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Abstract

Abstraction and aggregation are useful for increasing
speed of inference in and easing knowledge acquisition
of belief networks. This paper presents previous re-
search on belief network abstraction and aggregation,
discusses its hmitations, and outlines directions for fu-
ture research.

Introduction

Abstraction and aggregation have been used in several
areas in artificial intelligence, including in planning,
model-based reasoning, and reasoning under uncer-
tainty. For reasoning under uncertainty, the framework
of decision theory and in particular the notion of influ-
ence diagram (or decision diagram) has proven fruit-
ful. An influence diagram is essentially a graph, where
nodes are chance nodes, decision (or action) nodes, 
utility (or Value) nodes. This paper focuses on abstrac-
tion and aggregation in belief (Bayesian, causal, prob-
abilistic) networks. Belief networks are influence dia-
grams restricted to contain only chance nodes (Pearl
1988) (Jensen 1996).

For the purpose of this paper, we will distinguish
between abstraction and aggregation, which both have
been described in the belief network (BN) literature
(Chang & Fung 1991) (Wellman & Liu 1994) (Liu 
Wellman 1996). Abstraction is essentially to replace
several node states with one node state. Abstrac-
tion is also known as state-space abstraction (Well-
man &~ Liu 1994) (Liu & Wellman 1996), coarsen-
ing (Chang & Fung 1991), or behavioral abstraction
(Genesereth 1984). Aggregation is essentially to re-
place several nodes with one node. Aggregation is also
known as structural abstraction (Wellman & Liu 1994)
(Genesereth 1984) or hierarchical abstraction (Srinivas
1994). The inverse operations of abstraction and ag-

gregation, refinement and decomposition, are also of
interest; these will be discussed below as will other is-
sues related to abstraction and aggregation.

The rest of this paper is organized as follows. First,
we present previous research on abstraction and refine-
ment; this research is then evaluated. Second, we focus

on previous research concerning aggregation and de-
composition. Third, we consider directions for future
research in the areas of abstraction and aggregation.

Abstraction and Refinement

Previous Work

Fung and Chang introduced the two operations of
refine and coarsen for BNs (Chang & Fung 1991).
Coarsen eliminates states for a node (it is an abstrac-
tion operation), while refine introduces new states for
a node (it is a refinement operation). Both operations
take as input a target node and a desired refinement
or coarsening, and they output a revised conditional
probability distribution for the target node and for the
target node’s children. If V is a node (random vari-
able), then ~y is its state space. In particular, we
consider a node X and its parent P. The following are
constraints that apply to the new conditional proba-
bility distribution when z E f~x is refined to z’ E f~x’.
The first constraint applies to a node X and its parent.
P, where p E ~p:

Pr(zlp)= Z Pr(z’lp) (1)
~:’ER(z)

Here, R is a refinement function that, maps a single
value z E ~2x into multiple values z’ E ~2.

The second constraint applies to the node X, its
child C, and the child’s other parent Q. Here, q E ~Q
and c E ~c:

Pr(c ] x,q) Pr(xlp) (2)

= ~ Pr(c I x’,q) Pr(x’ ] 
z’ER(z)

Based on these two constraints, external and internal
refinement operations are defined. Similar constraints
define external and internal coarsening as well. Ex-
ternal operations change the BN topology by using
Shachter’s operations (Shachter 1988). Internal oper-
ations, on the other hand, maintain the BN topology.
Fung and Chang define an internal abstraction opera-
tion, we will call it Fung and Chang (FC) abstraction.
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Wellman and Liu investigate abstraction and refine-
ment for anytime inference using BNs (Wellman & Liu
1994) (Liu & Wellman 1996). Their anytime algorithm
is as follows. First, an initial abstract BN (ABN) 
created from a ground BN (GBN). For all abstracted
nodes, the ABN contains one superstate. Second, the
ABN is used to compute the distribution of interest,
using some BN inference algorithm. Third, if all states
for all nodes have been refined, return; else refine a
selected superstate. Fourth, go to the second step.
The key point to note in this algorithm is that it can
be interrupted after any iteration and provide an ap-
proximate result, and the approximation improves over
time.

