
Handling Contingency Selection Using Goal Values

Nilufer Onder
Department of Computer Science

University of Pittsburgh
Pittsburgh, PA 15260
nilufer@cs.pitt.edu

Martha E. Pollack
Department of Computer Science
and Intelligent Systems Program

University of Pittsburgh
Pittsburgh, PA 15260
pollack@cs.pitt.edu

Abstract

A key question in conditional planning is: how many,
and which of the possible execution failures should
be planned for? One cannot, in general, plan for all
the failures that can be anticipated: there axe simply
too many. But neither can one ignore all the possible
failures, or one will fail to produce sufficiently flexible
plans. We describe a planning system that attempts
to identify the contingencies that contribute the most
to a plan’s overall value. Plan generation proceeds
by extending the plan to include actions that will be
taken in case the identified contingencies fail, iterating
until either a given expected value threshold is reached
or planning time is exhausted.

Introduction

Classical AI plan generation systems assume static en-
vironments and omniscient agents, and thus ignore the
possibility that events may occur in unexpected ways--
that contingencies might arisc during plan execution.
A problem with classical planners is, of course, that
things do not always go "according to plan." In
contrast, universal planning systems and more recent
MDP-based systems make no such assumption. They
produce "plans" or "policies" that are functions from
states to actions. However, the state space can be
enormous, making it difficult or impossible to gener-
ate complete policies or truly universal plans1.

Conditional planners take the middle road. They al-
low for conditional actions with multiple possible out-
comes and for sensing actions that allow agents to
determine the current state (Blythe & Veloso 1997;
Draper, Hanks, & Weld 1994; Etzioni et al. 1992;
Goldman & Boddy 1994; Peot & Smith 1992; Pryor
& Collins 1993). A key question in conditional plan-
ning is: how many, and which of the possible execution
failures should be planned for?

1Thus Dean et al. (1995) describe an algorithm to con-
struct an initial policy for a restricted set of states, and
incrementally increase the set of states covered.

In this paper, we describe Mahinur, a probabilistic
partial-order planner that supports conditional plan-
ning with contingency selection based on probability

of failure and goal values. We present an iterative re-
finement plemning algorithm that attempts to identify
the influence each contingency would have on the out-
come of plan execution, and then gives priority to the
contingencies whose failure would have the greatest
negative impact. The algorithm first finds a skeletal
plan to achieve the goals, and then during each iter-
ation selects a contingency whose failure will have a
maximal disutility. It then extends the plan to include

actions to take in case the selected contingency fails.
Iterations proceed until the expected value of the plan
exceeds some specified threshold or planning time is
exhausted.

Planning with Contingency Selection

We start with a basic idea: a’plan is composed of many
steps that produce effects to support the goals and
subgoals, but not all of the effects contribute equally
to the overall success of the plan. Of course, if plan
success is binary--plans either succeed or fail--then
in some sense all the effects contribute equally, since
the failure to achieve any one results in the failure of
the whole plan. However, as has been noted in the
literature on decision-theoretic planning, plan success
is not binary. In this paper, we focus on the fact that
the goals that a plan is intended to achieve may be
decomposable into subgoals, each of which has some
associated value.

For example, consider a car in a service station and
a plan involving two goals: installing the fallen front
reflector and repairing the brakes. The value of achiev-
ing the former goal may be significantly less than the
value of achieving the latter. Consequently, effects that
support only the former goal (e.g., getting the reflector
from the supplier) contribute less to the overall success
of the plan than the effects that support only the latter
(e.g., getting the calipers). Effects that support both

59

From: AAAI Technical Report WS-97-08. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

1.

2.
Skeletal plan.: Construct a skeletal plan.
Plan reflnement.: While the plan is below

the. given expected value threshold:
2a. Select the contingency with the

highest expected disutility.
2b. Extend the plan ¢o include actions

that will be taken in case
the contingency fails.

Figure 1: The planning algorithm.

goals (e.g., knowing the phone number of the supplier)
will have the greatest importance. We will say that an
effect e supports a goal g if there is some path through
the plan starting at e and ending at g.

