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Abstract

Qualitative probabilistic reasoning in a Bayesian net-
work often reveals tradeoffs: relationships that are
ambiguous due to competing qualitative influences.
We present two techniques that combine qualitative
and numeric probabilistic reasoning to resolve such
tradeoffs, inferring the qualitative relationship be-
tween nodes in a Bayesian network. The first approach
incrementally marginalizes nodes in network, and the
second incrementally refines the state spaces of ran-
dom variables. Both provide systematic methods for
tradeoff resolution at potentially lower computational
cost than application of purely numeric methods.

Introduction
Researchers in uncertain reasoning regularly observe
that to reach a desired conclusion (e.g., a decision),
full precision in probabilistic relationships is rarely re-
quired, and that in many cases purely qualitative in-
formation (for some conception of "qualitative") is suf-
ficient (Goldszmidt 1994). In consequence, the lit-
erature has admitted numerous schemes attempting
to capture various forms of qualitative relationships
(Wellman 1994), useful for various uncertain reasoning
tasks. Unfortunately, we generally lack a robust map-
ping from tasks to the levels of precision required, and
indeed, necessary precision is inevitably variable across
problem instances. As long as some potential problem
might require precision not captured in the qualitative
scheme, the scheme is potentially inadequate for the
associated task. Advocates of qualitative uncertain
reasoning typically acknowledge this, and sometimes
suggest that one can always revert to full numeric pre-
cision when necessary. But specifying a numerically
precise probabilistic model as a fallback preempts any
potential model:specification benefit of the qualitative
scheme, and so it seems that one may as well use the
precise model for everything.1 This is perhaps the pri-

1 If the qualitative formalism is a strict abstraction, then
any conclusions produced by the precise model will agree at
the qualitative level. Even in such cases, qualitative models
may have benefits for explanation or justification (Henrion
& Druzdzel 1991), as they can indicate something about
the robustness of the conclusions (put another way, they
can concisely convey broad classes of conclusions).

mary reason that qualitative methods have not seen
much use in practical applications of uncertain reason-
ing to date.

The case for qualitative reasoning in contexts where
numerically precise models are available must appeal
to benefits other than specification, such as computa-
tion. Cases where qualitative properties justify com-
putational shortcuts are of course commonplace (e.g.,
independence), though we do not usually consider this
to be qualitative reasoning unless some inference is re-
quired to establish the qualitative property itself in or-
der to exploit it. Since pure qualitative inference can
often be substantially more efficient than its numeric
counterpart (e.g., in methods based on infinitesimal
probabilities (Goldszmidt & Pearl 1992) or ordinal re-
lationships (Druzdzel & Henrion 1993)), it is worth 
ploring any opportunities to exploit qualitative meth-
ods even where some numeric information is required.

We have begun to investigate this possibility for the
task of deriving the qualitative relationship (i.e., the
sign of the probabilistic association, defined below) be-
tween a pair of variables in a Bayesian network. From
an abstracted version of the network, where all local
relationships are described qualitatively, we can derive
the entailed sign between the variables of interest ef-
ficiently using propagation techniques. However, since
the abstraction process discards information, the re-
sult may be qualitatively ambiguous even if the actual
relationship entailed by the precise model is not.

In this paper, we report on two approaches that use
qualitative reasoning to derive these relationships with-
out necessarily resorting to solution of the complete
problem at full precision, even in cases where purely
qualitative reasoning would be ambiguous. Both ap-
proaches are incremental, in that they apply numeric
reasoning to either subproblems or simplified versions
of the original, to produce an intermediate model more
likely to be qualitatively unambiguous.

The next section reviews the concepts of qualitative
influences and tradeoffs in a network model. The third
section explains the incremental marginalization ap-
proach, followed by the experimental results. We then
discuss the state-space abstraction approach, and con-
clude with a brief comparison of our approaches with
some others.
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Qualitative Probabilistic Networks

Qualitative Influences

Qualitative probabilistic networks (QPNs) (WeUman
1990) are abstractions of Bayesian networks, with con-
ditional probability tables summarized by the signs of
qualitative relationships between variables. Each arc
in the network is marked with a sign--positive (+),
negative (-), or ambiguous (?)--denoting the sign 
the qualitative probabilistic relationship between its
terminal nodes.