Wellman and Liu in their algorithm rely on abstrac-
tion of a node X, and in particular how a parent P and
a child C are affected. Updating of Pr(X I P) is simi-
lar to Fung and Chang, while updating of Pr(C I X) 
different. Let the states xi, ..., xj E ~x be abstracted
to x~j E ~2x,. Wellman and Liu’s abstraction oper-
ation (WL abstraction) approximates the conditional
probability distribution and is defined as:

Pr(c I x~j) ~{=i Pr(c I x~
j-i+1 ’

where IC(x~)I =j-i+l. In other words, the j-i+l
states zi, ..., xj in node X are abstracted into one state
x~j in node X¢. The approach here is to approximate
by averaging over all the conditionals Pr(c I x) of 

Nicholson and Jitnah have studied abstraction and
refinement empirically (Nicholson & Jitnah 1996).
They use the stochastic simulation inference algorithm
of likelihood weighting. The performance of likelihood
weighting without and with abstraction is compared.
The two abstraction operations considered are WL ab-
straction and CF abstraction. The BN used for com-
parison is the ALARM network. The following pa-
rameters were varied: (i) skewness, (ii) position 
number of evidence and query nodes, and (iii) level
of abstraction. Nicholson and Jitnah reports that CF
abstraction generally gives more accurate results than
WL abstraction; on the other hand CF abstraction is
computationally more expensive than WL abstraction.
This corresponds to results obtained by Liu and Well-
man (Liu & Wellman 1996).

Evaluation of Previous Work
Abstraction and aggregation are essential for anal-

ysis of large organizational structures operating in
complex, dynamic environments. Such organizational
structures comprise many persons, objects, and enti-
ties that interact and cooperate. An example of a such
organizational structure is a military unit. We con-
sider abstraction and aggregation in the context of bat-
tlefield reasoning, and in particular intelligence anal-
ysis. Military intelligence analysts need to integrate
reports from a wide spectrum of sensors and intelli-
gence sources in order to appreciate what is going on

on the battlefield. A typical report format is shown
in Figure 2. As suggested in this figure, reports and
sensory data are uncertain and can refer to entities of
interest at different levels of abstraction. For example,
a scout report might be about ’tanks’ while some other
sensor can only say ’vehicles’, although in reality the
same entities are referred to. This type of abstraction
is well covered by previous research as discussed above
(Chang & Fung 1991) (Liu & Wellman 1996).

An area where abstraction is more prominent and
less explored in previous research is that. of spatial ab-
straction. In intelligence analysis this concerns the lo-
cation of enemy military units. There is substantial
uncertainty associated with where a unit is at a par-
ticular time, and the state space of a node representing
military unit position is very large.

Figure 3 shows a simplified terrain map illustrating
the essence of the situation. The enemy has four units
(Unitl, Unit2, Unit3, and Unit4) in positions towards
the north as indicated on the terrain map. Friendly
forces are in the south. The enemy forces are attack-
ing, while the friendly forces are defending. From an
intelligence point of view, a key element is location of
enemy forces as the situation evolves. Consider a map
covering an area of 100 km x 100 km. In a chance node
L representing location of one unit, this would give a
highest level of abstraction covering 100 km x 100 km
using, say, grid squares of 10 km x 10 kin. The ground
level, on the other hand, could consist of 10 m x 10 m
grid squares. With a uniform factor of 10 along both
the north-south direction and the east-west direction,
this yields an abstraction hierarchy for L consisting of
5 levels.

Uniformely subdividing the state space of a location
node, as suggested above, is one of many possibilities.
In general, there are issues related to the dimensions
along which to abstract, the shape of grids, and the
abstraction factor. In addition comes the fact that
intelligence analysts are more interested in number of
units in a set of locations rather than which units are
where.

