
The Use of Plans in Knowledge Management Tasks

Louise Pryor

Harlequin Ltd
Technology Transfer Centre,

King’s Buildings,
Edinburgh EH9 3JL, UK.
louisep@h arlequin.co.uk

Abstract
This paper discusses how a plan execution system could be
used to assist in a knowledge management task, such as
searching a set of databases for a relevant document.
PARETO iS a plan execution system based on the as-needed
expansion of a hierarchy of sketchy plans. It has been
adapted for use in several different domains. There are sev-
eral problems that would arise in adapting PARETO to assist
in a knowledge management task such as searching for a
relevant document in a proprietary intranet. However, there
are also advantages that would be provided by the use of
such a system.

Introduction
There are many tasks that involve the skilled analysis of
large amounts of information. Examples include a man-
ager analysing sales figures; an actuary setting the loss
reserves for a casualty insurance company; an environ-
mental scientist analysing data from satellites; an analyst
preparing standard data files from miscellaneous inputs;
and anybody searching for information on the interact or
an intranet. These tasks are all performed in a similar
manner. Usually, there is a (possibly very abstract)
framework around which they are structured: the details
are filled in as the task progresses, based on information
that is learned during the task execution. Sometimes, the
whole course of the task changes from that originally an-
ticipated, again, based on circumstances encountered
along the way.

This short paper describes how these tasks can be seen
as plan execution tasks; it discusses how an opportunistic
plan execution system could be used to assist in their per-
formance. The problem of finding information stored in
Lotus Notes® is used as a running example, and is de-
scribed in the remainder of this section. The following
sections briefly discuss how AI planning techniques are
applicable to this and other knowledge management tasks,
with particular reference to PARETO, a plan execution sys-
tem; and discuss the advantages and disadvantages of us-
ing such a system.

Finding information in Lotus Notes
Lotus Notes organises documents in databases. In order to
find a particular document you first have to find the rele-
vant database and open it. You cannot tell what docu-
ments are in a database without opening it; and in order to
open it you have to add it to your personal workspace if it
is not there already.1 Some databases may require a pass-
word. The commands that are needed in order to open a
particular database thus depend on both the database and
the state of the user’s workspace.

Once a database has been opened there are many dif-
ferent ways in which it can be viewed. The possible views
vary between databases, but typically include such op-
tions as by author, by category, by topic, or by

time created. Some databases have much more spe-
cialised views. Complex views are often arranged hierar-
chically: a database with information about the people in
a company, for example, may have views such as
Employee/by first name, Employee/by last

name, Employee/by group, Employee/by email,

Telephone numbers/by person and Telephone

numbers/by room. In such a database the information
about each employee would be represented as a separate
document.

It is common practice to have a database available that
lists all the databases on a particular network. Again, this
database catalogue can be viewed in several different
ways: by server, by path, or by title, for exam-
ple. Finding a document whose name and location are not
known often involves viewing the database catalogue in
various ways in order to find a likely looking database,
opening it, and looking through its various views for po-
tentially useful documents. The specific commands used
will vary according to the databases that are looked at and
the subject matter that is being sought.

Suppose that you are just starting a project involving
knowledge management, and want to find out what tech-
niques have been used in other projects in the company.
Your overall approach is likely to consist of finding a

1Regular Lotus Notes users will recognize that this description is somewhat
simplified.

32

From: AAAI Technical Report WS-97-09. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

likely database, looking at its contents through a number
of different views, and then browsing some of the docu-
ments in the database (if any of them look likely). You
may also follow some cross reference links to other
documents (possibly in other databases), before trying the
first step, of finding a likely database, again. The exact
details of your search cannot be predicted in advance,
although this overall outline is very stable across epi-
sodes. Moreover, there are a number of subtasks that are
often performed: adding a database to your workspace,
opening a database, choosing a way in which to view a
database, performing full text search on a document, and
so on. In fact, there are very few subtasks that are unique
to a particular set of circumstances, although the exact
key strokes used to perform them will indeed be unique.

