
Multiagent Active Design Documents in Group Design

Adriana Santarosa Vivacqua and Ana Cristina B. Garcia

ADDLabs - Departamento de Ci~ncia da Computa~lo
Universidade Federal Fluminense - Pra~a do Valonguinho, s/n

Niter6i, RJ, 24210-030, BRAZIL

e-mail: avivacqua@ax.apc.org, bicharra@inf.puc-rio.br

Abstract
Design of engineering artifacts is a complex task, which is
usually taken up by a group of designers. Usually, the
problem is subdivided and distributed among them, and
they must work together, sharing information and decisions
so as to accomplish the final goal. The mere existence of a
common goal should make this a cooperative process.
However, the fact that designers have different tasks and
local goals hinders the cooperative process. In this paper we
discuss issues related to the incentive of cooperation and
coordination of designers working in a group. How can we
make designers cooperate among each other and how can
we make the whole design process more efficient? We have
created a collaborative design environment in which
designers work on their individual portions of the design
and share information among themselves. Cooperation is
encouraged by showing the designers each others’
rationales. The model has been implemented for the domain
of process plant design for off-shore oil platforms and is
currently being used by engineers at the Brazilian Oil
Company.

Introduction

Advances in communication technology have created the
necessary environment to allow people to work together. It
became possible to allocate expertise to develop a project
from people geographically apart, without moving them
from their own workplaces.

Group design; i. e., design projects developed by a
group of people, is a real domain example impacted by this
new technological setting. This activity is essentially
cooperative. Designers contribute with their own expertise
to a part of the whole, competing when conflicting local
optima occur, but yielding to reach a set of global goals.
Actually, these global goals are the ones that make them
share information, cooperate with each other and act as a
group.

Whenever a group of people is put together, conflicts
are bound to appear. Therefore, a control and coordination
structure is needed to ensure that the work gets done.

Copyright © American Association for Artificial Intelligence

(www.aaai.org). All rights reserved.

Moreover, a cooperative behavior stimulates conflict
resolution. Cooperation can be achieved through common
understanding of the issues impacting the whole and the
portions of a design.

In this paper we discuss the use of a Multiagent Active
Design Document System (MultiADD) applied to 
engineering group design domain: a process plant design
of offshore oil platform. Next, the issues on conflict
mitigation is discussed, followed a presentation of the
MultiADD architecture. Afterwards, an example from the
implemented version of MultiADD (ADDProc) illustrates
the way the system works. Finally, a comparison with
other multiagent systems is presented.

The conflict mitigation and coordination

problem

In our work we focus on conflict mitigation in cooperative
environments. Designers develop their work mainly
looking at their objectives, which may lead to conflicting
situations. However. there is a set of common goals
leading them to negotiate when conflicts occur.

In engineering domains, designers work in different
parts of a project that are later assembled together to form
the desired artifact. The existence of a common goal
should make it a cooperative process, however, that is not
always the case. As designers are evaluated by their
individual work, they tend to concentrate on their
individual parts, searching for their local optima and
overlooking the global optimum. However, this situation
can be reverted through understanding of each others
work. Design rationale sharing is a way to provide this
deeper comprehension.

The Cairo project at MIT [7], and Network-Hydra [11
are examples of work on group design support systems.
They provide an environment where people describe and
share their decisions’ rationale. Like in hypertext design
rationale tools, the users are responsible for describing and
recording their own rationales, which become available to
other participants. They are also responsible for retrieving
relevant information to their work.

38

From: AAAI Technical Report WS-97-09. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved. 



Technological Background

To create a collaborative design environment, we have
combined Active Design Documents (ADD) and
Multiagent Technologies. In this section we present ADD
and Multiagent Systems and in the next MultiADD, our
collaborative design environment.

ADD

The Active Design Document (ADD) model proposed 
Garcia [2] is an environment in which designers develop
and document a project. The documentation consists of
data and rationale able to fully explain a specific design
developed by a designer. As the project is developed, ADD
documents the project decisions, with little or no overhead
for the designer.

