From: AAAI Technical Report WS-97-09. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

Toward Structured Retrieval in Semi-structured Information Spaces

Scott B. Huffman, Catherine Baudin, and Robert A. Nado

Price Waterhouse Technology Centre
68 Willow Road
Menlo Park, CA 94025-3669
{huffman, baudin, nado}@tc.pw.com

Abstract

A semi-structured information space consists of
multiple collections of textual documents
containing fielded or tagged sections. The
space can be highly heterogeneous, because
each collection has its own schema, and there
are no enforced keys or formats for data items
across collections. Thus, structured methods
like SQL cannot be easily employed, and users
often must make do with only full-text search.
In this paper, we describe an intermediate
approach that provides structured querying for
particular types of entities, such as companies,
people, and skills. Entity-based retrieval is
enabled by normalizing entity references in a
heuristic, type-dependent manner. To organize
and filter search results, entities are categorized
as playing particular roles (e.g., company as
client, as vendor, etc.) in particular collection
types (directories, client engagement records,
etc.). The approach can be used to retrieve
documents and can also be used to construct
entity profiles — summaries of commonly sought
information about an entity based on the
documents’ content. The approach requires
only a modest amount of meta-information
about the source collections, much of which is
derived antomatically. On a set of typical user
queries in a large corporate information space,
the approach produces a dramatic improvement
in retrieval quality over knowledge-free
methods like full-text search.

1 Introduction

Decentralized information-sharing architectures like
the World Wide Web and Lotus Notes make it easy for
individuals to add information, but as the space grows,
retrieval becomes more and more difficult. Semi-
Structured information sharing systems, including
Lotus Notes and a variety of meta-tagging schemes
being developed for the World Wide Web (e.g. Apple’s
Meta-Content Format), address part of this problem by
providing the ability to structure local parts of the
information space. In a semi-structured information

space, documents are sectioned into weakly-typed fields
according to user specifications, and documents with the
same field structure can be grouped into collections.
Within a collection, field values can be used as indexes
for easier retrieval.

Unfortunately, semi-structuring document collections
does not solve the problem of retrieving information
across a large information space. Even if individual
collections are well designed for retrieval, users can be
overloaded with the sheer number of collections.
Retrieval across the entire space is difficult because it is
highly heterogeneous. Each collection has its own local
schema, and there are no enforced keys or formats for
data items within or across collections.

In this paper, we address the problem of finding
information across collections in a large semi-structured
information space. Our goal is to provide querying that
is more powerful and precise than full-text search, but
without requiring the collections to be strongly typed,
data normalized, and fully mapped to a global schema,
as methods like multidatabase SQL require. In addition,
to maintain the advantages of decentralized information
sharing, we do not want to impose constraints like
integrity checks when users create new documents.

Our approach is to provide high quality retrieval of
information related to important entities in the
information space. In our organization (a large
professional services firm), important types of entities
include people, companies, and consulting skills. A
review of our largest collections revealed that nearly
always, references to important entities are fielded
rather than buried in free-running text. Because the
same entity can be referred to in many different ways
across a heterogencous information space, our entity
retrieval system normalizes references to entities in a
heuristic, type-dependent manner. For instance, the
person names "Mr. Bob Smith", "Smith, Robert", and
"R. J. Smith" are normalized such that a query for any
one (or a number of other possible forms) will retrieve
documents containing any of them.

In addition to normalization, there are two entity-
related retrieval filters provided by our retrieval system:
entity roles and collection types. Entities often play
identifiable roles within collections. For instance, a
person can play the role of a partner on an engagement,

Search sources categorized as: IANBIYSTS Reports

Search for:
pre . wnchis[a company
and iinternet | which is ia_phrase
and] which is ia phrase

fand :ﬁww

Figure 1. An NX search form

a manager, a contact at a client, etc.; a company can
play the role of a client, a vendor, a newsmaker, etc.
These roles can be useful in organizing or filtering
retrieved information (“find mentions of XYZ as a
client”).

