at the most spe-
cific level of abstraction at which they can be applied
to the given problem without requiring adaptation
of less abstract, nommatching facts.

A systematic analysis set forth in (BA95) compared
the performance of heuristic search (A*), REFINEMENT
(i.e., hierarchical problem solving), ground-level CBR,
and SCBR as a function of (1) number of levels of ab-
straction, (2) the size of the case library, and (3) resem-
blance among cases, The comparison was in the con-
text of a route-finding task restricted to fields for which
a simple aggregation abstraction method produced hi-
erarchies satisfying the downward refinement property
(Kno94; BY94), i.e., every abstract solution can be re-
fined to a concrete solution, if a concrete solution ex-
ists). Under these conditions, the SCBR algorithms
outperformed ground-level CBR and ground-level A*
under all conditions, and outperformed REFINEMENT
given 3 or more levels of abstraction.

’However, these results were restricted to domains
for which there are abstraction methods that can cre-
ate hierarchies with the downward refinement property.
Unfortunately, many abstraction hierarchies lack this
property (BY94). Determining the range of applicabil-
ity of SCBR requires establishing whether it can lead
to improvement in hierarchies without the downward
refinement property (henceforth, "nonrefinable hierar-
chies").

This paper describes an experimental evaluation of
the relative performance of SCBR in refinable and non-
refinable hierarchies. The evaluation showed that in
the route-finding domain SCBR leads to increases in
search efficiency nearly as great in nonrefinable hierar-
chies as in refinable hierarchies.
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The Route-Finding Task

Route-finding was originally chosen to evaluate the
utility of stratified case-based reasoning because this
task is an important area of activity in robotics and
is amenable to hierarchical problem solving. This
task involves finding an optimal or near-optimal path
between a given pair of start and goal positions
through a field containing obstacles. Fields consist
of N x N arrays of positions, where N is a power
of 2. Fields of this form are amenable to a sim-
ple abstraction hierarchy in which an abstract posi-
tion at Level 1 position (R, C) (zero indexing) 
stracts over the following four ground-level positions:
(2 x R, 2 x C),(2 x R, 2 x C + I),(2 x R+ 1,2 
{2 x R+I,2 x C+I>.

The goal of the route-finding task is to lOcate a
route connecting the start and goal positions using
a sequence of straight and curved track segments, or
traversal operators, such that the start and goal po-
sitions lie at the ends of the connected track. Each
position is associated with the set of operators that
can be used to traverse it. Thus, each unblocked posi-
tion at the ground level is associated with all possible
operators. Each blocked position is associated with the
empty set of traversal operators since traversal through
them is impossible. Determining the available opera-
tor set for each abstract position involves determining
(1) what operators are available for each of the four
positions it abstracts and (2) which of the six opera-
tors, if any, are still possible after joining these four
lower-level positions.

Search Using Abstraction Hierarchies

REFINEMENT (HMZM96) is a form of hierarchical
problem solving in which a solution at one level of ab-
straction is used to guide search at a lower level of
abstraction. One approach to REFINEMENT is to use
the length of the solution at a higher level of abstrac-"
tion to estimate the path length at the lower level. In
the abstraction method used in the route-finding task,
this can be accomplished for positions that are in the
abstraction path by multiplying the distance to the ab-
stract goal along the abstract solution by 2 and adding
the distance from the current position to the closest
position that is a member of the next closer abstract
position. The distance estimate can be used as the h*
estimate in A* search. This process can be repeated
at multiple levels of abstraction.

If the abstract solution is refinable into aa optimal
solution, then this estimate will be very accurate. If
the abstract solution is not refinable, the estimate will
still be admissible provided that the optimal solution
is at least twice the length of the abstract solution plus

2. However, the treatment of positions off the abstract
solution path is problematical. Ideally, one would like
a heuristic for these points that is both admissible and
also larger than the distance estimate for points on the
abstract path (to focus search on position on the ab-
stract path). However, for refinable abstract solutions
the estimated distance for positions on the abstract so-
lution path is very close to the actual distance, so it
is not generally possible to find an admissible heuris-
tic for points outside that is greater than the distance
estimate for points on the path. In the experiments de-
scribed below the distance estimate consisted of Man-
hattan distance times a large constant. This metric
insures that theh* value of every point off of the ab-
stract.path is higher than the h* value of any point on
the path but is still sensitive to the actual distance to
the goal.

