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Abstract

This is a preliminary report on research towards the
development of an abstraction-based framework for
decision-theoretic planning using Bayesian networks.
We discuss two problems: the representation of sets of
probability distributions for Bayesian networks, and
the issue of representing and abstracting actions us-
ing Bayesian networks. For the first problem, we pro-
pose the use of cc-trees to represent sets of probability
distributions and show how propagation in Bayesian
networks can be performed without loss of informa-
tion in this representation. The cc-tree representation
provides ‘an intuitive and flexible way to make trade-
offs between precision and computational cost. For
the second problem, we identify a class of planning
problems where a simple abstraction technique can be
used to abstract a set of actions and to reduce the cost
of plan evaluation.

Introduction

Decision-theoretic approaches to planning, while rep-
resentationally appealing, tend to be extremely com-
putationally costly. To cope with this complex-
1ty, researchers have employed abstraction techniques
(Boutilier & Dearden 1994; Doan & Haddawy 1996).
Haddawy et al (Haddawy & Suwandi 1994; Doan &
Haddawy 1996) identify three types of abstraction that
can be used to reduce the complexity of decision-
theoretic planning when using a tree-based represen-
tation. While the abstraction techniques have been
quite successful in reducing the complexity of planning,
the tree representation provides little help in structur-
ing domain descriptions. Because of the modularity
of representation and the ability to generate explana-
tions afforded by Bayesian networks, we would like to
determine whether these abstraction techniques can be
mapped onto a Bayes net representation.

In this paper, we take a first step in this direction by
showing how to abstract sets of actions represented as
Bayes net fragments. This work is an extension of our

*This work was partially supported by a Fulbright fel-
lowship to Haddawy, by a grant from Rockwell Interna-
tional Corporation, and by NSF grant IRI-9509165.
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p.revious work on abstraction (Haddawy & Suwandi
1994; Doan & Haddawy 1996), the theoretical founda-
tions of which can be found in (Ha & Haddawy 1996).

Since our technique for abstracting sets of actions
requires the existence of a mechanism for representing
and reasoning with sets of probability distributions, we
give here a brief review of some existing mechanisms
for reasoning with sets of distributions using Bayesian
networks. The problem of reasoning with sets of proba-
bility distributions has received much attention in the
Al research community. Apart from its relevance to
abstraction, there are numerous motivations for study-
ing sets of distributions, including attempts to loosen
the strictness of the Bayesian paradigm (the cautious
Bayesian), sensitivity & robustness analysis, and group
decision making, to name a few. Previous work on
reasoning with sets of distributions in Bayesian net-
works includes (Fertig & Breese 1989; Tessem 1992;
Cano, Delgado, & Moral 1993; Draper 1995; Chris-
man 1996). Breese and Fertig (Fertig & Breese 1989),
Tessem (Tessem 1992), and Draper (Draper 1995) in-
vestigate the problem of reasoning with interval belief
networks (IBN), which are generalized Bayesian net-
works with interval-valued prior/conditional probabil-
ities. It is pointed out by these authors that belief
updating in IBNs loses information. More specifically,
any direct attempt at propagation (e.g. by extending
the computation with interval arithmetic) would al-
most certainly incur substantial losses of information
at each propagation step, eventually leading to vacuous
probability bounds. To avoid the information losses
in propagating intervals, researchers have introduced
alternative representations such as lower probability
(Chrisman 1996), or more general representations such
as convex polytopes in the probability simplex (Tessem
1992; Cano, Delgado, & Moral 1993). A serious prob-
lem with the polytope representation is that the num-
ber of vertices of polytopes can increase exponentially
in the propagation process (Tessem 1992), thus ren-
dering the belief updating process intractable in large
networks.