Based on entities and roles they contain, collections as
a whole can be classified into a small number of
collection types. Examples include client-engagements
collections, which contain clients, partners, and
managers; directories, which contain staff names and
phone numbers, etc. Like roles, collection types provide
a useful way to organize or filter retrieved documents.

We have implemented an entity-based retrieval system
called NX (for Notes Explorer) that operates over a large
semi-structured information space. The space currently
includes over one hundred corporate Lotus Notes
collections and a small set of web collections, together
containing about 300,000 documents. NX provides full-
text search, entity-based search for people, companies,
and skills, and role and collection-type organization and
filtering of results. In addition, it provides retrieval of
entity profiles -- integrated summaries of useful
information about people and companies extracted from
multiple, heterogeneous document collections.

NX uses HTML to communicate between a Web
browser client and a server program that performs the
requested searches. Figure 1 shows one of the system’s
search forms. The pick-box with “Analysts Reports”
chosen allows a user to choose among collection types.
The pick-boxes along the right side, such as the one
with “a company” chosen, allow a user to choose an
entity type for each search string; “a phrase” indicates
that a full-text search for the string should be
performed. Figure 2 shows part of the set of results
retrieved by the search in Figure 1.

A key hypothesis behind this work is that a relatively
small amount of meta-information — much less than that
required to normalize and map collections to a global
schema — can give a large gain in query power and
precision over knowledge-free methods like full-text
search. NX is one illustration of this hypothesis. It
requires only a modest amount of meta-information
about each collection — its collection type, an indication
of fields containing entities in various types and roles,

7 matches for "DEC + mternet" - after 09/07/96

Matches by Database:
Analysts Reports
+ FACCTS - 5 matches
¥ Fotrester Research - 1 match
¥ Knowledge Info Transfer - 1 match

B FACCTS

® 2] 01/16/97 internet + DEC: Firewalls Specifications Chart - DEC

® 21 01/10/97: intemet + DEC: Digital Equipment Company Profile

® i} 12/03/96: internet + Digital Equipment Corporation (DEC): Timeline: DJ
o [1107404 internat + TYEC: Dinital Eqvinment DA THWARKS

Figure 2. NX search results

and (for profile queries) pairs of fields that stand in
specific semantic relations — and uses it to produce a
dramatic improvement in retrieval quality for entity-
related queries. Much of the required meta-information
can actually be inferred automatically based on field
names and data within the collections, using a simple
heuristic classifier.

In what follows, we first motivate entity-based
retrieval with a real-world example. Next, we describe
the main components of our retrieval system, and
present an empirical comparison between entity-based
retrieval and full-text search for a set of typical queries.
We conclude by discussing related and future work.

2 Entity-based retrieval

In a corporate setting, information in different
documents is frequently linked through references to
entities with business importance, such as people and
companies. Often, users search for information about
particular entities (e.g., "What is Bob Smith's phone
number?" or "Who's the manager for the XYZ Co.
account?") as opposed to ungrounded, aggregate queries
across sets of entities (e.g. "Show me all managers with
more than five clients over $5 million in sales"). We
designed NX to support this type of search.

Consider a typical, but hypothetical, example from our
organization. A staff member is writing a proposal to
XYZ Company for some consulting work on XYZ's new
customer tracking system. She needs answers to
questions like:

(a) How large is XYZ Company? E.g., what are their
assets, revenues, etc.?

(b) Does our organization have a prior relationship
with XYZ? Have we done other consulting work for
them in the past?

(¢) If so, who did that work, and how can they be
contacted?