Planning

A good working definition of planning is that it is the
construction of a set of actions that, if executed, will lead
to the achievement of a goal. Traditionally, planning in
AI has been based on three major assumptions about the
world:
Simple: the world is simple enough that the planner can

have complete knowledge of every thing in it;
Static: nothing changes in the world except through the

planner’s own actions;
Certain: all actions have entirely predictable, determinis-

tic outcomes.
Under these assumptions, it is possible to perform classi-
cal planning: construct a sequence of actions that is guar-
anteed to achieve the goal, given the initial conditions.
Executing a plan constructed in this way is a very simple
matter:, everything has been fully predicted, so there is
nothing to do but execute the actions, which are guaran-
teed to succeed.

There are very few domains in which these assumptions
hold true: mostly, the world is complex, dynamic, and un-
certain. It is impossible to have complete knowledge of
the world, there are other agents and exogenous events
changing it, and actions may have uncertain results. This
means that in most domains the classical planning para-
digm is not applicable as it stands. It is simply impossible
to construct a plan that is guaranteed to succeed and that
specifies the complete details of every action that must be
performed.

The Lotus Notes domain is one in which the classical
planning assumptions do not hold. The principal way in
which they fail is that the domain is complex; perfect
knowledge of the domain would mean having complete
information about all databases and all documents in
them. In addition, there is some dynamism, as other users
modify, add or delete databases and documents. In theory,
the domain is certain, in that actions are deterministic, but
in practice the complexity and dynamism lead to a per-
ception of uncertainty.

There have been a number of approaches to the prob-

(define-rap
(index (open-database ?database))
(succeed (open ?database))
(method

(context (in-workspace ?database))
(task-net

(tl (really-open ?database))))
(method

(context (and (not (in-workspace ?database))
(know-location ?database)))

(task-net
(tl (add-to-workspace ?database)

(in-workspace ?database) for t2)
(t2 (really-open ?database))))

(method
(context (not (know-location ?database)))
(task-net

(tl (find-location ?database)
(know-location ?database) for t2)

(t2 (add-to-workspace ?database)
(in-workspace ?database) for t3)

(t3 (really-open ?database))))

Figure 1: Part of a RAP to open a database

lem of constructing plans in real world domains, includ-
ing contingency planning (see, for example, [1,2,3]) and
decision theoretic planning (see, for example, [4,5]).
Other work has addressed the problem of how to execute
plans in these domains. The issues that arise during plan
execution include: specifying details of actions based on
the exact circumstances encountered, choosing alternative
courses of action, handling unexpected plan failure, and
recognising and taking advantage of opportunities [6,7,8].

Plan execution
An approach to plan execution that has proved productive
is one that uses a hierarchy of sketchy plans, expanded on
an as-needed basis. A sketchy plan is one that that pro-
vides an outline of the actions to be performed, without
specifying all the details. Systems based on this notion
include the RAPS system [6] and PARETO2 [7], both of
which use RAPS (Reactive Action Packages) to represent
plans. A RAP consists of a number of steps, each of which
expands into either another RAP or a primitive action.
Execution consists of expanding steps; the exact form the
expansion takes depends on the circumstances at the time
of expansion. If a step expands into a primitive action,
that action is performed. This execution model allows
details to remain unspecified until they are required in
order to decide exactly what to do. The instantiations of
the sketchy plans depend on the situations actually en-
countered during plan execution, thus reducing the need
for unreliable predictions.

Figure 1 shows a simple RAP that might be used in our

2 Planning and Acting in Realistic Environments by Thinking about Op-

portunities. The economist, sociologist and philosopher Vilfredo Pareto

(1848-1923) is best known for the notion of Pareto optimality and for the
Pareto distribution, neither of which is used in thel’ARETO system.