An ADD agent follows, records and criticizes the
designer’s actions in order to generate explanations for
them. It is able to generate expectations about designers’
decisions and whenever it cannot explain these decisions,
it asks the designer to change its domain knowledge base.
In this fashion, ADD’s domain model always reflects the
designer’s domain model.

The three macro elements contained in ADD’s
architecture are: interfaces, design knowledge base and
reasoning components. These are explained below. The
design process consists of proposing values for design
parameters, adjusting initial requirements and generating
more requirements or design parameters.

¯ interfaces: allow user interaction with the system.
Permits the user to and provide a solution for a case,
obtain a design explanation and change ADD’s model
(Design, Explanation and Knowledge Acquisition
Interface, respectively).
¯ design knowledge base: contains knowledge about
the domain, the decision making process and previous
cases. This information is the basis for creating ADD’s
decision expectation.
¯ reasoning components: the anticipator, reconciler,
knowledge elicitor, rationale generator and control are
responsible for generating design decisions and
comparing those with the designer’s, querying the user
for additional knowledge when needed, preparing
design reports, and controlling the documentation
process.

ADD uses an apprentice metaphor: whenever the
designer proposes a design action that differs from the
apprentice’s expectations, it will ask the designer for
justifications to explain the differences. Subsequent
queries for design rationale are answered using a
combination of the domain knowledge and the designer-
supplied justifications. It is important to notice that ADD
acts as an auxiliary and not as substitute to the designer,
with the designer still playing an important part in the

project. Even though efficient, ADD was developed to
assist a sole designer in a singular domain. To deal with
group design, we expanded ADD importing multiagent
technology.

Multiagent systems

In multiagent environments, various specialist systems
work together to reach a solution. To accomplish their
tasks, they need to interact and cooperate with each other.
They must exchange information and services [4] among
themselves. "Blackboard" and "Contract Net" architectures
[8] were conceived to deal with the communication
problems inherent to the environment. Our initial
implementation of the system is centralized and we intend
to decentralize it as a second step in our research.

As in any society, there is a need to identify each agent’s
group behavior (benevolent, malicious, cooperative and
competitive where some of the terms coined to refer to the
agent’s social behavior) [3] [6]. These items have been
studied in highly distributed environments where, usually,
the real intentions of the agents are unknown.

The likeliness that conflicts will appear increases with
the difference between objectives, tasks and knowledge.
Conflict identification and resolution is an important part
of multiagent systems. Our focus is on cooperative
multiagent systems, where human and computational
agents interact to reach a common goal. The instrument to
encourage cooperative behavior is the communication of
the rationale of the other agent when a conflict occurs.

Although much has already been studied, most researci~
in MAS deals with purely computational agents, without
the interference of external users. Our approach takes into
account the existence of the user (designer). We consider
an agent as being the tuple <assistant system, user>, which
we call a Design Team (we’ll come back to that later). 
has already been noted that the social interaction between
agents may also influence the resolution process of a
conflict [2]. This becomes particularly important in
environments such as ours, where the user is an active part
of the system.

MultiADD

One of the main issues when dealing with cooperative
work is conflict management. Because it involves a group
of people, there is a high propensity to conflict appearance.
Normally, these conflicts are discussed in group meetings,
which involve negotiations among designers. A study by
Olson [5] has shown mostly, design meetings are
consumed by clarification discussions, i. e., time is spert
justifying each others decisions. Besides, it is often the
case a quarrel due to missing information. Worse than
discussing the issue in a early stage, is to miss the issue

39



leading to a later rework. These timing issues is worsened
with time spent scheduling meetings and designers
listening to a great amount of irrelevant information. Any
group design assistant tool must to deal with the issues
summarized below:

¯ what to inform;
¯ when to inform;
¯ to whom to inform a piece of information; and
¯ how to assist coordination.

These issues are discussed in the following sections.

Design Teams

The domain models for each of the ADD agents is
represented by a parametric dependency net. The net is
particularly useful to us because we can extract
information from it for later use, track the designer’s work
and explain it when necessary.