The high level specification of a planning algorithm
based on this idea is shown in Fig. 1. It first builds
a skeletal plan which is one in which every subgoal is
supported minimally, i.e., by exactly one causal or ob-
servation link. In our current implementation of the
Mahinur system, ̄ the skeletal plan is constructed us-
ing Buridan with the restriction that each subgoal is
supported by exactly one link.

This algorithm depends crucially on the notions of
contingencies and their expected values. We define
contingencies to be subsets of outcomes of probabilis-
tic actions. For instance, if we repair the brakes, we
may or may not succeed in having the brakes function-
ing properly (perhaps the new calipers are defective).
Having the brakes functioning correctly is one contin-
gent outcome of the repair action; not having them is
another. A deterministic action is simply one with a
single (contingent) outcome.

The importance of planning for the failure of any
particular contingency can then be seen to be a fac-
tor of two things: the probability that the contingency
will fail, and the degree to which the failure will ef-
fect the overall success of the plan. To compute the
former, one needs to know both the probability that
the action generating the particular contingency will
be executed, and the conditional probability of the
contingency given the action’s occurrence. Comput-
ing the latter is more difficult. In this paper, however,
we make two strong simplifying assumptions. First,
we assume that the top-level goals for any planning
problem can be decomposed into utility-independents

subgoals having fixed scalar values. Second, we assume
that all failures are equally difficult to recover from at
execution time.

With these two assumptions, we can compute the

2The utility of one subgoal does not depend on the deo
gree to which other goals are satisfied (Haddawy & Hanks
1993).

I-RJ I-FiJ IFIJ

PA]B¢i’= (<{-pR},O.95,(PA.-BL)>,<(-PRLO.OS.{|>.<(PR),I,(}>}

~SPEc’r: (<~-BL~.{ }, L{ } J-FL/>,<~LM 1,0. IJ } J-FLt>.<~L~{ },O.gJ }./Ft./>

Figure 2: Two example .actions.

expected disutility of a contingency’s failure: it is the
probability of its failure, multiplied by the sum of the
values of all the top-level goals it supports. Planning
for the failure of a contingency c means constructing a
plan that does not depend on the effects produced by
c, i.e., a plan that will succeed even if c fails to occur.

Action Representation

To formalize these notions, we build on the represen-
tation for probabilistic actions that was developed for
(Kushmerick, Hanks, & Weld 1995, p. 247). Causal
actions are those that alter the state of the world. For
instance, the PAINT action depicted both graphically
and textually in Fig. 2 has the effects of having the
part painted (PA) and blemishes removed CBL) 95%
the time when the part has not been processed CPR).

Definition 1 A causal action N is defined by a set
of causal consequences:

N: {<tl,Pl,l,el,1 >,...,<tl,Pl,l,el,/ >,...,

tn,Pn,l,en,1 >,...,<~ tn, Pn,m,en,m >}.

For each i,j: ti is an expression called the conse-
quence’s trigger, and ei,j is a set of literals called the
effects. Pi,j denotes the probability that the effects
in ei,j will be produced given that the literals in ti
hold. The triggers are mutually exclusive and exhaus-
tive. For each effect e of an action, RESULT(e, st)
is a new state that has the negated propositions in e
deleted from, and the non-negated propositions added
to st.

Conditional plans also require observation actions so
that the executing agent will know which contingencies
have occurred, and hence, which actions to perform.
Observational consequences are different from causal
consequences in that they record̄ two additional pieces
of information: the label (in //) shows which proposi-
tion’s value is being reported on, the subject (in \\)
shows what the sensor looks at. The subject is needed
when an aspect of the world is not directly observable
and the sensor instead observes another (correlated)
aspect of the world. For instance, a robot INSP~.cTing
a part might look at whether it is blemished (BL),
report whether it is flawed (/FL/) (Fig. 2). Note

6O

Figure 3: Multiple outcomes.

the label and subject are not arbitrary strings--they
are truth-functional propositions.

Definition 2 An observation action N is a set of
observational consequences:

N : {< sbjl,tl,Pl,l,el,i,ll,1 >,
¯ ..,< 8bjl,tl,Pl,hel,l,ll,! >,...,

< sbjn, tn, Pn,1, en,1, In,1 >,

¯ .., < sbjmtmpn,m, en,m, ln,m >}.