33

example domain. Each PaP has an index, which is used
to retrieve its definition from the PaP library. An index
may include variables, denoted by a beginning question
mark. The succeed clause specifies the conditions under
which the PaP may be considered to have succeeded. This
is necessary because simply performing a sequence of ac-
tions does not guarantee success in a dynamic environ-
ment. The RAP shown in Figure 1 has three methodS, or
different ways in which the task can be performed. The
context clause of each method specifies the circum-
stances in which it is appropriate. The context is
checked against PA_P~TO’S current world knowledge,
which has been gained through observation and feedback
from actions that have been performed. Each method
contains a ta~k-net, which specifies the actions to be
performed and the dependencies between them. The full
syntax of gAPs and the details of the execution algorithm
are given in [9].

Opportunities
An important aspect of plan execution in complex do-
mains is the handling of opportunities. If it is impossible
to foresee everything that might happen, which it is, you
have to be able to handle the unexpected. Unforeseen cir-
cumstances might have no effect on your goals, but they
might affect them either favourably, in which case there is
an opportunity, or adversely, in which case there is a
threat.

Opportunity recognition is complex in two ways. First,
there is an enormous number of elements in every situa-
tion that no agent can possibly predict. None of these
elements can be ruled out a priori as never being relevant
to any goal. Suppose, for example, that you have a goal to
open a can of paint. The objects in your garage include
your car, the shelves on the wall, engine oil, etc. Few of
these are relevant to your current goal, but they may be
relevant to other goals at other times. Second, there are
many subgoals involved in achieving a goal. For instance,
to pry the lid off the paint can you must find something
that is the right size and shape to act as a lever, a strong
rigid surface on which you can rest the can at a conven-
ient height, and so on.

The analysis of each situation element of a complex en-
vironment in the light of each of the agent’s many goals
would involve huge numbers of subgoals and situation
elements and would preclude a timely response to unfore-
seen situations. Moreover, such an analysis would require
the determination of each goal’s subgoals, thus demanding
the existence of a plan to achieve that goal. However, the
recognition of an opportunity may trigger a radical
change of plan or the construction of a plan for a hitherto
unplanned-for goal. PARETO Can recognise and take ad-
vantage of opportunities in these circumstances. It uses a
filtering mechanism that indicates those situations in
which there are likely to be opportunities and that will
therefore repay further analysis. For a detailed description
of this mechanism, see [10,7].

PARETO’S opportunity recognition mechanism relies on

reference features for its effectiveness. Reference features
represent the functional tendencies of elements in
PARETO’S world: for example, an object with the reference
feature sharp tends to cut soft objects, scratch harder
ones, burst membranes and sever taut strings. The term
sharp labels a collection of related effects. Knowledge
about causal effects is thus represented in PARETO by at-
taching reference features to objects in the world and to
its goals. PARETO uses this knowledge in its heuristic fil-
ters, without ever having to reason explicitly about the
associated causal effects.

The concept sharp is useful just because many com-
monly arising human goals involve structural integrity. If,
however, we lived in a world in which structural integrity
was unimportant, we might well not even have such a
concept, let alone find it useful. The reference features
that an agent finds useful depend on the tasks that it ha-
bitually performs. Agents performing different tasks in
the same world may attach completely different reference
features to objects in their environments. Properties that
are significant to one agent may be completely meaning-
less to another.

Plan execution in knowledge management

PARETO was originally developed in a simulated domain:
it managed a robot delivery truck in a world developed
using the TRUCKWORLD simulator [9,11,12]. Firby has
used a later version of the RAPS system from which
PARETO was developed to manage a mobile robot [13].
PARETO itself has been applied to two software domains:
environmental planning [14] and UNIX [15]. It is not espe-
cially difficult to write gaps for new domains; in fact,
they have provided a surprisingly natural framework
within which to analyse tasks. It is likely that the RAPS
framework would be equally suitable for a knowledge
management domain.