In this paper, we propose the use of an alternative

‘representation for sets of distributions: the cc-tree rep-



resentation !. There are several advantages of using
the cc-tree representation in the context of abstraction-
based planning with Bayes nets. First, this representa-
tion is well-suited for decision-theoretic planning pur-
. poses: fundamental computations such as plan pro-
jection and expected utility computation can be effi-
ciently and elegantly performed using cc-trees. Second,

various action abstraction techniques such as intra- .

action, inter-action, and sequential-action abstraction
(Haddawy & Suwandi 1994; Doan & Haddawy 1996)
are supported and have intuitive meanings within this
representation. These advantages have already been
pointed out in (Ha & Haddawy 1996). In this paper,
we shall argue that the cc-tree representation facilitates
ezact propagation for sets of probability distributions
in interval belief networks, and provides the flexibility
of making tradeoffs, in an anytime manner, between
precision and computational cost.

" In the next section, we briefly describe the cc-tree
representation and investigate its application to repre-
senting sets of marginal/joint probability distributions
encoded in interval belief networks. We argue that
using cc-trees, belief updating in the networks can be
performed without loss of information, and discuss pos-
sible schemes for trading off precision for reduction in
computational cost. (Due to space limitation, these
dicussions are very high-level. The rigorous mathe-
matical details are to be reported elsewhere.) We then
identify a class of decision-theoretic planning problems
where a simple technique can be applied to abstract
a set of actions, and use the propagation techniques
developed for cc-trees to project abstract actions and
plans.

The CC-Tree Representation

We begin with a description of the terminology. The
d-dimension Euclidean Space is the d-dimension vector
space R equipped with the inner product (). For a
-sample space @ = {by,bs,...,bq} with cardinality d,
the set of all probability distributions over Q is called
the probability simpler and denoted by S. In the rest
of the paper, unless stated otherwise, an interval is
implicitly understood as a closed subinterval of [0, 1].

Definition 1 (The CC-Operator) The cc-operator

® defined by an interval vector A = (A1,...,Ap) is the
function that maps a vector @ = (w1, ..., w,) of sets of

points in R® to the set A® W that consists of all points
of the form A® T = Y, “°Aizy, where \; € Ai,z;i €

'Also called affine-tree in (Ha & Haddawy 1996). We
adopt this new name in accordance to the standard termi-
nology in convex geometry theory: cc is the acronym for
convexr combination, or convez coefficients. Theoretically,
cc-trees encompass polytopes in terms of expressiveness,
and can easily be extended to represent non-convex sets of
distributions, whenever such need arises (Ha & Haddawy
1997).
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wi,i=1,...,n, and 3 ;A = 1. K ® @ is sometimes

written as Y i, “Aiw;.

Illustrations and Examples of the CC-Operator

In the case that a:}l of the intervals A; are the interval

[0,1], we denote A ® @ as cc(), or ce(wy, ..., wn).

¢ Polytopes and the cc-operator. If R is a poly-
tope with extreme points {z),...,z,}, then A =
conv({z1,...,2n}) = cc({z1},...,{zn}).

e Probability distributions and the cc-operator. Any
distribution p € & can be written as p =
(p(s1),-.-,0(s54)) ® (s1,...,54), where s; represents
the ith vertice of the probability simplex.

e ® is closed on S. That is, if w; C S,i=1,2,...,n,
then AQ W C S.

In the case when each of the sets w; is a closed in-

.terval of R (they need not be subintervals of [0,1]),

then it can be shown that Y[, “°Aw; is also a closed
interval whose endpoints can be computed using the
greedy knapsack algorithm 2. This special cc-operator
sum is denoted by Z:?=1 iccA;w; (the “i” letter stands
for interval). We next briefly describe the algorithm
to compute the upper bound of this sum (the lower
bound can be computed analogously by symmetry).