The interpretation of such qualitative influences
is based on first-order stochastic dominance (FSD)
(Fishburn & Vickson 1978). Let F(x) and Ft(x) de-
note two cumulative distribution functions (CDFs) 
a random variable X. Then F(x) FSD F~(x) holds if
and only if (iff)

F(x) < F’(x) for all x.

We say that one node positively influences another iff
the latter’s conditional distribution is increasing in the
former, all else equal, in the sense of FSD.

Definition 1 ((Wellman 1990)) Let F(zlzly ) be
the cumulative distribution function of Z given X = xl
and the rest of Z’s predecessors Y = y. We say
that node X positively influences node Z, denoted
S+(X, Z), if]

Vx~, xj,y. x~ <_ xj ~ F(zlxjy ) FSD F(zlxly).

Analogously, we say that node X negatively influ-
ences node Z, denoted S-(X, Z), when we reverse the
direction of the dominance relationship in Definition 1.
The arc from X to Z in that case carries a negative
sign. When the dominance relationship holds for both
directions, we denote the situation by S°(X, Z). How-
ever, this entails conditional independence, and so we
typically do not have a direct arc from X to Z in this
case. When none of the preceding relationships be-
tween the two CDFs h01d, we put a question mark on
the arc, and denote such situations as S?(X, Z). We
may apply the preceding definitions to binary nodes
under the convention that true > false.

Inference and Tradeoffs

Given a QPN, we may infer the effects of the change in
the value of one variable on the values of other variables
of interest. The inference can be carried via graph
reduction (Wellman 1990), or qualitative propagation
techniques (Druzdzel & Henrion 1993).

If we are fortunate, we may acquire decisive answers
from the inference algorithms. Often, however, the
results of such qualitative reasoning are ambiguous.
This might be because the relationship in question
actually is ambiguous (i.e., nonmonotone or context-
dependent), or due to loss of information in the ab-
straction process.

Figure 1: A simple case of qualitative ambiguity.

This can happen, for instance, when there are com-
peting influential paths from the source node--whose
value is tentatively modified--to the target node--
whose change in value is of interest. While accept flu
shots may decrease the probability of get flu, it also
increases the probability and degree of feel pain. On
the other hand, increasing either get flu or feel pain
decreases overall bodily well-being, all else equal. As
a result, qualitative reasoning about the problem of
whether we should accept flu shots will yield only an
ambiguous answer. The situation is illustrated by the
QPN in Figure 1, where there is one positive path and
one negative path from accept flu shots to bodily well-
being. The combination of the two paths is qualita-
tively ambiguous. Worse, the ambiguity of this rela-
tionship would propagate within any network for which
this pattern forms a subnetwork. For example, if this
issue plays a role in a decision whether to go to a doc-
tor, the result would be ambiguous regardless of the
other variables involved.

Had we applied more precise probabilistic knowl-
edge, such as a numerically specified Bayesian network,
the result may have been decisive. Indeed, if accept flu
shots and bodily well-being are binary, then a fully pre-
cise model is by necessity qualitatively unambiguous.
However, performing all inference at the most precise
level might squander some advantages of the qualita-
tive approach. In the developments below, we consider
some ways to apply numeric inference incrementally,.
to the point where qualitative reasoning can produce
a decisive result.

Incremental Marginalization

Node Reduction

The idea of incremental marginalization is to reduce
the network node-by-node until the result is qualita-
tively unambiguous. The basic step is Shachter’s arc
reversal operation.

Theorem 1 ((Shaehter 1988)) the re is an arc
from node X to node Y in the given Bayesian net-
work, and no other directed paths from X to Y, then
we may transform the network to one with an arc from
Y to X instead. In the new network, X and Y inherit
each other’s predecessors.