Advantages of a tool based on plan execution
The obvious question to ask at this stage of the discussion
is what the point of applying a plan execution system to a
knowledge management task would be. How would the
user gain? Why bother? There are several ways in which a
tool based on plan execution could make knowledge man-
agement tasks easier to perform. Before discussing these
advantages, however, we must consider the form that such
a tool would take. For reasons discussed in the following
section, ir is likely that it would not autonomously
perform knowledge management tasks but would instead
be a mixed-initiative tool: one that interacts with the user
as they jointly work towards the user’s goals. Ideally, the
level of autonomy in the tool would be adjustable to suit
the user’s wishes.

The tool would provide a structure within which to per-
form the task. Depending on the task in question, this
structure might provide an element of quality control in
the task; ensuring that certain necessary stages are passed

34

through, for example, or that items on a check-list are all
covered. Like many knowledge-based systems, the tool
would help novice users by supporting them as they per-
form the task. It could offer explanations of the decisions
taken in terms of the RAP-based task analysis. By adapting
itself to the user’s preferences and level of expertise, it
could gradually reduce the level of support offered as a
novice user became more competent.

In addition, the use of a tool based on a system such as
PARETO would enable the user to perform the task at a
more abstract level; the tool would essentially form an
interface between the user and the other systems being
used, such as Lotus Notes, allowing the user to ignore the
nitty gritty details of exactly how the Lotus Notes envi-
ronment works or the precise commands needed in order
to open a given database. It could in fact provide a trans-
parent interface to several different proprietary systems,
thus reducing or even eliminating the user’s learning
curve. It would do this by providing the user with execu-
table commands at a much higher level than "add this
icon to my workspace". Commands such as "open this
database" would be treated by the tool as goals to be ac-
complished through the use of sketchy plans. The sketchy
plans would then be expanded into the required low-level
commands.

Overall, the tool’s main contribution would be to re-
duce the effort required on the part of the user in per-
forming the routine parts of the task at hand, allowing
them to concentrate on the more interesting parts. In par-
ticular, as will be discussed in the next section, it would
allow the user to concentrate on the portions of the task
that require judgement and domain expertise.

Problems with plan execution systems
The previous section described some of the advantages
that would accrue through the use of a tool based on a
plan execution system. However, in order to capitalise on
these advantages the system must actually be built. There
are two main tasks in building a knowledge-based system;
choosing the architecture and representing the knowledge.
We have seen how an architecture based on the hierarchi-
cal expansion of sketchy plans could be used; we must
now consider the knowledge representation issues.

There are two types of knowledge that would have to
be represented: knowledge about the knowledge man-
agement task, which I shall term task knowledge, and
knowledge about the domain in which that task is being
performed, which I shall term domain knowledge.

Task knowledge is represented in the system in the raps
that are used to specify how tasks are to be performed.
This knowledge does not depend on the domain in which
the task is being performed; the methods used to find a
document in Lotus Notes, for example, do not depend on
the subject matter of the document. Rather, they depend
on the way in which Lotus Notes works.

Representing domain knowledge, on the other hand,
presents much more of a problem. The successful per-

formance of a knowledge management task such as using
Lotus Notes relies heavily on a great deal of information
about the contents of the documents, possible synonyms,
relationships between concepts, the fact that document
titles may be meaningful, etc. In order to build a system
that can assist in this task, we need to be able to represent
at least some of this knowledge. Of course, in attempting
to build a system to assist in the task rather than one to
perform the task autonomously we are not cutting our-
selves off from the enormous amount of knowledge that
the user can bring to bear on the problem; but in order for
the system to be of any use it must perform at least some
of the task itself.

There are two principal problems posed by the repre-
sentation of domain knowledge. First, what domain or do-
mains are we talking about? A useful tool should be able
to operate in many different knowledge domains. For
example, a tool that can help track down documents in
Lotus Notes would not be much use if it could only track
down documents on a single topic, or even if there were a
set of predefined topics. The type of tool under consid-
eration would be useful precisely because it would obvi-
ate the need for the comprehensive indexing of documents
in advance. Users would not be limited to queries that had
been anticipated by the authors of documents; the system
would help find documents in response to queries about
topics that may not even have existed when the docu-
ments were created. The difficulty here, then, is the scope
of the domain knowledge that would be required.