Obviously, the upper bound must be achieved by
maximizing ) ., “Mu;, where X\; € A; and u; are
upper bounds of w;. This is a special case of the con-
tinuous knapsack problem: to pack materials from »
different categories into a unit-size knapsack, where
material from categories number i have value u; and
weight restriction A; (meaning that the weight must
be in the interval A;). The objective is to maximize
the total value. '

A greedy approach will apparently yield the opti-
mal solution. We first sort the values u; in descending
order, breaking ties arbitrarily. Then proceeding in
this order, we try to put into the knapsack as much
material of the current category as possible, subjected
to two constraints: 1) the weight must be in the con-
staint interval A; and 2) The sum of the already as-
signed weights must be less than or equal to the sum
of the lower bounds of the remaining constraint inter-
vals. The first restriction is explicitly mandatory from
the description of the problem, while the second one
ensures that the lower bound condition will be met in
the future. ,

The lower bound is computed analogously, using
lower bounds of w;, and sorting the material in as-
cending order wrt their values.

Example 1 Let’s compute E?=1 ‘e Aswi, where Ay =

[3 5], Ag = [2 6], A3 = [1 7] wy = [1 4], Wy = [0 3],
wy = [12]. Thusuy = 4, us = 3, uz = 2, and they
are already sorted. First, we assign weight to material
number 1, which is computed as min{.5,1 - .2~ .1} =

ZAlso called annihilation/reinforcement algorithm by
Tessem (Tessem 1992).



.5. The remaining weight is thus 1 — .5 = .5, We
then assign weight to material number 2: min{.6,.5 —
.1} = 4. And finally, the weight assigned to the last
material is 1 — .5 — .4 = .1, and thus total weight is
D Xx44.4%x3+.1x2=3.4. The lower bound is 0.
Thus 3o, **Aw; = [0 3.4]. :

Remarks. The complexity of the greedy knapsack
algorithm is determined mainly by the sortlng of the
values of the materials.

CC- Trees A cc-tree is a rooted, annotated tree
where the branches are annotated with intervals and
the nodes are annotated with sets of points in RY.
The only constraint is that for any internal, i.e. non-
leaf node n with children {c;,...,cx}, the set D(n)
of points associated with n is the result of applying
the cc-operator defined by the intervals A; associated
with the branches (n, ¢;) to the sets D; of points asso-
ciated with the children ¢;. Formally, this means that
D(n) = (A1, ...,Ax) ® (D1, ..., Dg). Usually, cc-trees
are (consistently and completely) defined by specify-

ing the sets of points associated with their leaves and -

all the associated intervals. A cc-tree is sometimes in-
terpreted as the set of points associated with its root.
One-level cc-trees are also called cec-stars.

Interval Belief Networks

We now illustrate the use of the cc-operator in comput-
ing the probability bounds in interval belief networks.
" A Bayesian belief network is a pair consisting of
a directed acyclic graph (DAG) and a collection of
prior/conditional probabilities. Interval belief net-
works (Fertig & Breese 1989; Tessem 1992; Draper
1995) are a generalization of Bayesian belief networks
where the prior/conditional probabilities are intervals
instead of point-values. The usual interpretation of an

IBN N is that it represents a set of (ordinary) be-

lief networks N, each of which is obtained from N
by replacing each interval-valued probability with a
consistent point-valued probability, while retaining the
original DAG. The consistency condition requires that
the point-valued probabilities must be contained in the
corresponding intervals, and must obey the axioms of
probability.

Example. Consider a DAG with two nodes X,Y
representing two 0/1 binary random variables, and an
edge from X to Y (Figure 1, left). The link matrices
for X and Y that specify the prior distribution of X
and the conditional distribution of Y given X are glven
as follows:

P(X) = ([3,.5,[5.7), Pv|X) = ( .2 -6
e st [4, .5] [.5, .6]

A member BN of this IBN is obtained with the fol-

lowing link matrices:

P(X) = [4, .6], P(Y]X) = ( 48 )
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Figure 1: The DAGs of the two examples of interval
belief networks

The DAG of a Bayesian belief network is in general
defined as a minimal I-map of the joint distribution
it encodes. However, it is obvious that for any IBN
N, the DAG can only be viewed as an I-map for each
of the joint distributions that the member belief net-
works N represent. The “minimality” property is often
violated, because of the extra independency relations
that come to surface when a particular combination
of point-valued probabilities are used. For example,
if we replace the second row of the matrix P(Y|X)
with (.4,.6), then the resulting joint distribution will
have an extra independency, namely that Y is indepen-
dent of X. For this distribution, we can drop the edge
X — Y in the DAG while still retain its I-mapness. So
in a sense, the member “belief networks” are not pre-
cisely belief networks, as usually defined and used. For-
tunately, this is not a problem in the developement of
IBNs, as all of the propagation techniques and the rel-
evant theoretical results for Bayesian networks do not
require the minimal I-mapness, but only the I-mapness
of the DAGs.