For each i,j: sbjl is the subject of the sensor reading,

tl is the trigger, ei,j is the set of any effects the ac-
tion has, and lij is the label that shows the sensor
report, pi,j is the probability of obtaining the effects
and the sensor report. The subjects and triggers are
mutually exclusive and exhaustive. The subject and
trigger propositions cannot be identical, although the
subject and label propositions can be.

This observation action representation is similar to
C-Buridan’s (Draper, Hanks, & Weld 1994). However,
C-Buridan labels are arbitrary strings that do not re-
late to propositions, and it does not distinguish the
subject of the sensor reading.

Contingencies

An important issue in the generation of probabilistic
plans is the identification of equivalent consequences.
Suppose that an action A is inserted to support a
proposition p. All of the outcomes of A that produce p
as an effect can then be treated as an equivalent con-
tingent outcome, or contingency. The contingencies of
a step are relative to the step’s intended use. If the
operator in Fig. 3 is used to support p, then {a,b} is
its single contingency, but if it is used to support q,
then {a} and {b} are alternative contingencies.

The Plan Structure

We define a planning problem in the usual way, as a
set of initial conditions encoded as a start step (START:
{< O, pl,el >,...,< O, pn, en >}), a goal (GOAL:
{91,...,g,~},1,0 >}), and an action library. We as-
sume that each top-level goal g~ has value val(gi).
plan in our framework has two sets of steps and links
(causal and observational), along with binding and or-
dering constraints.

Definition 3 A partially ordered plan is a 6-
tuple, < To,To, O,Lc,Lo, S >, where Tc and To are
causal and observation steps, O is a set of temporal

(II~l~¢’l"

Figure 4: Observation links.

ordering constraints, Lc and Lo are sets of causal and
observation links, and S is a set of open subgoals.

Causal links record the causal connections among
actions, while observational links specify which steps
will be taken depending on the report provided by an¯
observation step. It is important to note that both
types of links emanate from contingencies rather than
individual outcomes. For instance, in Fig. 4, SHIP will
be executed if INSPECT reports fFL/, and REJECT will
be executed otherwise.

Definition 4 A causal link is a 5-tuple <
Si, e,p, Ck, Sj >. Contingency c of step Si is the link’s
producer, contingency ck of step Sj is the link’s con-
sumer, and p is the supported proposition (Si, Sj

TcUTo).
Definition 5 An observation link is a 4-tuple

< S~, c, l, Sj >. Contingency c is the collection of con-
sequences of Si E To that report l. An observation link
means that Sj E TcOTo will be executed only when the
sensor report provided by Si is I.

Often the planner needs to reason about all the steps
that are subsequent to a particular observation. We
therefore define a composite step, which is a portion of
the plan graph rooted at an observation action O. Each
composite step is factored into branches, one branch for
each contingency associated with O. For example, the
composite step (O :< {-BL, 1}, {BL,0.1} >< $1,$2 >
,< {BL, 0.9} >< $3 >), indicates that after some
observation action O, steps S1 and $2 will be executed
subsequent to one observation (which always occurs
when BL is false, and occurs 10% of the time when BI.
is true), while step $3 will be executed subsequent to
the alternative observation (which occurs 90% of the
time when BL is true).

Definition 6 A composite step includes an obser-
vation action and the entire plan graph below it:

(0: < {tl,l,Pl,1},..., {tl,l,Pl,l} >< Sl,1,...,Sl,rn >,

..., < >< >).
< Si4,... ,Si,m >, called branch i, includes the steps
that will be executed if contingency i of the observation

61

step is realized. < {ti,l,pi,1},--., {ti,l,pij} > denote
the condition for contingency i.

Although composite steps are an important part of
our overall framework, for brevity in this paper, we
provide only base definitions, not involving composite
steps. (See (Onder & Pollack 1996) for the general
definitions).

Expected Value

The main idea in computing the expected value of a
contingency c is to find out which top-level goal(s) will
fail if the step falls to produce c. For example, suppose
that c supports top-level goal gl in two ways: along
one path with probability 0.7, and along another with
probability 0.8. If c fails, the most that will be lost is
the support for gi with probability 0.8, and thus the
expected value of c is 0.8x val(gl). Therefore, while
propagating the values to a contingency, we take the
maximum support it provides for each t0p-level goal.