Profile for "HP"

SIC Code:
3570 -- Computer & Office Equipment £}

Net income: $2,433,000,000 [l
Total assets: $24,427,000,000 =)
Net revenues: $31,519,000,000 £
SEC Filings: 2}

WWW Home Page:

Client Of:

Audrey Auditor o
Tom Taxman &l
Courtney Consultant
Vendor Relationship Coordinator:

Analysts’ mentions:

Vince Vendrel

= 01417197, Knowledge Info Transfer: Hewlett Packard: The Role of the Financial Controller in the mid - 19905 and beyond
01/15/97. Knowledge Info Transfer: Hewlett Packard: Improving Supply Chain Management: A Survey of Best Practices
01/13/97. Tower Group Research Notes: Hewlett Packard: Parallel Processing in Banking

01/13/97. Tower Group Research Notes: Hewlett Packard: Client/Server Technology in Banking

Figure 3. Profile Search Results

(d) Do we have staff with expertise on customer
tracking systems? How can they be contacted?

Each question refers to entities of various types — XYZ
Company, staff members, phone numbers, skills, etc. —
and these entities may be referred to differently in
different documents. Some questions involve
information that may be found in many collections of
the same type — e.g., information about prior work for
XYZ (b) might be found in numerous collections
containing client engagements. Others involve linking
information about XYZ with information about another
entity -- e.g., question (c) requires finding staff names
in documents that list XYZ engagements, and then
finding contact information for those staff names.

To find answers using the source collections directly
would require that the user:

» know the relevant collections and their locations.

e construct searches that accounts for different forms
of an entity (e.g. “XYZ Corporation” vs. “X Y Z Inc.”).

e discard hits where entities play irrelevant roles (e.g.
XYZ as a vendor in an engagement, not as the client),
and hits in irrelevant types of collections (e.g. XYZ
mentioned in news rather than client engagements).

NX satisfies these requirements. Figure 3 displays the
results of a profile search in NX given “HP” as a
company name search string.! Normalization allows NX
to retrieve information from documents that mention
“Hewlett Packard”, “Hewlett-Packard, Inc.”, etc., as
well as “HP”. The headings (e.g., “SIC Code:” and
“Client Of:”) list specific values that have the specified
relationship to the company of interest. These values

! Actual people names have been replaced in the HTML
generated by Notes Explorer to preserve privacy.

are drawn from multiple documents in different
collections; the square document icons are hyperlinks to
the source documents. In the case of values representing
people and companies, the value (e.g., “Audrey
Auditor”) is also displayed with a hyperlink that
initiates a profile search on that value. This allows, for
example, contact information to be found for people who
have “HP” as a client. Other headings (e.g., “SEC
Filings:” and “Analysts’ mentions:”) are followed only
by document links, as it is the document as a whole that
is of interest -- not specific information extracted from
it.

The next section examines the key components of NX
that support entity-based retrieval.

3 Key Components of NX

NX includes five key components:

1. Semi-automatic field classification. To build an
index of entity references of different types, we must
identify where those types occur within collections.
NX's field classifier uses field names and sample values
from a collection to classify fields as containing entity
types (people's names, company names, phone numbers,
dollar amounts, etc.) and roles. As classification is not
100% accurate or complete, an interface is provided to
alter the entity and role types for each collection’s
fields.

2. Entity normalization. = When collections are
indexed, entity references are extracted from entity-
typed fields and normalized in a heuristic manner, using
formatting knowledge and synonym tables specific to
each entity type. At retrieval time, entity search terms

are normalized in the same way and used to find
matches in the index.

3. Entity-related result organization and filtering.
Once a set of documents is retrieved, it can be viewed or
filtered based on entity roles, collection types, and
frequently co-occurring entities.

4. Definition of a Partial Global Schema. As an
alternative to viewing only a set of retrieved documents,
NX’s profile search extracts and presents commonly
desired information from those documents in a summary
format. The foundation of profile search is the
definition of a partial global schema consisting of global
predicates describing those relationships among entities
to be included in a profile. The global predicates are
then mapped to the appropriate pairs of fields in each
relevant document collection.

5. Extraction of profile information. After defining
global predicates and mapping them to document
collections, the information used to construct an entity
profile can be extracted from the normalized entity
index.

Next, we give a brief description of each component.

3.1 Semi-automatic field classification

Field classification attempts to identify an entity type
and role for each collection field. The current version
recognizes person names, company names, telephone
numbers, geographic locations, office names, and dollar
amounts. As in [Li & Clifton, 1994], the attributes used
by the classifier are the field name and sample values
from the documents in the collection.