Another limitation of previous research is that the
ABN is constructed from the GBN using some abstrac-
tion operation, be it CF abstraction or WL abstrac-
tion. In very large (and possibly infinite) state spaces
such as the one mentioned above, it would be prefer-
able not having to construct the ABN from the GBN.
Rather, one should have a form of knowledge-based
refinement that allows refinement without having per-
formed abstraction first.

Aggregation and Decomposition

Previous Work

Previous research on aggregation has been less exten-
sive than that on abstraction, even though in some
sense the issues involved are more comprehensive: Ag-
gregation makes ’larger’ changes to the state space.



Time Sensor Location Size Equipment Unit Activity
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NK3000
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201203
REMBASS vehicles ? moving
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/

Sensor type
matters
because
reliability and
credibility of
sensors differ.

Time of the
report can
have some
uncertainty
associated
with it.

Location ca
uncertain bec~Jse there
is uncertainty In sensor
location as well as in
sensor’s estimate of
enemy location.

Equipment estimate can
be uncertain because of
uncertain sensing or
incomplete equipment
knowledge.

Size estimate can be
uncertain because Of
uncertain sensing (e.g.
low visibility) or
incomplete sensing (e.g.
only part of area of
interest is sensed).

1

/
Unit is almost
always
uncertain.

Unit is almost
always uncertain.

Figure 1: Format and features of reports for intelligence analysis.

Srinivas investigates the relationship between model-
based reasoning and BNs (Srinivas 1994). Specifically,
he constructed a translation algorithm that creates a
BN from a hierarchical functional schematic, and de-
scribes how clustering (Lauritzen & Spiegelhalter 1988)
(Jensen, Olesen, & Andersen 1990) can be modified 
exploit the hierarchy. This work has been extended
to include computation of repair plans (Srinivas 
Horvitz 1995). The basic functional schematic unit is
a component C. A component has input, output, and
a mode; the mode represents operational status of the
unit (e.g. correct, stuck-at-l, or stuck-at-0 for a tran-
sistor). Unless it is atomic, a component is recursively
decomposed into subcomponents C1,..., Cn. The trans-
lation scheme takes a functional schematic and creates
a BN consisting of these nodes: Ii represents input i, O
represents the output, Mi represents mode i, and Xi
represents internal variable i. At the level of subcom-
ponents C1, ..., Cn, we have a BN representing the joint
distribution Pr(I1, ..., In, O, M1, ..., Mn, X1, ..., Xk) At
a higher level, C is considered an aggregate and the cor-
responding BN represents Pr(I1, ..., In, O, M). Srini-
vas describes how the higher level distribution is com-
puted from the lower level distribution using Shachter’s
topological transformation operations for marginaliza-
tion (Shachter 1988).

By adding a dummy node D as a child to the nodes
representing an aggregate component C, and a dummy
node D’ as a child to the input, mode, and output
nodes representing the decomposition of C, an inter-

face between the aggregate and the decomposed BN
is established by adding an undirected arc between
the join trees containing D and D’ respectively. This
means that computations from other parts of the BN
affect the belief in C’ only through this arc, and vice
versa, making inference more localized and hence more
efficient.

Wellman and Liu present some initial remarks on
aggregation (Wellman & Liu 1994); in particular they
note that aggregation, like abstraction, can be used for
anytime inference. Anytime inference based on aggre-
gation would start with a model consisting of highly
aggregate BN nodes, and as time permits the BN is
decomposed.

Evaluation of Previous Work

Aggregation is important in the intelligence analysis
application. For example, a number of tanks make up
a tank platoon. At a higher, more aggregate level, a
brigade consists of three battalions plus a brigade staff.
An interesting constraint in this domain is the hier-
archical structure imposed by the chain of command.
This restriction on an arbitrary BN could be exploited
for both BN construction and inference, assuming that
there are BN arcs that reflect the chain of command.
On the surface, this is similar to Srinivas’ hierarchi-
cal functional schematic. However, the military hier-
archical structure is not isomorphic to the functional
schematic hierarchical structure, and thus that work
can not be immediately adopted. Another difficulty is
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Figure 2: Simplified example terrain map.
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the structure of observations for military analysis as
opposed to for functional schematics. For the func-
tional schematic, evidence is for a large part restricted
to input and output nodes. For military analysis, ev-
idence can concern almost all BN nodes. This means
that Using Srinivas’ scheme, one would have to decom-
pose a much larger part of a military analysis BN than
a functional schematic BN, so there seems to be cer-
tain limitations in the Srinivas scheme when it comes
to this type of evidence.