In order to emphasize the human designer’s part in the
process, we have coined the term Design Team. A Design
Team is comprised of an ADD agent and a designer. The
human designer is important to us because he is the one
making the final decisions, solving the conflicts and
getting the design done. The ADD agent assists and
documents the process, but the designer has the last word
on everything being done. In this fashion, in a design team
the designer is a specialist on a particular discipline and
responsible for the design of one of the subsystems of the
process plant. The ADD agent is specifically built for the
discipline in hand.

Each ADD agent consists of a case base specific for a
discipline and a specialist system that works with the
designer’s and the case base’s values. An explanation is
generated for each parameter, in case the designer wishes
to refer to it (or another designer wishes to understand the
rationale of the first one). The knowledge acquisition
module is activated when the designer takes an action that
the ADD agent cannot understand or when he wishes to
alter the initial ADD agent’s model.

While working, the Design Team must interact with
other Design Teams working on the same project because
their domains are overlapping and more than one designer
may manipulate the same variable. Due to these
interactions, the Design Team gets involved in many
conflict situations (involving these common parameters).
Normally, the designers would meet to discuss their
differences. However, much time is spent in the scheduling
and meetings which needn’t be. Moreover, studies have
indicated that most of the meetings’ time is spent with
clarification, i.e. designers explaining their rationale to
each other.

By volunteering the information when its needed, while
the designers are working, we cut down on the number of
meetings and much of the time spent in them. By

providing the necessary information at the correct time, we
give designers the means to verify its impacts on the other
subsystems. In this way, they can evaluate their work as t
is being done, try different alternatives and seek to resolve
the conflicts as they appear.

Besides the domain knowledge, which is shared with the
group, each Design Team has information about itself
which is also distributed. This knowledge includes (but is
not limited to):

¯ domain complexity: represent the number of nodes
affected by a particular parameter
¯ decision introspection: number of alternative values
studied for the conflicting parameter
¯ design completeness: percentage of design already
done

This information is taken from each subsystem’s
parametric net and used to decide when is the best time to
send some information to a Design Team and what weight
the information of a particular Design Team carries. For
example, we assume that if a designer has worked
extensively on a parameter (high decision introspection),
worked for a long time or has a finished the greater part of
his design (high design completeness), it has given his
work reasonable thought and his opinions should carry
more weight than those of a Team which hasn’t worked as
much.

In order to share this information, there is a need for an
extra module, to take care of the communication issues
involved. Therefore, we created a module which we have
called controller to manage the information exchange
needs generated by the existence of a number of different
agents working together.This is presented in the next
section.

Controller

The Controller is a special module which can have one or
more Design Teams attached to it. figure a shows the
Design Team and its communication with the Controller.
It manages the information entering and leaving the
subsystems. Its main roles are to identify conflicts and
distribute information and orders among the agents.

The MultiADD system can either be centralized (having
only one controller module) or decentralized (having one
controller attached to each Design Team). the different
architectures indicate the agents’ hierarchical power and
depend on the information visibility (sometimes it might
be more advantageous to have groups of Design Team~
with certain common characteristics put together).

In the case of a centralized architecture, the Controller
receives Design Team requests from time to time (acting
upon request) and, in addition, it gathers information from
all the agents with which it is connected from time to time
(acts on a schedule). Besides that, it keeps track of the time

40



being spent on the project as a whole and by each Design
Team and gathers information necessary to project
coordination

Design Team

Dealg~De rt

Figure A: Design Team and Controller

The Controller has a global model (also represented by 
parametric net) of how the subsystems intersect, on which
it bases its decisions. In addition to the information sent by
the Design Team, the Controller uses the following
information:

¯ who are the players; i.e. which agents are involved in
each project
¯ which parameters have conflicting values
¯ domain intersection model: Design Teams affected
by each conflict information
¯ for how long (real time or in number of cycles) 
conflict has remained
¯ for how long each Design Team has participated each
conflict
¯ the project’s schedule
¯ the behavior of each Design Team related to the
overall conflicts. This information comes from the
observation of each Design Team’s behavior (which
designers try to negotiate when in conflict).

Based on this information and a set of heuristic rules
gathered from the application domain, the controller
defines:

1.What information to send;
2.When to send it;
3.To Whom to send it.
As it receives the values of the different Design Teams,

the controller determines which are in conflict (for each
conflict variable). These are potential receivers of conflict
information. After that, based on how much a parameter
affects a subsystem, how much work the Design Team has
already done and the conflict’s status (how long it has
persisted, how many Design Teams are involved, how
different are the proposed solutions), it decides to whom to
send the conflict information.