Let P x , PY , and P xY respectively denote X’s own
predecessors, Y’s own predecessors, and X and Y’s
common predecessors in the original network, and let
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Py, = Py- {X}. The new conditional probability dis-
tribution of Y and X are determined by the following:

pr"’~ (YlP x PY, P xy) =

~’~x Pr°Za(YIPYPxy)Pr°td(xIPxPxY) (1)

Pr"~ (xIyP x Py, P xY ) 

Pr°Ia(YIPYPxY) Pr°td(xIPxPxY) (2)
Prn’W (ylP x PY, P xy 

On reversing all the outgoing arcs from node X, the
node becomes barren and can be removed from the
network. The net effect of reversing arcs and removing
barren nodes as described is equivalent to marginaliz-
ing node X from the network.

Marginalization and Qualitative Tradeoffs

Consider the QPN shown on the left-hand side of Fig-
ure 2. Since there exist both a positive path (through
X) and a negative path (direct arc) from W to Z, 
qualitative influence of W on Z is ambiguous. This
local "?" would propagate throughout the network,
necessarily ambiguating the relationship of any prede-
cessor of W to any successor of Z.

marginalizaZion

Figure 2: Marginalizing X potentially resolves the
qualitative influence of W on Z.

Once we have detected the source of such a local am-
biguity, we may attempt to resolve it by marginalizing
node X. The new sign on the direct arc from W to Z
can be determined by inspecting the new conditional
probability table of Z, given by Equation (1). If 
are fortunate, the qualitative sign will turn out to be
decisive, in which case we have resolved the tradeoff.

This example illustrates the main idea of the incre-
mental marginalization approach to resolving tradeoffs
in QPNs. If we get aa unambiguous answer from the
reduced network after marginalizing a selected node,
then there is no need to do further computation. If the
answer is still ambiguous, we may select other nodes
to marginalize. The iteration continues until a deci-
sive answer is uncovered. We present the skeleton of
the Incremental TradeOff Resolution algorithm below.
The algorithm is designed to answer queries about the
qualitative influence of a decision node on some target
node, using some strategy for selecting the next node
to reduce.

Algorithm 1
ITOR(decision, target, strategy)

1. Remove nodes that are irrelevant to the query about
decision’s influence on target (Shachter 1988).

2. Attempt to answer the query via qualitative infer-
ence (Druzdzel & Henrion 1993).

3. If the answer to the query is decisive, exit; otherwise
continue.

4. Select a node to reduce according to strategy, per-
form the node reduction, and calculate the quali-
tative abstractions of the transformed relationships.
Return to Step 2.

In general, we expect the incremental approach to
improve performance over purely numeric inference.
Since qualitative inference is quadratic whereas ex-
act inference in Bayesian networks is exponential in
the worst case, the qualitative inference steps do not
add appreciably to computation time. On the other
hand, when the intermediate results Suffice to resolve
the tradeoff, we save numeric computation over what-
ever part of the network is remaining.

Prioritizing Node Reduction Operations

For the evaluation of Bayesian networks, the objective
of a node reduction strategy is to minimize computa-
tional cost to complete the evaluation. For our pur-
pose, the aim is to minimize computational cost to the
point that the qualitative tradeoff is resolved. The op-
timal strategies for the respective tasks will differ, in
general. For example, a node that is very expensive to
reduce at certain stage of the evaluation might be the
best prospect for resolving the tradeoff.

We exploit intermediate information provided in
qualitative belief propagation (Druzdzel & Henrion
1993) in determining which node to reduce next. If
we can propagate the decisive qualitative influence of
the decision node D all the way to the target node T,
we will be able to answer the query. Otherwise, there
must be a node X that has an indecisive relationship
from D. Recall that we have pruned nodes irrelevant
to the query, so any nodes that have indecisive rela-
tionship with D will eventually make the relationship
between D and T indecisive. We have identified sev-
eral conceivable strategies based on this observation,
and have tried two of them thus far.