Several of the remarks made in the section on ab-
straction and refinement concerning the size of the
space and the desirability of a top-down approach ap-
ply to aggregation as well. A brigade, for instance,
consists of several thousand men and many hundred
vehicles, and thus the most decomposed, atomic level
will be unruly both with regard to knowledge .acquisi-
tion and on-line abstraction.

Directions for Future Research
The summaries and evaluations of previous work has
hinted at some directions for future research. This sec-
tion makes additional recommendations.

Abstraction and Aggregation
Very little information on the relationship between ab-
straction and aggregation is found in the literature.
This remark is among the exceptions (Wellman & Liu
1994):

[Aggregation and abstraction] are complementary
approaches to probabilistic-network approxima-
tion. They are also related, as abstracting the
state space of a node to a single superstate is tan-
tamount to ignoring the node.

An essential distinction between abstraction and ag-
gregation is that the former assumes mutual exclusion,
while the latter ,does not. This follows from the fact
that abstraction and refinement operate on essentially
the ’same’ node, while aggregation and decomposition
do not. This suggests that the two operations are or-
thogonal, supporting the quote above. However, when
considering abstraction and aggregation in the military
analysis domain, a high level of aggregation seems to
suggest a high level of abstractioh. For example, for
a highly aggregated unit such as a brigade, highly ab-
stracted locations appear to be most adequate. More
research is needed to explore the relationship between
abstraction and aggregation. ’

Abstraction and Aggregation in Dynamic
Environments

Belief networks for dynamic environments make up an
important class of BNs (Forbes et al. 1995) (Huang
et al. 1994)(Nicholson 1992)(Provan 1993)(Dagum,
Galper, & Horvitz 1992). Dynamic environments have
at least two ramifications for belief network inference.
First, the speed of inference is even more important

than in the static case, since the environment is chang-
ing while inference takes place. Second, some form of
propagation of the current environment state to the fu-
ture needs to take place, at least in environments that
are inaccessible, i.e. in cases where all relevant aspects
of the environment are not available to the sensor nodes
at all times. And most realistic environments, such as
the ones inhabited by the large organizational struc-
tures mentioned earlier, are inaccessible. The issue of
inference speed is addressed by the anytime algorithm
research of Wellman and Liu. The issue of the role of
abstraction and aggregation in state propagation has,
to our knowledge, received little attention among BN
researchers, and investigating this is an interesting re-
search direction.

Abstraction and Aggregation in Dynamic
BNs

Related to BNs for dynamic environments are dynamic
BNs. Dynamic BNs are often used in dynamic envi-
ronments, but can be applicable also in other cases
(Charniak & Goldman 1993). In dynamic BNs, the
BN topology typically changes over time (Provan &.
Clarke 1993) (Charniak & Goldman 1993). Some 
these changes may be considered to be abstraction or
aggregation, and by identifying them as such one would
establish a firmer foundation for them. This would also
facilitate comparison to other dynamic BN operations.
Informally, an advantage of aggregation and abstrac-
tion versus arbitrary dynamic BN operations is that
some ’residue’ of the GBN is always maintained in the
aggregated or abstracted BN, at least in an approxi-
mated form.

Features of refinement and decomposition could be
exploited for dynamic BNs created by knowledge-based
model construction. This has the potential of mak-
ing the process of constructing a BN for inference
top-down (using refinement and decomposition) rather
than first bottom-up, then top-down (also using ab-
straction and aggregation). Abstraction and aggrega-
tion in dynamic BNs is a promising research direction.
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