The field classifier proceeds in three steps:

1. Field name analysis. Field names are tokenized
according to capitalization and other separators. The
tokens are then analyzed using a domain-dependent
dictionary of entity types and roles. Tokens are matched
against the entries in the dictionary using a set of
matching heuristics that recognize different types of
abbreviations. For instance, the tokens “Tel” and
“Phone” match the entity type telephone, the token “Ptr”
matches the entity role partner, and the token “Name” is
indicative of a name of any type: person, company, or
office. In addition, the ficld name analyzer uses a set of
simple patterns. For instance, a field called
“ContactPhone” is likely to be of type telephone because
it contains a person token followed by a telephone
token, whereas a field called “PhoneContact” is likely to
be of type person. In the same way, the token “By” in
the last position of a field name can indicate an action
(e.g., “ServedBy”), suggesting that the field contains
person or company names, which are the primary actors
in our domain. Based on such patterns, field name
analysis produces a weighted set of potential entity
types.

2. Field value analysis. Sample data values are
analyzed in a type-specific manner for each potential
entity type produced by field name analysis. For each
entity type, the sample values are analyzed to determine
how confidently they can be considered that type of

entity. These confidence levels are combined to produce
an overall confidence level for each potential type.

Three criteria are used to analyze values:

a) Value lookup: The system looks up field values in
tables of common values for different entity
types. These include peoples’ first names, large
company names, and office sites. The confidence
level for value lookup is high.

b) Common keywords: The system looks for
common words that appear in entity values. For
instance, company names often contain “Corp.”
or “Inc.”. Person names often contain titles like
“Mr.” or “Ms.”. The confidence level for
common keywords is medium.

¢) Formatting: Type-dependent routines attempt to
match common formats for values of each entity
type. For instance, person names have a small
number of capitalized words, possibly including
initials, etc. The confidence level for formatting
criteria is low.

If the confidence level returned by field name analysis
is low for a potential entity type, the system increases
the number of sample values, in order to collect enough
evidence to make a classification. An entity type is
assigned if confidence exceeds a threshold.

3. Role identification: If an entity type is assigned,
the classifier attempts to assign a role to the field based
on its type and a second set of field name patterns. For
example, a field of type person name with tokens
“editor”, “author”, or “owner” indicates the role author.

In a small test, the field classifier analyzed 670 fields
in 26 collections. Of these, 159 were of recognizable
types. The field classifier correctly classified 154 of the
159 (97%). Most failures were due to failing to
recognize tokens in the field name. Of the 154
classified fields, 61 were of the roles client, manager,
partner, author, reviewer or vendor. The system
correctly recognized 58 of these (95%).

More work is needed to extend the classifier’s
generality. It relies on a hand-built dictionary of field
name tokens, but it should be possible to use standard
induction techniques to learn such a dictionary from
examples. The field classifier may also be extended to
recognize other types, such as skill descriptions, vendor
products, and technical terminology.

3.2 Entity Normalization

In a standard relational database, tuples from different
tables that contain information about the same entity
each contain a key for that entity allowing the tuples to
be joined. In a semi-structured document space,
however, there are rarely unique keys shared by
collections. Rather, entities are referred to within text
strings in a variety of formats, with a variety of
synonyms and abbreviations.

Therefore, to allow search over entities, entity
references must be normalized and matched. For
maximum retrieval speed, NX normalizes entity
references at indexing time. Its entity index stores both
the original form and a normalized form of each entity

reference. At retrieval time, a normalized form of the
user’s search string is created and used to retrieve
matches from the normalized entity index. In some
cases, values are only partially normalized, and the
original forms of retrieved matches and the search
string are compared to verify the match.

Normalization and matching of strings that refer to
entities has two important properties. First, it is
heuristic. Generally, it is impossible to know with
certainty whether two strings refer to the same entity.
“Bob Smith” and “Robert A. Smith" may or may not be
the same person; the retrieval system must make a
reasonable guess.