The experimental evaluation in (BA95) showed that
REFINEMENT (called "hierarchical A*" in (BA95)) 
significantly more efficient than ground-level A* given
even a single abstraction level, and its performance
improved with more levels of abstraction.

Stratified CBR Algorithms

Stratified CBR algorithms can reuse case solutions
stored at any abstraction level. Each algorithm starts
by retrieving from the case library the set of most spe-
cific matching cases (i.e., lowest-level cases whose solu-
tions include abstract positions that abstract the given
start and goal positions). This search begins at the
root of the case library, recurses with its children (i.e.,
top-level abstractions of solved cases), and continues
recursing until it reaches the ground level (in which
case the segment of a solution connecting the new start
and goal positions is returned) or cases that no longer
cover both the start and goal positions.

The CLOSEST algorithm supports partial matching
between new problems and previous solutions. Start-
ing with the most specific matching cases (or the most
abstract cases; if no cases match) CLOSEST finds the
refinements of each case, adapts each refinement (i.e.,
uses A* to find the shortest adaptation paths from the
start and goal positions to the solution path at that
level of abstraction, restricting search to positions in
the parent case’s adaptation paths), and selects the re-
finements having the shortest adapted solution paths.
CLOSEST recursively calls these three steps until the
ground level is reached, at which time it randomly se-
lects and returns an adapted case.

The THRESHOLD algorithm, attempts to recognize
situations in which adapting an existing case will
be more expensive than problem solving ab mitT.
THRESHOLD behaves identically to CLOSEST if there
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Figure 1: Adaptation of an abstract solution leading
to adaptation of the ground-level solution. Adaptation
paths are shown as dotted lines.

therefore be organized into a forest of taxonomic trees.
A case library consists of a taxonomic forest of cases
sharing a common abstraction.

Generation of abstract cases by REFINEMENT is top-
down abstract case creation. An alternative is bottom-
up abstraction: starting with a ground-level case cre-
ated by REFINEMENT or A*, successively abstract the
solution as many times as there are levels in the case
library. In refinable abstraction hierarchies, top-down
and bottom-up approaches generate identical abstract
cases.

Case Retrieval and Adaptation in

Nonrefinable Hierarchies

The abstraction method described in the previous sec-
tion is not guaranteed to lead to refinable abstract so-
lutions. Figure 2 illustrates a solution path through
a 32 × 32 field. Figure 3 shows the abstract solutions
found by REFINEMENT starting three levels of abstrac-
tion above the ground level. The two most abstract
solutions show, incorrectly, that there is a path almost
directly down from the start position to the bottom
quarter of the field. Moreover, the abstract solutions
fail to show the deviation up the right side of the field
necessary to reach the bottom row of the field.

are matching cases. However, if there are no matching
cases, then THRESHOLD uses A* to find the shortest
path from the start to the goal position at the highest
level of abstraction. If there are top-level cases whose
adapted solution paths are no longer than the path
length found by A*, then THRESHOLD treats these
cases in the same manner as CLOSEST. If there are no
such cases, then THRESHOLD uses REFINEMENT rather
than CBR.

The process of adaptation is illustrated in Figures 2
shows an abstraction of a previous solution, an adap-
tation of this abstraction to a new problem, and an
adaptation of the previous solution at the ground level.
Given an abstraction hierarchy for a particular field
and start and goal positions, REFINEMENT generates a
path connecting the start and goal positions at" every
level of abstraction. Each solution at a given level of
abstraction is treated as a separate case.

Since distinct positions at the ground level may be
identical at more abstract levels, distinct cases at a
lower level may have identical parents. Cases can

Figure 2: A ground-level solution in a 32 x 32 field.

Errors like these can arise whenever a series of ad-
jacent obstacles are arranged in a row that (1) crosses
a pair of a region which is abstracted into a single po-
sition and that (2) leaves unobstructed positions 
either side. For example, the barrier in the upper-left
corner of the field shown in Figure 2 crosses abstract
positions with width 4 leaving a path on either side.
REFINEMENT may construct a path across such a bar-
rier because information about which side of the barrier
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solutions created by REFINE-

the current position is on has been abstracted away.
For example, in the most abstract solution shown in
Figure 3 the path goes straight down from S because
at this level it can’t be determined which side of the
barrier the starting position is on. The abstract so-
lution at the next lower level of abstraction shows a
horizontal path for one step followed by a downward
path. This path was constructed from operators A and
D because when operator D was applied no informa-
tion was available about which side of the barrier the
current position was on.