Definition 7 Expected value of a contingency:
Suppose that contingency c has outgoing causal links
to consumer contingencies Cl,...,cn and possibly an
outgoing observation link to step S. Assume that ki
is the probability that c~ supports goal g, and kn+l is
the probability that S supports g. Then, the expected
value of c with respect to g is:

val(g),if c directly supports g,
evg(c, g) = max(k1,, i., kn+l) x val(g), otherwise.

For z top-level goals, the expected value of c is

z

BY(c) = Z evg(c,g,).
i=1

We next consider the computation of expected disu-
tility of a contingency’s failure. To begin, we need to
compute the probability that a given state will occur
after the execution of a sequence of actions.

Definition 8 The probability of a state after a
(possibly null) sequence of steps is executed:

P[st’lst , <>] = {1,if st’ = st; O, otherwise.),

P[st’lst, < s >] =
Z pi,jP[ti[st]P[st’[RESULT(ei,j, st)],

<tl ,Pl,j ,ei ,j > ES

P[st’[st, < S1,...,Sn >] =

~_, P[ulst, < & >]P[st’lu, < $2,..., S,.,>].
u

’---;-i,

ck ~ ~’ ck ~ ’

Figure 5: Inserting a new observation action.

where S~ is a causal step3. The action sequence is
a total ordering consistent with the partially ordered
plan.

The expected disutility of a contingency c is the
product of the probability that the action generating c
will be executed, the conditional probability of c given
the action’s occurrence, and the value of c.

Definition 9 Expected disutility of the fail-
ure of a contingency: Let S be a step and c be
the ith contingency of S. If the condition for c is
< {ti4,Pi4),..., {$i,j,Pi,j) >, then the expected disu-
tility of c is defined as

P[S is executed] x
(1 - (~k~__l pi,kP[ti,al < 31,. ,Si-1 >]) x EV(c).

The Planning Algorithm

We can now see how the algorithm in Fig. 1 works.
After forming a skeletal plan, it selects a contingency c
whose failure has maximal expected disutility. Suppose
that c has an outgoing causal link < Si, c,p, ck,Sj >
(Fig 5, left). Because the proposition supported
c is p, the planner selects an observation action, So,
that reports the status of p and inserts it ordered to
come after Si. Two contingencies for So are formed:
cl contains all of So’s outcomes that produce the label
/p/, and c2 contains all the other outcomes. The causal
link < Si, c,p, Ck, Sj > is removed and an observation
link < So,cl,/p/,Sj > is inserted to denote that Sj
will be executed when the sensor report is /p/. In
addition, a causal link, < Si, c, sbj, cl, So > is inserted
(Fig. 5, right). This link prevents the insertion of
action that would perturb the correlation between the
propositions coded in the subject and the label.

Conditional planning then proceeds in the CNLP
style: the goal is duplicated and labeled so that it
cannot receive support from the steps that depend on
contingency cl of the observation step.

Plan iteration stops when a given expected value
threshold is reached or planning time is exhausted.

3The probability of an expression e with respect to a
state st is defined as: P[e[st] ---- {1, if e C_ st; 0, otherwise.}.

62

Definition 10 The expected value of a totally
ordered plan is the sum of the product of the proba-
bility that each of the z goal propositions will be true
after Sn is executed, and the value of the goal.

z

Z Z P[g lu] × P[ul < sl,..,, s, >] × Pal(g,).
i----1 u

where u ranges over all possible states.
We currently use an arbitrary total ordering of the

plan for this computation.

Example

The following example is based on one solved by C-
Buridan. The goal is to process (PR) and paint (PA)
parts. Initially, 30% of the parts are flawed (FL) and
blemished (EL), the rest are in good condition. The
"correct" way of processing a part is to reject it if it
is flawed, and to ship it otherwise. We assign 100 as
the value of processing a part, and 560 as the value of
painting. The action library contains the SHIP, REJECT,
INSPECT and PAINT actions of Draper et al. (1994).

The Mahinur planning system starts by constructing
a skeletal plan, and nondeterministically chooses the
SHIP action to process the part. Two contingencies of
SHIP are constructed (shown in Fig. 6 in dashed boxes):
the first one produces PR, and the second does not. A
causal link that emanates from the first contingency is
established for PR.