Second, it is type dependent. Normalizing different
types of entities requires different processing: e.g.,
normalizing person names is different than normalizing
company names. Different variations in format are
allowed for each type; "Smith, Bob" is a variation of
"Bob Smith", but "Computer, Apple" is not a variation
for "Apple Computer”. In addition, different synonyms,
abbreviations, and stop words apply. For company
names, for instance, including or omitting words like
"Corp." is only a small variation; for person names,
"Mr." is a small variation unless the other string
contains a female designator like "Ms." NX employs
different normalization routines for different types,
including small tables of synonyms, abbreviations, and
stop words.

Due to space limitations, we will only briefly describe
NX’s normalization routines here.

For company names, the string containing the entity
reference is first processed to produce uniform
capitalization, combine leading initials (e.g., “I B M”
becomes “IBM”), and expand common abbreviations.
Next, we look up the leading words of the string in a
table of company name synonyms. If a match is found,
a designated synonym is used as the normalized form of
the string. For example, the normalized form of “IBM”
is “International Business Machines”. If no match is
found, the first contentful word of the string is used as
its normalized form; e.g., the normalized form of
“Foobaz Circuit Corp.” would be “Foobaz”.

At retrieval time, the search string for a company is
normalized in the same way. Matches for the
normalized form are retrieved from the entity index
table. If the search string was found in the synonym
table, all matches from the index are returned as
retrieved matches, on the basis that appearing in the
same synonym set implies a fairly strong match. For
instance, all matches normalized to “International
Business Machines” would be returned by a search for
“IBM”. In cases where no synonym is found, entity
strings with the same first word are retrieved from the
index and scored against the search string on a word-by-
word basis. Words that appear in one but not the other
reduce the match score by an amount proportional to the
total number of words; common company words like
“Corporation” are penalized less. Each entry with a
match score over a threshold is returned as retrieved
match. The search string “Foobaz Circuit Supply”, for

instance, matches “Foobaz Circuit Corp.” but not
“Foobaz Lawn and Garden Products™.

The algorithm for person names is slightly more
complex, since it must account for more possible
variations in word-order, title words (“Dr.”, etc.),
generation designators (“Jr.”, “III”, etc.) and so on.

In addition, pre-processing is required to find the
portions of the input string containing entity references.
Often, a field will contain multiple entity values in a
single string, with spurious information interspersed.
For example, a typical person name field value might be
“Bob J. Smith Jr. - managing partner, Sue Jones, 415-
555-1212, Palo Alto.” NX’s normalization routines
extract “Bob J. Smith Jr.” and “Sue Jones” out of this
field value.

3.3 Entity-related result filtering

Documents that match a query can be filtered and
sorted based on the collection types they are drawn
from, the roles played by entities in the documents, and
other entities that co-occur in the documents. In
addition, standard filters/sorts such as date ranges and
relevance scores are provided.

In Figure 2, results are displayed sorted by the
collection type and collections they are drawn from.
Here, the search has been filtered using the “Analysts
Reports” collection type. In cases where documents are
retrieved from many collection types, the display
provides a useful breakdown of the major kinds of
information retrieved.

The buttons along the top of the page indicate
alternative sortings. ‘View by role’, for example, sorts
the documents according to the roles of entities that
matched the query within each document.

The ‘Cross References’ function retrieves the most
frequently occurring other entities (people, companies,
and skills) in the set of retrieved documents. Because
they have been normalized, the co-occurring entities can
be properly grouped independent of how they were
referred to in the source documents. NX’s profile
search capability is more structured version of the
‘Cross References’ function — in profiles co-occurring
entities are grouped by their semantic relations to the
profiled entity as described in the following two
sections.