The second problem with domain knowledge concerns
how it should be represented. As usual, the criteria used to
judge the representation method should take account of
both how the knowledge is used by the system and how it
is acquired when the system is built. Ideally, the represen-
tation should facilitate the efficient operation of the
system and should be easy for the knowledge engineers
building the system to use. In PARETO, the domain knowl-
edge is used by the system to guide task execution by
choosing which sketchy plans to expand and how to ex-
pand them.

Figure 2 shows part of a RAP (the control information is
omitted) to find a document that is relevant to some topic
specified by the user. The domain knowledge is repre-
sented by such predicates as relevant-category and
relevant-name. Predicates such as these, used in RAP
definitions in such places as the success and context
clauses (and elsewhere), are used to guide task execution
according to PARETO’S beliefs about the world. To use
them, PARETO must be able to judge whether they apply in
the situation in which it finds itself. In other words, it
must be able to compare the actual state of the world,
which it discovers through interacting with it through in-
formation-gathering and other actions, with functional
requirements imposed by the goals it is pursuing. The
problem arises because of the necessity of translating
between the two very different natural characterisations
that arise.

35

(define-rap
(index (find-relevant-document ?topic

=> ?document))
(succeed (and (open ?database)

(contains ?database ?document)
(relevant ?topic ?document)))

(method
(context (and

(open ?database)
(contains ?database ?document)
(relevant-name ?topic ?document)))

(task-net
(tl (check-contents ?topic ?document))))

(method
(context

(and (open ?database)
(relevant-category ?topic ?category

?database)
(contains ?database ?document)
(category ?category ?document)))

(task-net
(tl (check-contents ?topic ?document))))

)

Figure 2: Part of a document-findin~AP

The first characterisation arises from the requirement to
guide task execution through consideration of the state of
the environment. PARETO must characterise the world in
terms of its perceptual features -- the features that it can
observe directly) For example, it might observe the pres-
ence or absence of particular words or phrases in a docu-
ment, or of particular views in a database.

The second characterisation arises through the require-
ment to guide task execution in order to achieve certain
goals, such as the discovery of a document that is relevant
to a particular topic. To meet this requirement, PAP, ETO
must characterise the world in terms of its functional fea-
tures -- features that affect goal achievement.

The trouble is that these two characterisations are not
usually the same. Translating between the two is a non-
trivial task that may require an arbitrary amount of rea-
soning using an arbitrary amount of domain knowledge. If
a tool based on a system such as pareto is to be effective,
it must run efficiently, which means that the reasoning
must be limited. Obviously, as machines get faster the
absolute level of reasoning that is possible without ad-
versely affecting performance increases, but the problem
remains. Moreover, it is exacerbated by the problem of
domain scope referred to above and the problem of
knowledge engineering. Is it possible to decide in advance
what knowledge should be represented in order to judge
relevance to arbitrary future queries?

An area of future work that may point towards a solu-
tion to this problem is the continued investigation of the
reference features that are used in PARETO’S opportunity
recognition mechanism. Reference features are intended
to provide a bridge between perceptual and functional
representations (see [9,16] for a discussion of this aspect

3 Obviously the term "perceptual" is used somewhat loosely here.

of them), and it may be possible to use them more gener-
ally than in the recognition of opportunities. Another ap-
proach might be to use some form of reinforcement
learning to allow the system to learn to associate func-
tional characteristics with perceptual features through user
feedback.

Although knowledge representation issues are the most
important problems that arise in the use of plan execution
systems for knowledge management tasks, they are not
the only ones. For instance, a potential advantage of the
use of such tools would be transparency: the user could
remain ignorant of the details of the particular proprietary
system being used to store the knowledge being managed.
However, this might be difficult to achieve in practice
because of the fairly high level constraints placed on task
performance by the architecture of the underlying system.
For example, Lotus Notes has a very different information
structure to the world wide web; although both have hy-
perlinks, embedded graphics and so on, Lotus Notes im-
poses a much more rigid framework.