The triggers for the first contingency are adopted
as subgoals (-PR~’FL), and both are supported by START.
For START, two different sets of contingencies are con-
structed: one with respect to’PR, and one with respect
to-FL. When the PAINT action is inserted to support
the PA goal, and the’PR trigger of the first contingency
is supported by START, the skeletal plan is complete.

The skeletal plan contains three contingencies whose
disutilities of failure must be calculated (the contin-
gency for "PR of START has no alternatives). The ex-
pected disutilities for the first contingencies of START,
PAINT, and SHIP are 0.3 x 100 = 30 (for’FL), 0.05 × 560 ----
28 (for PA), and 0.3 × 100 = 30 (for PR), respectively.

Mahinur chooses to handle the first contingency with
the higher expected disutility, namely the first con-
tingency of START. Because-FL is the proposition sup-
ported by that contingency, an action that inspects the
value of FL is inserted before SHIP (Fig. 7). The causal
link supporting’FL is removed and an observation link
from the-FL report is inserted. The INSPECT step looks
at EL to report about FL. Therefore, the first contin-
gency of START is linked to INSPECT to ensure that an
action that alters the value of BL cannot be inserted
between START and INSPECT (BL and FL are correlated).

(START

-~ , ~:::::-:--::::.’

Figure 6: The skeletal plan.

The new branch is then completed..For the dupli-
cated goal, a new REJECT action is inserted to support
PR, and the existing PAINT step is used to support PA
yielding the plan shown in Fig. 7. If the success thresh-
old has not been met, Mahinur will plan for additional
contingencies. Note that existing conditional planners
can solve this problem, but the plan generated will be
the same regardless of the value assigned to the top-
level goals. Within our framework, the planner is sen-
sitive to the values assigned to each goal and is able
to focus on different parts of the plan based on the
disutility of contingencies.

Mahinur was implemented using Common Lisp on a
PC running Linux. We conducted preliminary experi-
ments on two sets of problems. In the first set, we used
synthetic problems which yielded plans containing 1, 2,
or 3 possible sources of failure. Table 1 shows the total
run time for solving the problem and amount of time
used for disutility calculation. As expected, runtime
increases exponentially with the size of the problem4;
disutility calculation, however, is insignificant.

For the second set of experiments, we implemented
the C-Buridan algorithm. C-Buridan constructs
branches for alternative contingencies in a somewhat
indirect fashion. When it discovers that there are two
incompatible actions, say, A1 and A2, each of which
can achieve some condition C, it introduces an obser-
vation action O with two contingent outcomes, and
then "splits" the plan into two branches, associating
each outcome with one of the actions. We used the
same support functions for conditional planning (con-
text propagation, checking context compatibility), the
same ranking function and the same base planning sys-

4The problems marked with a * terminated with a LISP
memory error.

63

)

i-- - i i!:i

....... :i

Figure 7: The complete plan.

1 poss. fail. 2 poss. fail. 3 poss. fail.
Run Disu. Run Disu Run Disu.
0 0.01 0.01 0.03 0.01 0.08 0.01
1 0.14 0.01 0.56 0.01 3.92 0.02
2 0.42 0.01 11.28 0.02 335.21 0.03
3 1.67 0.02 229.22 0.03 4368.43 0.05
4 9.11 0.03 3558.87 0.04

Table 1: Planning time and disutiliiy calculation time
for iterations on three problems.

tem. To demonstrate the advantage of directly plan-
ning for contingencies, we used a domain which con-
tains a single PAINT operator. Painting a part repeat-
edly increases the probability of success by 0.5n, where
n is the number of repetitions. It is an error to paint
an already painted part, thus the plan has to contain
an observe action to check whether the part has been
painted and repeat the PAINT step only if it has not
been successful previously. Table 2 compares the run
times for C-Buridan and Mahinur as the probability
threshold is increased. Mahinur expands significantly
less number of nodes, because the planning process
concentrates on planning for contingencies, as opposed
to improving the support for the (sub)goals.