Computing Probability Bounds in IBNs. Con-
sider the IBN N as described in the previous exam-
ple. The set of marginal probability distributions of Y
encoded by this IBN can be represented by a 2-level
cc-tree (Figure 2). The children of the root are labeled
with the values of X: X = 0 and X = 1, while the
children of X = 7,7 = 0,1 are labeled with the values
of Y: Y =0and Y = 1. The branches of the tree are
associated with intervals. The branches connecting the
root with the nodes X = ¢,i = 0, 1 are associated with
intervals P(X = ¢), while the branches connecting the
nodes X =¢,¢:=0,1andY = j,j = 0,1 are associated
with intervals P(Y = j|X = 1),

Suppose that we are interested in computing the

~bounds for P(Y = 1). This can be done using the

greedy knapsack algorithm as follows:
P(Y =1) =) “P(X)P(Y = 1|X) = .53, .60].

It is easy to see that the above method of computing
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Figure 2: The cc-tree that represents the set of
marginal distributions of Y.

probability bounds can be applied to any causal tree.
In a causal tree, any node has at most one parents.
So if a node X has ancestors Xg, X1,..., Xk—~1, such
as X; is the parent of X;41,¢=0,...,k— 1, and X,
is a root node, then the set of marginal probability
distributions of X can be represented by a (k + 1)-
level cc-tree, and the probability bounds for X can be
computed using the recursive greedy algorithm where
the depth of the recursion is k:

P(Xp=ax) = Y “P(Xo)Y “P(X1|Xo)...

Xo X,

> “P(Xk = zk| Xk-1)-
Xk=-1

In the general case when the DAG of the IBN N is a
multiply-connected graph, the main idea of computing
the probability bounds for any node of the network is
to factorize the probability of that node into a series of
cc-operator. The factorization can be achieved based
on the join tree propagation algorithm. We illustrate
this idea through an example.

Suppose we have an interval belief network with 6
nodes {X,Y,Z,T,U,V} (Figure 1, right) and suppose
we want to compute the probability bounds for V.

The Join Tree Propagation Algorithm

¢ Input: A Bayesian network over a set of variables
X and a random variable X; € X.

* Output: The marginal distribution P(X;) for X;.
1. Obtain a family tree for the DAG of the Bayesian
network.

2. Assign every node X; to one and only one clique
containing X;. Let A; be the set of nodes assigned
to clique C;.

3. For every clique C; define the potential function

'/’i(cr Hx €A
parents of X;. If A; = 0 then define ¢;(C;) = 1.
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P(X;|1I;), where II; is the set of-

4. Obtain a join tree whose vertices are the cliques C;,
and mark the clique X; is assigned to as the root
of the tree (let’s denote this clique by Ck). The
separator set assigned to a branch that connects C;
and Cj is Sij = C;NC;. The message (to be defined
later) that clique C; sends to clique C; is denoted by
M;; and is a function of the separator set: M;;(S;;).

5. Compute the joint distribution of the root clique Cj
as:

P(Cx) = ¥k (Ck) [ Mix(Six),
i

where M is the message that a clique C;, which
is a child of C) in the join tree, sends to Ci. This
message in turn is recursively computed from the

. messages C; receives from its own children as follows.
Suppose that C; has m children C;,,...,Cj,.. Then
the message C; sends to its parent Ci is computed
as

> 0i(C) [T Miii(Sis)-
=1

Ci=S;

6. From the above formula, P(X;) can be computed by
marginalizing over the random variables in Cx — X

_ Now, we show how this algorithm is applied to com-
pute the marginal probability of V' in the previous ex-
ample. This yields a decomposition of P(V) that can
be generalized to intervals using the cc-operator.