The first strategy is to reduce node X, as long as X
is no.t the target node T. When X is actually T, we
choose to reduce the node Y that passed the message
to X changing its qualitative sign from a decisive one
to "?". However, this Y cannot be D itself. If it is,
then either (1) there are only two nodes remaining 
the network, and there is no decisive answer to the
query, or (2) there are other nodes, and we randomly
pick among those adjacent to D or T.

The second strategy is similar to the first, except
that we exchange the priority of reducing X and Y. We
handle the situations where X and/or Y correspond to
D and/or T in the same manner as in the first strategy.

These strategies have the advantage that finding the
next node to reduce does not impose extra overhead in
the ITOR algorithm. The selection is a by-product of



the qualitative inference algorithm. However neither of
these strategies (nor any that we know) is guaranteed
to minimize the cost of resolving the tradeoff.

Experimental Results

We have developed an environment for testing the ef-
fectiveness of the algorithm using randomly generated
network instances. The experiments are designed to
examine how the connectivity of the network, the sizes
of state spaces of the network, and the strategy for
scheduling node reduction affect the performance of
the algorithm.

Generating Random Networks

To carry out an experiment, we need two related net-
works: a QPN and its corresponding Bayesian net-
work. The conditional probability distributions in the
Bayesian network and the qualitative signs on the arcs
in the QPN must agree with each other.

To create a random QPN with n nodes and I arcs, we
first create a complete directed acyclic graph (DAG)
with n nodes. We then remove arcs until the DAG
contains only l arcs. Each arc is equally likely to be
removed, under the constraint that the graph remains
connected. After creating the network structure, we
randomly assign qualitative signs (positive or negative)
to the arcs.

We then build a Bayesian network that corresponds
to the generated QPN, that is, respects its structure
and qualitative signs. We select the cardinality of each
node by sampling from a uniform distribution over the
range [2, MC], where MC denotes the maximum state-
space cardinality. For nodes without predecessors, we
assign prior probabilities by selecting parameters from
a uniform distribution and then normalizing.

For a node X with predecessors Px, the qualitative
signs ia the QPN dictate a partial ordering of the con-
ditional probability distributions for various values of
X, where the distributions are ordered based on the
FSD relationship. To enforce this ordering, we iden-
tify the Pxi that requires us to make the distribution
Pr(XIPxl) dominate distributions Pr(X]Pxj) for all
other Pxj. We assign the parameters Pr(X[Px~) (as
for priors) by sampling from a uniform distribution.
We then assign the remaining distributions in stages,
at each stage setting only those distributions domi-
nated by the previously assigned distributions. We
make these assignments using the same random proce-
dure, but under the constraint that the resulting dis-
tribution must respect the qualitative signs given the
previous assignments.

Results

In each experiment, we specify the number of nodes,
the number of arcs, and maximum cardinality of state
spaces for the randomly generated networks. In all
experiments, we create networks with 10 nodes before

pruning. We query the qualitative influence from the
nodel to nodel0, and disregard the instances in which
the influence of nodel on nodel0 is ambiguous after
exact evaluation of the network.

Since the first step of the ITOR algorithm prunes
nodes irrelevant to the query, the network actually
used in inference is usually simpler than the original
network. In Table 1, we record the average number
of nodes and links after pruning, for each experiment.
MC denotes maximum cardinality. All experiments
reported used the first node selection strategy; results.
from the second strategy were virtually identical.

nodes links MC R1 R2
8.0 14.2 2 0.697 0.722
8.0 14.4 3 0.730 0.754
9.2 26:1 2 0.846 0.869
9.4 26.8 3 0.855 0.874

Table 1: Experimental Results. Each experiment runs
ITOR over 10000 random networks with decisive influ-
ence from nodel to nodel0.