3.4 Definition of a Partial Global Schema

The profile search capability of NX is based on a
global vocabulary for describing the types of
information that may be found about an entity in the
different information sources that are available. A key
point is that no attempt is made to define a complete
global schema characterizing all of the relations that
might be extracted from individual collections. Rather,
the global schema used by NX is partial — containing
only enough meta-information to support the desired
entity profiles. Currently, the global vocabulary includes
binary predicates of two types — entity predicates
represent relationships between two entities, while
document predicates represent relationships between an

2000
1500 1
1000 |

500 1

0-

Skill queries Company queries

Person queries

FT
B Entity
OFT with collection category

Entity with collection catego

Overall average

Figure 4. Average number of results for various query types

entity and a document that is “about” that entity. For
example, "Work Phone" is an entity predicate
representing the relationship between a person and a
phone number where that person may be reached at
work. Entity types are assigned to the domain and range
arguments of a predicate to restrict its applicability.? For
example, the “Work Phone” predicate is assigned the
entity types person name and phone number. “Resume”
is a document predicate relating a person name and a
resume document.

In addition to declaring domain and range entity
types, each predicate must be mapped to the relevant
fields in collections that locally instantiate the
predicate. For example, in the PW Name & Address
Book, the "Work Phone" relation is mapped to a pair of
a domain field (“FullName”) and a range field
(“OfficePhoneNumber”). Other collections may also
have information relevant to the "Work Phone"
predicate but use differently named fields to record the
person name and the phone number. An entity predicate
may be mapped to multiple pairs of domain and range
fields in a single collection. Document predicates have
a simpler mapping, requiring only a domain field in
each relevant collection.

Currently, the mapping of predicates to fields in
collections is performed manually using a Web browser
interface.. The range of candidate collections and fields
for each predicate is considerably narrowed by
exploiting the entity types assigned to fields by NX’s
field classifier. A collection can be ignored when
mapping a predicate if it does not contain fields with
entity types matching those specified for the domain and
range arguments of the predicate. Given an eligible
collection, candidates for the domain and range fields
are narrowed to those with the proper entity types.

3.5 Extraction of profile information

A profile for a particular category of entity is defined
by listing the global predicates that should make up the
profile in the order in which they should be displayed in
the results page of a profile search. Information can be
associated with individual predicates through a Web
browser interface to control the formatting, number, and
sorting of profile results displayed for the predicates.

% Similar to sorts in a sorted, first-order language

Retrieving an entity profile involves five steps:

1. Retrieve records from the entity index whose
normalized field values match the normalized
forms of the search string and that have the
correct entity type.

2. Filter out records retrieved in step 1 whose field is
not a domain field for any predicate in the profile.

3. For each record A from step 2, retrieve records
from the entity index that originate in the same
document.

4. Filter out records retrieved in step 3 whose field is
not a range field corresponding to A’s field as a
domain field for one of the profile predicates.

5. Sort the remaining records by profile predicate
and generate an HTML page displaying the results
for each predicate.

Because they have been normalized, the results found
for a particular profile predicate can be properly
grouped independently of how they were referred to in
the source documents. In essence, this uses the
normalized entity index as a simple data warehouse,
enabling an aggregation over entities in document sets.

4 Results

To evaluate NX’s entity-based retrieval and filtering
functionality, we used a typical set of user questions
from our organization’s staff. For each question, we
tested four conditions:

1. Naive full-text search: Our wusers are not
sophisticated full-text users. Thus, we used
simple full-text searches for the entities in the
question.

2. Full-text search with collection-type filtering: To
(1), we added that only results from the
appropriate collection type be returned.

3. Entity search: Instead of full-text search, we used
NX’s entity search for the entities in the
question.

4. Entity search with collection-type filtering: To
(3), we added that only results from the
appropriate collection type be returned.

We tested these conditions for a set of 24 questions.
The results are shown in Figure 4. As the graph shows,
collection-type filtering produces a much smaller result
set than full-text search alone, and collection-type plus

entity search reduces the result set further. Overall, the
average naive full-text result set was 1358 documents
from 15 collections; the average entity-search with
collection-type filtering result set was 37 documents
from 2 collections.