1. The family tree for the network contains 4 cliques:

Ci=XYT,Co=YTU,C3=YZU,Cys =TUV.

2. The nodes are assigned as follows: X,Y,T are as-
signed to Cy; U, Z are assigned to Cs, and V is as-
signed to C4. Note that nothing is assigned to Cj.

3. Compute the potential functions for the cliques.
(a) v1(XYT) = P(X)P(Y)P(T|XY).
(b) ¥2(YTU) =1.
(c)y ¥s(YZU) = P(Z)P(U|Y Z).
(d) v4(TUV) = P(V|TU).

4. Obtain a join tree for the network. This join tree
has 4 nodes C;,C9,C5,C4 and 3 branches: C,Cs,
CyC3, CyC4 with correponding separators Sjp =
YT, Sa3 = YU, and 524 = TU. The root of this
tree is Cjy.

5. The joint distribution for C4 = TUV is computed
as:

P(TUV) = oa(TUV)M24(TU)

Y

P(VITU) D (Z P(X)P(Y)P( T]XY))
Y

$a(TUV) Y $2(YTU) Myz (Y T) Msp(YU)



(Z P(Z)P(U|YZ))
VA

=. P(V|TU)Y_P(Y) (Z P(X)P(TIXY))
Y X

(Z P(Z)P(UlYZ))
zZ

6. Finally, the probability of V is obtained by marginal-
izing the above expression over T and U:

P() = Y (O_P)(Q_ P(X)P(TIXY))
TU Y X

(O P(2)P(U|Y 2)))
z

P(v|TU)

In this example, the probability of node V is de-
composed into a series of 4 cc-operators. The exact
probability bounds for V can then be computed by re-
cursively apply the greedy knapsack algorithm. The
depth of this recursion is 4.

It is clear that this method of computing probability
bounds can be intractable if the depth of the recursion
is large. Techniques such as branch-merging and tree-
flatening (Ha & Haddawy 1996) can be used to make
tradeoffs between the accuracy of the bounds and re-
duction of computational cost.

Abstraction Of Bayesian Networks

In this section, we address the problem of using inter-
val belief networks to abstract two or more Bayesian
networks. Let us consider two Bayesian networks N,
and N, over a same set of random variables, with the
corresponding DAGS G; and G,. We are interested
in generating an interval belief network N that is an
abstraction of N; and N,. The sets of distributions
represented by N should contain the distributions rep-
resented by N, and N,.

In the case when the two Bayesian networks have the
same structure, i.e. when Gy = Gy, there is a straight-
forward way to obtain N. The DAG of N is set to be
the same as G; and Gj, while each prior/conditional
probability in N is set to the smallest interval that
contains the corresponding point-valued probabilities
in Ny and N,. It follows directly from the definition
.of IBNs that the resulting IBN will always represent
a set of distributions that contains the distributions
represented by the original BNs.

In the case when the DAGs G; and G, are not iso-
morphic, but share a common topology order 3, then
we can add extra edges until the two DAGs become iso-
morphic, and the merging technique described above

3 Also called ancestral order.
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can be applied to these new networks. The adding of

‘new edges proceeds as follows. For each node X, we

take the union of the set of parents of X in Gy (I1;(X))
and the set of parents of X in G2 (II2(X)) to be the
new set of parents of X in both G; and G2. Note that
adding new edges this way does not introduce cycles,
and thus the I-mapness of the DAGs is preserved. We
also have to update the link matrices for each node in
each BN. For each node X, the associated link matrix
P;(X | (X)UII2( X)) in the network N; (i = 1,2) is set
to P;(X|I1;(X)), using the property that any node in
a belief network is independent of its non-descendants,
given its parents.