Conclusion

In this paper I have argued that it will prove productive
to think of some aspects of knowledge management in
terms of plan execution. Moreover, the hierarchical ex-
pansion of sketchy plans, as used in the RAPs system and
its offshoot PARETO, provides a natural framework in
which to represent knowledge management tasks.

The big challenge is the representation of the world
knowledge. The challenge can be partially overcome by
abandoning the idea of an autonomous system in favour
of a mixed-initiative system, i.e., one that works interac-
tively with the user to accomplish its tasks. However, in
order for such a system to be useful it must not leave eve-
rything up to the user;, in particular, it must itself have
some world knowledge that allows it to judge potential
relevance.

References

1 Peot, Mark A and Smith, David E. 1992. Conditional
Nonlinear Planning. In Proceedings of the First Inter-
national Conference on Artificial Intelligence Plan-
ning Systems, 189-197. College Park, Maryland.

2 Goldman, Robert P and Boddy, Mark S. 1994. Condi-
tional Linear Planning. In Proceedings of the Second
International Conference on Artificial Intelligence
Planning Systems, 80-85. Chicago, IL.

3 Pryor, Louise and Collins, Gregg. 1996. Planning for
contingencies: A decision-based approach. Journal of
Artificial Intelligence Research 4:287-339.

4 Haddawy, Peter and Suwandi, Meliani. 1994.
Decision-theoretic refinement planning using inheri-
tance abstraction. In Proceedings of the Second Inter-
national Conference on Artificial Planning Systems,
266--271. Chicago, IL.

36

5 Kushmerick, Nicholas, Hanks, Steve and Weld,
Daniel. 1995. An Algorithm for Probabilistic Plan-
ning. Artificial Intelligence 76:239-286.

6 Firby, R James. 1989. Adaptive execution in complex
dynamic worlds. Technical Report YALEU/CSD/RR
672, Department of Computer Science, Yale.

7 Pryor, Louise. 1996. Opportunity recognition in com-
plex environments. In Proceedings of the Fourteenth
National Conference on Artificial Intelligence, 1147-
1152. Portland, OR.

8 Firby, R. James. 1996. Modularity Issues in Reactive
Planning. In Proceedings of the Third International
Conference on Artificial Intelligence Planning
Systems, 78-85. Edinburgh.

9 Pryor, Louise. 1994. Opportunities andPlanning in an
Unpredictable World. Technical Report 53, Institute
for the Learning Sciences, Northwestern University.

10 Pryor, Louise and Collins, Gregg. 1994. A unifying
framework for planning and execution. In Proceedings
of the Second International Conference on Artificial
Intelligence Planning Systems, 329-334. Chicago, IL.

11 Firby, R James and Hanks, Steve. 1987. The simulator
manual. Technical Report YALEU/CSD/RR 563, De-
partment of Computer Science, Yale University.

12 Hanks, Steve, Pollack, Martha E and Cohen, Paul R.
1993. Benchmarks, testbeds, controlled experimenta-
tion, and the design of agent architectures. AI Maga-
zine 14(4)" 17-42.

13 Firby, R James. 1994. Task networks for controlling
continuous processes. In Proceedings of the Second
International Conference on Artificial Intelligence
Planning Systems, 49-54. Chicago, IL.

14 Cheng, Boon Fooi. 1995. Plan Execution in an Envi-
ronmental Domain. MSc thesis, Department of Artifi-
cial Intelligence, University of Edinburgh.

15 Green, Shaw. 1996. Planning Actions in Dynamic En-
vironments: A UNIX Assistant. MSc thesis, Department
of Artificial Intelligence, University of Edinburgh.

16 Pryor, Louise. 1994. Perceptual and functional repre-
sentations: Bridging the gap. In Notes of the AISB
Workshop on Computational Models of Cognition and
Cognitive Functions, Leeds, AISB.

37