Without pre-scored document collections, it is difficult
to obtain strong measures of recall and precision for
large information spaces (too large to search by hand).
In the absence of scored answer keys, we have resorted
to approximate measures. One way to approximate
recall is by comparing to a method known to produce
high recall. In this case, the results returned by entity +
filtering searches are basically equivalent to the results
that would be found by a user submitting a query
against each collection’s local schema, if the user knew
the proper collections, field names and synonymous
field values for each query. Thus, entity + filtering
search produces a comparable level of recall.

Assuming comparable recall levels, we can obtain a
rough measure of precision by examining the total
number of documents returned by each retrieval method.
Our test questions called for fairly focused answers, as
opposed to “deep background” questions, like “find all
documents that mention the internet”, and thus small
result sets are appropriate. In practice, large result sets
containing hundreds or thousands of documents are
much less useful than small sets, because they require so
much hand filtering. In this sense, we consider the
dramatically smaller result sets produced by entity +
collection filtered search to be a large improvement over
naive full-text search, for entity-related queries.

Because of the synonyming capability of entity search,
there were often documents retrieved by entity searches
that were not retrieved by naive full-text searches. For
the first ten questions, on average, 14% of the
documents returned by entity searches were not returned
by naive full-text search. In some cases — in particular,
searches for contact information for people — missed
documents contained the crucial information to answer
the question at hand.

To date, we have not explicitly evaluated the entity
profiling capability. In addition to attempting to obtain
approximate measures of recall and precision, we plan
to evaluate profiles' usefulness to end users, through
user feedback and surveys.

5 Discussion and Future Work

The goal of our work is to provide better information
retrieval across a large semi-structured space than full-
text search, while avoiding excessive meta-information
overhead. Our approach is based on observing that in
an information space used by a particular organization,
important entity types link information together and can
be used as a central retrieval cue. This data-driven
approach can be contrasted with schema-driven
approaches used by multidatabase systems (e.g., [Arens
et al.,, 1993]), and similar systems attempting to
integrate structured world-wide web sources [Levy et al.,
1996, Farquhar et al.,, 1995]. In schema-driven
approaches, each local schema is mapped to a central

global schema, and mapping rules are used to translate
between data formats used by different sources (e.g.
[Collet et al., 1991]). These approaches are appropriate
for relatively small numbers of tables where the data
within each table is well-specified; however, semi-
structured information spaces can include hundreds of
sources and, even within single sources, data can have
multiple formats. A schema integration phase would be
burdensome in such a large space [Goh et al. 1994].
Instead, NX relies on heuristics to categorize fields into
a small number of entity and role types, and normalizes
entity values for retrieval (as in [Huffman and Steier,
1995]). The resulting retrieval system makes it practical
to encompass a greater number and variety of data
sources than multidatabase systems, although the query
language is less general because queries must refer to a
specific entity.

One area for future work is classification and
normalization of a larger variety of entity types. New
types we are considering include locations, product
names, and technical terminology appearing in the body
of a document. Field classification could be improved
by using non-local information, such as data values’
appearances in other collections. Indexing could be
improved by extracting entity values from free-running
text, in addition to tagged fields. This would require
text processing tools like name finders [Rau, 1991;
Hayes, 1994], technical-term extractors [Justeson and
Katz, 1995; Chen and Chen, 1994], or parsers that find
characteristic phrases using fonts and other cues (e.g.
[Krulwich and Burkey, 1995]).

A related idea we are experimenting with is using
text classification and thesaurus induction methods (e.g.
[Grefenstette, 1994]) to attach organization-wide
categories to documents as a whole. These categories
can be used as retrieval cues or filters, similar to roles.

Future work on profile extraction will include
extending profiles to other entity types such as service
lines and skills and customizing profiles to meet the
requirements of particular classes of users. We also
plan to address the problem of ambiguous profile
searches (e.g., distinguishing profile information for
Robert A. Smith and Robert J. Smith when "Bob Smith"
is supplied as the search string), use information about
recency and reliability to resolve conflicts in
information retrieved as part of a profile (e.g., multiple
office phone numbers retrieved for a person), and add
inference capabilities to the determination of profile
results (e.g., determining a person's office telephone
number from his assigned office and that office's main
switchboard number).