Nonrefinability can potential create problems for
SCBR algorithms in two different ways. First, an ab-
stract solution that appears to be reusable at an ab-
stract level may turn out not to have useful children.
For example, if the start and goal positions in a new
case were both along the left edge of the field shown
in Figure 2, the most abstract case in Figure 3 would
appear to be a good precedent, since its path appears
to go the length of the left edge. However, the solu-
tion two abstraction levels lower goes down along the
middle and right side of the field, but not the left side.
Thus, reuse of this solution might be more expensive
than simply generating a new path ab initio. Second,
CLOSEST and THRESHOLD use REFINEMENT to find
adaptation paths (e.g., the paths shown as dotted lines
in Figure 3). The computational expense of this ap-
plication of REFINEMENT will typically be greater in
nonrefinable hierarchies. The cost of adaptation will

therefore be higher as well.
The problems associated with nonrefinable hierar-

chies were not addressed in the experiments described
in (BA95) because those experiments involved only
fields satisfying the following conditions (referred to
hereinafter as "field refinability conditions"): (1) 
adjacent obstacles are arranged in rectilinear regions
and (2) whenever the length of a sequence of adjacent
obstacles is at least the size of an abstract region at
some level of abstraction, then its width is at least the
region size minus 1. These conditions preclude the er-
rors described above.

Empirical Evaluation
Intuitively, it seems that SCBR algorithms should per-
form well even in nonrefinable hierarchies because
these algorithms have access to previous successful so-
lutions. This intuition suggests the following hypothe-
ses:

1. SCBR can reduce search even in hierarchies without
guaranteed refinability.

2. The performance of CLOSEST relative to that of RE-
FINEMENT is better for nonrefinable than for refin-
able hierarchies.

3. When the field refinability conditions are not satis-
fied, abstraction hierarchies created bottom-up lead
to better performance by SCBR and THRESHOLD
than those created top-down.

These hypotheses were tested in experiment that
compared the performance of ground-level A’, RE-
FINEMENT, and the ScBR algorithms as a function of
the nature of the abstraction hierarchy. The depen-
dent variable was computational expense as measured
by the number of nodes expanded by A° in the exe-
cution of each algorithm. The independent variables
were:

1. Whether the abstraction hierarchy guarantees refin-
ability.

2. For nonrefinable hierarchies, whether abstract cases
were created top-down or bottom-up.

3. The number of cases in the case library (1, 5, 10, or
20).

4. Whether the start and goal position s are selected
randomly or are constrained to be on opposite sides
of the field. This affects the likelihood that a case
will be useful for reuse (start/goai positions on oppo-
site sides increase the likelihood that some segment
of a previous solution can be reused in any new prob-

lem).
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Field size was fixed at 32 x 32 and the number of
levels of abstraction was fixed at 3 (not counting the
ground level). Refinable hierarchies were created by
using fields that satisfy the "field refinability condi-
tions" described above. Nonrefinable hierarchies were
created by using fields that violate these conditions,
such as the field shown in Figure 2. Six trials with
10 test cases each were run for each combination of
refinable vs. nonrefinable hierarchy, case library size,
top-down vs. bottom-up abstract case creation, and
random vs. opposite sides selection of start and goal
positions.

Figure 4 shows the mean speedup of CLOSEST over

ground-level A* on case libraries generated bottom-up
as measured by the mean number of nodes expanded by
ground-level A* divided by the mean number of nodes
expanded by the CLOSEST. These results provide ini-
tial confirmation for the first hypothesis: SCBR can
reduce search even in hierarchies without guaranteed
refinability. For both the random and opposite ends
conditions the speedup was greater for refinable hier-
archies than for nonrefinable hierarchies. However, for
both refinable and nonrefinable hierarchies the speedup
was greater for the opposite sides condition than for
random start and goal positions:
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Figure 4: Mean speedup of SCBR algorithms over
ground-level A* (i.e., ratio of nodes expanded by
ground-level A* to those expanded by COVER) for
refinable vs. nonrefinable abstraction hierarchies and
random vs. opposite sides selection of start and goal
positions. All abstraction hierarchies were created
bottom-up.