Based on what the designer is working on at the moment
(at what point in the parametric net he is), the influence 
the parameter over the net (especially over what has
already been done and might have to be redone if changes
occur), how much time has already been spent on this
particular conflict and how much is still left to the project’s
deadline, it decides when to inform a Design Team of a
conflict situation.

The contents of the conflict information might be: the
parameter values proposed by each Design Team and their
rationale explanations (which are automatically generated
by each ADD agent), plus notes or observations made by
the designer. Given the necessary understanding of each
other’s reasoning, the designers will act rationally and
spontaneously engage in a negotiation process, seeking to
find a solution to their problems.

In different situations, different types of conflict
information are given. The conflict information mal/
consist of:

1. A list of the Conflicting Parameters;
2. A list of the Conflicting Parameters, Values an,t

Agents;
3. A list of the Conflicting Parameters, Values and

Agents and Rationale.
At an initial moment, type 1 information is

communicated. As time passes, type 2 information is sent.
In deadlock cases or upon request, type 3 information is
provided, figure b presents the MultiADD model.

41



Incoming
Information

l Conflict State In Conflict

Blackboard conn, 
Information

Figure B: The MultiADD model

Design Telm

ADD Agent !a

 ,g°L
lSuggestior~

D Ign

Coordinator

A central part of any group activity is coordination.
Whenever a number of persons are put together, there is a
need for a certain amount of coordination. The parts need
to be put together in a coherent fashion and the designers
must work in an orderly way. To ensure the group will
attempt to the global optimum, a restricted budget and
schedule, coordination is necessary.

The Project Coordinator (PC) represents an individual 
a group of individuals responsible for overseeing the
whole project and assuring the deadlines and budgets.

Coordination may be effected by one sole individual
(centralized), by groups of individuals (by committees) 
by everyone (democratic). These different coordination
modes have the same information needs. It is a matter of
making the information visible to the right person at the
right moment (being non-intrusive without omission). 
the event of committees or democratic configurations,
there is a need for a discussion structure. The members of
this privileged group need to discuss to reach an agreement
regarding the conflict. Actions taken by the Coordinator
includes: suggest a value, impose a value or abstain from
it.

The Coordinator has access to the Controller
information through the Conflict Analysis Interface. He
acesses the Design Team explanations through the
Explanation Interfaces. Design Team rationale and
Conflict History provides the grounds for understanding
conflicts, consequently solving them. Since MultiADD
works in a ADD style, a suggestion to conflict resolution is
provided, although the underlying group behavior asks for
human creative action.

An example: ADDProc

In this section we present our first implementation of the
MultiADD model, ADDProc, dealing with the domain of
process plant design for offshore oil platforms. ADDProc
is an intelligent design tool (based on the ADD
architecture) for oil production processes, as described
below.

Process plant design for offshore oil platforms

Design of oil processing plants involves several specialists
in different domains. Each designer is in charge of one or
more disciplines for the same project. A typical process
plant contains 19 different subsystems including, Oil
Receiving, Oil Heating, Oil Separation, Oil Treatment, Oil
Transference, Gas Compression, Gas Treatment, and
Water Heating. Designers of each discipline select systems
and to achieve the final goal: the production of gas and oil.
Each project is coordinated by one more senior engineer,
who is responsible for handling conflicts that may emerge
from the individual subsystem’s design and guaranteeing
the deadlines.

The oil comes from the reservoir as a mixture of oil, gas
and water which needs to be separated and treated before
being exported. Each of the subsystems manipulates the
Flow, Pressure, Temperature and Composition of this gas,
water and oil mixture flowing through the platform.