To reduce the burden of providing the meta-
information required for profile extraction, we plan to
develop automated techniques for mapping global
schema predicates to pairs of collection fields by
exploiting abstract classifications of collections. For
example, “directory” collections are more likely to
contain a person’s phone number, while client
engagement archives are more likely to contain the
names of a person’s clients.

6 Conclusion

Semi-structured systems are an intermediate point
between unstructured collections of textual documents
(e.g., untagged Web pages) and fully structured tuples of
typed data (e.g., relational databases). Based on
observing how information is typically retrieved and
used within our organization, we have developed an
entity-based retrieval system over a large semi-
structured information space. The system incorporates
semi-automatic classification of fields, normalization of
field values, filtered retrieval using entity roles and
collection types, and structured retrieval of commonly
required information in the form of entity profiles. For
typical queries containing entities, the system provides
much more focused and normalized retrieval than full-
text search.

References

[Arens et al., 1994] Arens, Y.; Chee, C. Y.; Hsu, Chun-
Nan; and Knoblock, C. Retrieving and integrating data
from multiple information sources. Int’l J. on Intelligent
and Cooperative Information Systems, 1994.

[Chen and Chen, 1994] Chen, Kuang-Hua, and Hsin-Hsi
Chen, Extracting Noun Phrases from Large-Scale Texts: A
Hybrid Approach and its Automatic Evaluation. In
Proceedings of the 32nd Annual Meeting of the ACLV. Las
Cruces, New Mexico, 1994.

[Collet et al., 1991] Collet, C, Huhns, M, and Shen, W.
Resource integration using a large knowledge base in
Carnot. IEEE Computer, pages 55-62, December 1991.

[Farquhar et al., 1995] Farquhar, A., Dappert, A., Fikes,
R., and Pratt, W. Integrating information sources using
context logic. In Working Notes of the AAAI Spring
Symposium on Information Gathering from Heterogeneous
Distributed Environments. AAAI, 1995.

[Goh et al., 1994] Goh, Cheng Hian; Madnick, Stuart E.;
and Siegel, Michael D. Context Interchange: Overcoming
the challenges of large-scale interoperable database
systems. In Proceedings of the 3rd International
Conference on Information and Knowledge Management.
1994.

[Grefenstette, 1994] Grefenstette, Gregory. Explorations in
automatic thesaurus discovery. Kluwer Academic
Publishers, 1994.

[Hayes, 1994] Hayes, P. NameFinder: Software that finds
names in text. Carnegie Group Inc. technical report, 1994.

[Huffman and Steier, 1995} Huffman, Scott; Steier, David.
Heuristic joins to integrate structured heterogeneous data.
In Working notes of the AAAI Spring Symposium on
Information Gathering in Heterogeneous Distributed
Environments. AAAIL 1994,

[Justeson and Katz, 1995] Justeson, John, and Slava Katz,
Technical Terminology: Some Linguistic Properties and an

Algorithm for Identification in Text. In Natural Language
Engineering \/ 1.1., 1995.

[Krulwich and Burkey, 1995] Krulwich, Bruce; Chad,
Burkey.. ContactFinder: Extracting indications of expertise
and answering questions with referrals. In Working Notes
of the AAAI Spring Symposium on Knowledge Navigation.
AAAI 1995.

[Levy et al., 1996] Levy, A., Rajaraman, A., and Ordille, J.
Query-answering algorithms for information agents. In
Proc. Of the 13" National Conference on Artificial
Intelligence (AAAI-96), pp. 40-47, 1996.

[Li & Clifton, 1994] Li, Wen-Syan and Clifton, C.
Semantic integration in heterogeneous databases using
neural networks. In Proc. 20th International Conference on
Very Large Data bases, Santiago, Chile, 1994.

[Rau, 1991] Rau, L. Extracting company names from text.
IEEE Conference on Al Applications, 1991.