There seems to be little that can be said in the case
when there does not exist any topology order common
to the two belief networks. Matzkevich and Abramson
(Matzkevich & Abramson 1992) discuss the problem of
combining, or fusing belief networks in the context of
forcing prior concensus among multiple authors. They
give an algorithm for fusing multiple belief networks
into a single one (with point probabilities, using some
weighting method). They also point out the complex-
ity of this process, due to the significant cost of revers-
ing edges and reorganizing the conditional probability
tables. This complexity would almost certainly defeat
our initial goal, which is to use abstraction to reduce
the cost of plan evaluation. Fortunately, the assump-
tion of having the same topology order often seems
reasonable in the context of abstracting actions and
plans. This is the issue of the next section

Action and Plan Abstraction

In this section, we show an application of using interval
belief networks to the problem of abstracting tempo-
ral probabilistic actions. We will focus on the problem
of inter-action abstraction, i.e., the problem of group-
ing together two or more actions into a single abstract
action. For planning purposes we require that action
abstraction be sound, which means that the things we
infer from an abstract action must be consistent with
the things we infer from its instantiations. So, if we
model probabilistic actions by using belief networks, it
is natural to model abstract actions by using interval
belief networks.

Temporal, probabilistic actions can be modeled us-
ing Bayes net fragments (Ngo, Haddawy, & Nguyen
1997). The world is modeled by a temporal belief net-
work having several slices, where a slice is a Bayes
net fragment that represents the uncertainty about the
world at a particular time point. An action is repre-
sented by a collection of edges from the nodes in some
time slice ¢ to the nodes in some later time slice ¢/
(t < t'), together with the set of link matrices asso-
ciated with these edges. Some edges may represent
the persistent or intrinsic relationships of the random
variables, while some edges specify the effects of the
actions. '

Example Suppose that the world we model consists
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CPR(1) and ATRO(1)
DFIB(1} and ATRO(1)
NO_INTERV(1) and ATRO{1)

|

ABS_INTERV(1} and ATRO(1)

Figure 3: The Bayes net fragments that represent three
actions (left) and their inter-action abstraction (right).

of four random variables (attributes) called Rhythm,
CBF (cerebral blood flow), POA (period of anoxia)
and CD (cerebral damage) that describe the param-
" eters of a patient. Assume that at any time point,
the cerebral blood flow is influenced by the rhythm,
and the cerebral damage is influenced by the period of
anoxia. The world at time t is thus modeled with a slice
sub-network having the above nodes and two edges:
Rhythm(t) — CBF(t) and POA(t) » CD(t). These
links demonstrate the intrinsic relationships among the
four attributes at any time point.

Now consider an action that is a combination of
intervention/medication treatments on the patient at
time t. The intervention is cardiopulmonary resusci-
tation (CPR), and the medication is the use of at-
ropine (AT RO). The effects of this combination are
modeled by a 2-slice belief network in figure 3. The
link CD(t) — CD(t + 1) specifies the persistence
of the attributes CD, while the link Rhythm(t) —
Rhythm(t + 1) specifies the effects of the treatments.

With the assumption that the intrinsic relationships
of the attributes are valid at any time point, we have
that any two temporal belief networks that describe
two actions have a common topology order: the order-
ing of the attributes according to any ordering within
any time slice, and each attribute at-time t precedes
any attribute at any time later than ¢. Thus we can
model the effects of the abstraction of several actions
by an interval belief network.

For example, if we have two other alternative com-
binations of intervention/medication: DFIB/AT RO
and NOINTERV/ATRO (DFIB: defibrillation,
NO_INTERYV: no intervention), each of which only
affect the heart rhythm of the patient (but in different
ways), then we can group together these three combi-
nations into a single, abstract intervention/medication
action, denoted by ABS_INTER/ATRO. The tem-
poral network for this abstract action will share the
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same topology with its instantiations, but the link ma-
trix associated with the Rhythm(t) — Rhythm(t + 1)
will be an interval matrix resulting from merging the
corresponding link matrices of the three concrete in-
tervention/medication actions (figure 3).
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