As the oil flows through various subsystems, conflicts
will certainly appear. For instance, the oil comes from the
reservoir in a low temperature, which is generally not
sufficient to allow a good separation of oil, water and gas.
The oil heating subsystem designer is responsible for
selecting equipment to increase this temperature. Often the
cost-effective equipment selection provides a close final

42



temperature, but not the one required for the oil separation
system. The oil separation system designer, in turn, must
select production separators that will actually separate oil
from water and gas. The dimensions of this equipment are
a function of the time the petroleum will take to pass
through the equipment and its temperature. The higher the
temperature or bigger the equipment, the easier the
separation. However, minimum platform area is an overall
requirement, and this designer will try to reduce the
equipment’s length by increasing the temperature.

ADDProc

We implemented a centralized version of MultiADD,
where each of the subsystems is an independent Design
Team with its specific domain knowledge and designer.
There is one agent which is hierarchically superior to the
others, being responsible for the overall process plant
design and having the authority to solve any conflict (the
coordinator). One controller module takes care of the
communication among the agents, verifying when conflicts
happen and when they are resolved, and informing the
agents as necessary.

Expanding on the previous section’s example, suppose
that the controller has detected a conflict between the
Heating and Separation subsystems, over the oil
temperature parameter.

Upon receival of the above requests for update, the
controller verifies an inconsistency between the proposed
values for the oil temperature parameter. Consulting its
knowledge bases, it verifies that this parameter has been in
conflict for too long (heuristically inferred by the number
of cycles). In addition, this has a high impact on the
Separation system and the Separation designer’s work is
almost complete (90%). Moreover, the Separation designer
agrees with the formal ADD’s model, while the Heating
designer has imposed a value over ADD’s expected value.
Both are high credibility agents and hierarchically equal.
For these reasons, the controller will first send the conflict
information to the Heating system, trying to persuade the
designer to change the proposed value. If the conflict
persists for much longer, the controller contacts both
systems trying to persuade any of them. Finally, if they
still don’t reach an agreement, the controller contacts the
coordinator showing the conflict. It suggests the
Coordinator’s support to the Separation designer’s
solution.

Conclusions
Traditional approaches to MAS have considered only

the computational agent. We have emphasized the human

designer, taking a new approach and creating a "mixed"
system, where human and machine work together as one.
Thus, designers develop their work assisted by a
computational agent, in a cooperative design environment.
Therefore, design models are guaranteed consistency
within and among design pieces.

From the implemented system, we have already noted a
potential decrease on the number of design meetings and
design meeting duration. The ADD agents favor an
increase on the number of alternative designs tried and
more thorough evaluation of these alternatives. However,
we expect the greatest impact to be on the work cycle.
Time spent scheduling meetings or gathering information
can be drastically reduced from days to minutes.

References

[1] Fischer, Gerhard; Grudin, Jonathan & Lemke, Andreas
- Supporting Indirect Collaborative Design With
Integrated Knowledge-Based Design Environments -
Human Computer Interaction, 1992, Volume 7, pp281-
314

[2] Garcia, Ana Cristina B. & Howard, H.Craig - Active
Design Documents: From Information Archives to
Design Model Construction or Making Documents
Useful - AIENG, 93

[3] Jin, Yan; Levitt, Raymond; Christiansen, Tore &
Kunz, John - The Virtual Design Team: Modelling
Organizational Behavior of Concurrent Design Teams -
AIEDAM, 9, 145-158, 1995

[4] Oliveira, Eug6nio & Qiegang, Long - Towards a
Generic Monitor for Cooperation - Workshop on
Blackboard Systems of the AAAI, Anaheim, California;
1991

[5] Olson, Gary M; Olson, Judith S.; Carter, Mark R. &
Storrosten, Marianne - Small Group Design Meetings:
An Analysis of Collaboration - Human-Computer
Interaction, Volume 7, 1992

[6] Pefla-Mora, Feniosky, Sriram, Ram D. & Logcher,
Robert - Conflict Mitigation System for Collaborative
Engineering- AIEDAM, 9, 101-104, 1995

[7] Pefla-Mora, Feniosky & Hussein, Karim - Change
Negotiation Meetings in a Distributed Collaborative
Engineering Environment - Information Technology in
Civil and Structural Engineering Design, Scotland,
August 1996

[8] Wellman, Michael P. - A Computational Market
Model for Distributed Configuration Design -
AIEDAM, 9, 125-133, 1995

43