Figure 5 shows the ratio of the number of nodes ex-
panded by REFINEMENT to the number of nodes ex-
panded by CLOSEST as a function of case library size
for refinable and nonrefinable hierarchies (with cases
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Figure 5: Mean speedup of CLOSEST over REFINE-

MENT in refinable and nonrefinable abstraction hierar- "
chics for random and opposite sides selection of start
and goal positions.

created bottom-up in the latter). Contrary to hypoth-
esis 2, the speedup over REFINEMENT appeared to be
greater for refinable than for nonrefinable hierarchies
given opposite sides start/goal position selection. For
random start/goal pairs, refinability had little effect
on the relative performance of CLOSEST and REFINE-
MENT.

Discussion and Future Work
The empirical evaluation demonstrated that the range
of applicability of SCBR algorithms extends to at least
some domains lacking the downward refinement prop-
erty. CLOSEST produces impressive speed-ups over
both ground-level A* and REFINEMENT even for hier-
archies that lack guaranteed refinability. Although the
speed-ups were greater for refinable than for nonrefin-
able hierarchies, the variable with the greatest affect
on the efficiency of SCBR appeared to be the distribu-
tion of start/goal positions. This variable determines
the a priori likelihood that a previous solution can be
usefully applied to a new problem.

Bottom-up abstraction had surprisingly little effect
on the efficiency of CLOSEST. The only pronounced
benefit occurred for THRESHOLD under the opposite
sides condition, evidently because bottom-up abstrac-
tion makes estimation of adaptation costs at a high
level more accurate. This permits THRESHOLD tO rec-
ognize more accurately abstraction cases whose adap-
tation cases are greater than ab initio problem solving.
The observation that the speed-up of the SCBR algo-
rithms over REFINEMENT is less for nonrefinable than
for refinable hierarchies even when bottom-up abstrac-
tion is used suggests that nonrefinability diminishes the
performance of SCBFt algorithms by increasing adapta-
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tion costs rather than by diminishing retrieval accu-
racy.

The evaluation suggests a number of additional ques-
tions. The abstraction hierarchies generated from
fields like that shown in Figure 2 lack the guarantee of
refinability, but the abstract solutions are close enough
to enable REFINEMENT to outperform ground-level A*.
However, there are many abstraction hierarchies where
lack of refinability makes REFINEMENT more expensive
than ground-level search (BY94). It is unclear from
the empirical evaluation whether, or under what condi-
tions, SCBR algorithms would outperform ground-level
search in such domains.

To clarify the range of applicability of SCBR, addi-
tional experiments are needed to test the sensitivity of
SCBR to the following independent variables:

(1) The degree of refinability. This will help to de-
termine whether there are circumstances under which
SCBR, but not REFINEMENT, outperforms ground-level
search.

(2) The degree of intercase relevance. The apparent
sensitivity of S C BR to the distribution of start/goal po-
sitions suggests that it would be desirable to develop a
general metric for intercase relevance to help determine
the conditions under which SCBR is appropriate.

We are currently investigating the utility of SCBR
on other types of information-processing tasks, includ-
ing a configuration task--constraint satisfaction--and
an analytical task, analogical legal reasoning. In addi-
tion, we are attempting to apply SCBR to abstraction
hierarchies created using the star abstraction method
described in (HMZM96).

Conclusion

This paper has described the process of stratified CBR
in the context of hierarchies without the downward
refinement property. A source of nonrefinability was
identified in route finding in fields that fail to satisfy
two "field refinability conditions." An experimental
evaluation Using hierarchies derived from such fields
showed that SCBR significantly decreased search cost
in such hierarchies, although the speedup over ground-
level A* was not as great as in refinable hierarchies.
The evaluation showed that the ratio of the search
costs for REFINEMENT to those of SCBR was highest
for opposite sides start/goal position selection, indi-
cating that a priori likelihood that a previous solution
can be usefully applied to a new problem is a more im-
portant factor than refinability in determining the rel-
ative performance of REFINEMENT and SCBR. Finally,
a difference in SCBR search costs between case libraries
created top-down in the process of REFINEMENT and
those created bottom-up from a valid ground solution

was observed only for THRESHOLD with opposite sides
start/goal selection.
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