We measure the performance of ITOR with two met-
rics. The first metric, R1, is the ratio of the number
of reduced" nodes when the decisive answer is found
to the number of nodes that would be reduced in ex-
act numerical evaluation. The second metric, R2, is
the ratio of number of arc reversal operations already
done when the solution is found to the number of arc
reversal operations that would be carried out for ex-
act numerical evaluation. The latter figure is based on
an arbitrary node selection strategy (for reducing the
remaining network after the tradeoff is resolved), how-
ever, and so would tend to be an overestimate. Table 1
reports averages for each metric. The savings due to
incremental tradeoff resolution are 1 - R1 and 1 - R2,
respectively, and so lower values of the metrics indicate
better performance.

The results in Table 1 confirm the intuition that
ITOR offers greater performance for sparsely con-
nected networks and smaller state spaces. Further
experimentation may lead us to more precise charac-
terization of the expected savings achievable through
incremental marginalization.

State-space Abstraction

Approximate evaluation of Bayesian networks is a
common strategy for time-critical problems. For qual-
itative inference, approximated distributions can be
particularly useful if the qualitative relationships be-
tween nodes are preserved in the approximations.

In previous research (Wellman & Liu 1994), we have
proposed iterative state-space abstraction (ISSA) as 
technique for approximate evaluation of Bayesian net-
works. ISSA iteratively refines the state spaces of the
nodes whose states are aggregated at the initial step of
the algorithm. Approximated distributions get closer
and closer to the true distributions in this process.



In the remainder of this section, we consider how we
might determine the qualitative relationship of interest
in a particular iteration of ISSA.

Controlled Approximations for Qualitative
Inference
Consider the task of finding the qualitative influence
from W to Z in the QPN shown in Figure 3, where the
curly arcs represent paths between nodes. We assume

¯ that the overall influence is ambiguous, that is, al ®
Or2 ~ (73.

Figure 3: A QPN with ambiguous qualitative influence
from W to Z.

In this situation, we may fruitfully abstract only the
intermediate node X. To illustrate this, assume that
we abstract W into two states, and that we find that
the conditional, cumulative distribution function of Z
given W being in the first abstract state dominates
that of Z given W being in the second. With this ob-
servation, we still cannot infer with certainty that the
unabstracted W negatively influences Z, although the
approximated results suggest so. For a similar reason,
results obtained by abstracting node Z cannot lead to
definitive conclusions about the qualitative relation-
ship in the original network.

Although aggregating the states of a node requires
modification of conditional probability tables (CPTs)
of the abstracted node whose states are aggregated and
its successors, the effects of state-space abstraction can
be analyzed as though only the successors’ CPTs are
modified, due to the way the CPT of the abstracted
node are modified.

The qualitative influence from W to Z is deter-
mined by the signs of F (z}wl) - F (zlwi+l), for all
i. Applying state-space abstraction, we compute ap-
proximations of these cumulative distribution func-
tions (CDFs), that is, F’ (zlwi) and F~ (z]wi+l). Let
F’ (zlwx) = F (zlwx) + 6(z, w, denote the new CDF
of Z given W and X after we abstract X. The uncon-
ditional distribution, Fp (zlwi), is given by

F’ (z[w~) = .It F’ (z]wlx) dF (xlw~) (3)

= (F(zlw + 5 (z, wi,x)) dF (xlwi)

= F(zlw~) + Ai,

where Ai = fx 6 (z, wi, z) dF (xlwi):
Therefore, the difference F’ (zlwi) - F’ (zlwi+l) 

equal to (F(zlwl) , F(z]wi+l)) (A~ - A~+I). No-
tice that we cannot determine the sign of (F (zlwi) 
F (zlwi+l)) purely based on the sign F’ (zl wi) -

F’ (z[wi+l). We need to know the sign of A~-A~+1 too.
If we modify the CPT of Z such that zli - Ai+l is neg-
ative (or positive), then we may infer that F (z}wl) 
F (z[w~+x) must be positive (or negative) when we 
that F* (zlwi) - F’ (zlwi+l) is positive (or negative).

The previous derivation reveals a way to apply state-
space abstraction methods as well as other approxima-
tion methods to qualitative inference. Exact control of
the monotonicity of Ai is essential. Without the con-
trol of the monotonicity, we may not infer the quali-
tative influence of interest based on the approximated
cumulative distribution functions.