Summary and Related Work
We presented an approach to decision-theoretic plan
refinement that directly reasons about the value of
planning for the failure of alternative contingencies. To
do this, we adopted a different strategy towards con-

Probability C-Buridan Mahinur
0.75 22 27
0.875 1317 106
0.9375 * 336
0.96875 * 566

Table 2: Number of nodes visited as the probability
threshold is increased.

ditionai planning than that taken in some earlier sys-
tems, notably C-Buridan which does not reason about
whether contingent outcomes are worth planning for.

The PLINTH system (Goldman & Boddy 1994) and
the Weaver system (Blythe & Veloso 1997) skip certain
contexts during the construction of probabilistic plans.
Our approach differs from theirs in two aspects. First,
we are focusing on partial-ordering, where they use a
total-order approach. Second, we consider the impact
of failure in addition to the probability of failure.

Other relevant work includes the recent decision-
theoretic planning literature, e.g., the PYRRHUS sys-
tem (Williamson & Hanks 1994) which prunes the
search space by using domain-specific heuristic knowl-
edge, and the DRIPS system (Haddawy & Suwandi
1994) which uses an abstraction hierarchy. Kambham-
pati (1994) describes planning algorithms with multi-
contributor causal links. Our algorithm maintains mul-
tiple contributors at the action outcome level in a prob-
abilistic setting.

Acknowledgments
This work has been supported by a scholarship
from the Scientific and Technical Research Council
of Turkey, by the Air Force Office of Scientific Re-
search (Contract F49620-92-J-0422), by Rome Labo-
ratory and the Defense Advanced Research Projects
Agency (Contract F30602-93-C-0038), and by an NSF
Young Investigator’s Award (IRI-9258392),

References
Blythe, J., and Veloso, M. 1997. Analogical replay for
efficient conditional planning. In Proceedings of the
1.#h National Conference on Artificial Intelligence.

Dean, T.; Kaelbling, L. P.; Kirman, J.; and Nichol-
son, A. 1995. Planning under time constraints in
stochastic domains. Artificial Intelligence 76:35-74.

Draper, D.; Hanks, S.; and Weld, D. 1994. Proba-
bilistic planning with information gathering and con-
tingent execution. In Proceedings of the 2nd Interna-
tional Conference on Artificial Intelligence Planning
Systems, 31-36.

Etzioni, O.; Hanks, S.; Weld, D.; Draper, D.; Lesh,
N.; and Williamson, M. 1992. An approach to plan-

64

ning with incomplete information. In Proceedings of
the Third International Conference on Principles of
Knowledge Representation and Reasoning, 115-125.

Goldman, R. P., and Boddy, M. S. 1994. Epsilon-safe
planning. In Proceedings of the lOth Conference on
Uncertainty in Artificial Intelligence, 253-261.

Haddawy, P., and Hanks, S. 1993. Utility models for
goal-directed decision-theoretic planners. Technical
Report 93-06-04, Department of Computer Science
and Engineering, University of Washington.

Haddawy, P., and Suwandi, M. 1994. Decision-
theoretic refinement planning using inheritance ab-
straction. In Proceedings of the ~nd International
Conference on Artificial Intelligence Planning Sys-
tems, 266-271.

Kambhampati, S. 1994. Multi-contributor causal
structures for planning: a formalization and evalu-
ation. Artificial Intelligence 69:235-278.

Kushmerick, N.; Hanks, S.; and Weld, D. S. 1995. An
algorithm for probabilistic planning. Artificial Intel-
ligence 76:239-286.

Onder, N., and Pollack, M. E. 1996. Contingency se-
lection in plan generation. In 1996 AAAI Fall Sympo-
sium on Plan Execution: Problems and Issues, 102-
108.

Peot, M. A., and Smith, D. E. 1992. Conditional
nonlinear planning. In Proceedings of the 1st Interna-
tional Conference on Artificial Intelligence Planning
Systems, 189-197.

Pryor, L., and Collins, G. 1993. Cassandra: Planning
for contingencies. Technical Report 41, The Institute
for the Learning Sciences, Northwestern University.

Williamson, M., and Hanks, S. 1994. Optimal plan-
ning with a goal-directed utility model. In Proceed-
ings of the 2nd International Conference on Artificial
Intelligence Planning Systems, 176-18i.

65