CPT Reassignment Policy
It is the CPT reassignment policy in the state-space
abstraction that controls the monotonicity of Ai. The
average policy applied in our previous work (Wellman
& Liu 1994) does not ensure monotonicity of Ai, and
thus we need to devise a new policy. The new policy
is somewhat more complicated, and so would probably
offset, to some extent, any computational savings from
incremental approximation.

The task of controlling the monotonicity of Ai
breaks into the tasks of controlling the monotonicity
of 6(z, w, x) in multiple dimensions. For example, 
aa="+" in Figure 3, then we want to make 6(z,w,x)
an increasing function of x for all w and z, and an in-
creasing function of w for all x and z. Given these, Ai
will be an increasing function of wi, as shown by The-
orem 2 below. The first inequality in (4) follows from
the fact that 5(z, w, x) is an increasing function of 
and we have the second inequality by application of
Theorem 2 with (1) F(x]wi+x) FSD F(xlwi), since
ax="+", and (2) 5(z,wi+x,x) an increasing function
of x.

Ai = ./y S (z, wi,x) dF (xlwi) (4)

<. ./y 6 ( z, wi+x, x )dF (zlwi)

<_ /x6(z, wi+l,x)dF (xlwi+l)

= Ai+l

Theorem 2 ((Fishburn & Vickson 1978)) Let
F(x) and F’(z) denote two cumulative distribu-
tion ]unctions o] a random variable X, and g(x)
a monotonically increasing ]unction o] X. Then,
F(x) FSD F’(x) iff f g(x)dF(x) > f g(x)dF’(x).

¯ Recall that 5(z, w, x) is the difference between the
new and the old conditional probability of Z given W
and X, i.e., F~ (zlwx) -F (zlwx). The difference is
introduced when we reassign the conditional probabil-
ity distributions associated with the abstracted nodes
and their successors. Thus we need to know the ex-
act conditional probability distribution F(zlwz) for
controlling the monotonicity of 5(z, w, x). When this

I
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distribution is available, we can apply the state-space
abstraction technique: For instance, we may apply the
idea to find the al on the direct arc from W to Z in
the network shown in Figure 2, where F (zlwx) is in
the CPT of node Z.

Discussion

We have discussed the application of incremental
marginalization and state-space abstraction methods
to the qualitative tradeoff resolution task. The in-
cremental marginalization approach iteratively reduces
a node in the network. The state-space abstraction
approach attempts to achieve the same goal by ap-
proximate evaluation of the Bayesian networks. Initial
experiments with incremental marginalization suggest
that nontrivial savings are possible, but definitive eval-
uation of both methods awaits further empirical and
theoretical investigation.

The incremental marginalization approach bears
some similarity to symbolic probabilistic inference, as
in the variable elimination (VE) algorithm (Zhang 
Poole 1996), in that we sum out one node from the
Bayesian network at a time. The ITOR algorithm dif-
fers from VE in the strategy for elimination ordering,
and of course in the stopping criterion.

Parsons and Dohnal discuss a semiqualitative ap-
proach for inference using Bayesian networks (Parsons
& Dohnal 1993). The basic idea is similar to state-
space abstraction. However, the center of their work
is to design calculus for computing the the probability
intervals of variables. Their methods may work even
when the conditional probabilities in the Bayesian net-
works are not completely specified, but their methods
cannot be applied to the qualitative tradeoff resolution
task.

There are other approaches that make use of nu-
merically specified knowledge in qualitative inference.
Some of them are different from ours in that they do
not assume the complete availability of the numerical
information (Kuipers & Berleant 1988).

The incremental approaches we propose in this pa-
per provide systematic ways to resolving qualitative
trade0ffs at potentially lower computational cost than
fully precise methods. Empirical results suggest that
incremental tradeoff resolution can provide savings for
some networks. How to use qualitative information to
guide the scheduling of node reduction or state-space
abstraction to achieve the best performance possible
remain as open problems for future work.
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