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Abstract

We are interested in the problem of map con-
struction of an unknown environment. Even with
a complete map, navigation of real autonomous
mobile robots is still conducted with imperfect
information. This can be caused by various fac-
tors, such as imperfect sensors, imperfect me-
chanical control capabilities, and imperfect road
conditions. Computational resource constraints
for real time performance may also prevent us
from collecting and processing complete informa-
tion about the environment. A major problem
caused by these issues is that accummulated er-
rors in the robot’s self-localization may become
arbitrarily large as the robot moves on. There-
fore, in addition to the map, we would still need
a strategy to help robots recognize the environ-
ment along the way and to guide movements to-
ward the destination. This is called the guidance
problem by Levitt and Lawton (Levitt & Lawton
1990).
We discuss an approach for the guidance prob-
lem using imprecise data, in the context of world
models that are represented by maps with quali-
tative/topological information for the global en-
vironment, and quantitative/geometric informa-
tion for the local environment, as suggested by
Levitt and Lawton (Levitt & Lawton 1990),
Kuipers and Levitt (Kuipers & Levitt 1988).
We allow the robot to be equipped with a con-
stant number of sensors. We consider three cost
measures: mechanical, sensing, and computation
in decreasing order of importance. We propose a
number of algorithms with their associated cost
measures using a veriety of sensor/measurement
devices.

Īntroduction
Navigation and mapping of autonomous mobile robots
involve a modelling problem and a strategy design
problem. First of all, we would need a model to de-
scribe the environment where mobile robots operate.
This model allows us to build a map which takes into
consideration the necessary information for a robot to

recognize its location through its sensors, to match its
observations of the environment with its map, and to
keep track of its movement toward the goal. To effi-
ciently build this map, we need to design a strategy
for the robot to make decisions on what kind of ob-
servations to make and where to move next for more
information. Even to navigate from one location to
another with the help of a map, the robot would have
to rely on its observations on the environment to ma-
neuver between obstacles and to locate itself on the
map.

With many possible models for an environment, two
extreme cases (both with some drawbacks) are widely
accepted: the graph model and the geometric model.
The graph model abstracts away metric information of
the environment and retains only topological informa-
tion. It represents important locations as nodes and
routes between them as edges. The robot can move
from one node to another through an edge between
them (Deng & Papadimitriou 1990). The geomet-
ric model records all the necessary geometric details
of the environment where the robot operates (Canny
& Reif 1987; Deng, Kameda, & Papadimitriou 1991;
Guibas, Motwani, & Raghavan 1992).

Even with the world model fixed, different robot per-
ceptual abilities can still make a difference. A robot
with the power of unambiguously recognizing each in-
dividual node will see the world differently from one
with more limited recognition power, for example abil-
ity to only recognize some property of the nodes. For
example, Rivest and Schapire consider a graph world
where nodes are divided into a small number of classes,
for example, white and black colours, and can only be
recognized as such (Rivest & Schapire 1989).

The computational power of the robot is also im-
portant. Blum and Hewitt consider a robot with the
power of an automaton (Blum & Hewitt 1967). While
a single automaton cannot search all mazes (Budach
1978), this is possible with two automata (Blum 
Kozen 1978). In experimental mobile robotics (Cox 
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Wilfong 1990), robots typically are Turing-equivaient
(carrying general purpose computers on board).

Some models allow the robot to carry pebbles to
distinguish a location from another. Blum and Kozen
show that two pebbles would be enough to aid one
automaton to search a maze (Blum & Kozen 1978).
Deng and Mirzaian consider a robot which recognizes
its own footprints but cannot distinguish/erase foot-
prints (Deng & Mirzalan 1996).

More comprehensive world models, suggested by
Levitt and Lawton (Levitt & Lawton 1990), Kuipers
and Levitt (Kuipers & Levitt 1988), consider a cog-
nitive map which provides qualitative/topological in-
formation for the global environment, and quantita-
tive/geometric information for the local environment.
Dudek et al. discuss a topological graph world model
for which the incident edges at each node are circularly
ordered (Dudek et al. 1991).

In line with the approach suggested by the world
models of Levitt and Lawton (Levitt & Lawton 1990),
Kuipers and Levitt (Kuipers & Levitt 1988), we may
assume two distinguished modes for robots: station-
ary and moving. In the stationary mode, the robot can
make precise measurement of the local environment us-
ing its sensors. In the moving mode, only qualitative
changes in the environment can be observed. To avoid
cumulative error in its self-localization, we require that
the robot be able to infer precise geometric information
about the environment only from a constant number
(independent of the input size or complexity of the
environment) of data items collected from various lo-
cations. For example, we will not use the sum of n
data items in the algorithm for the guidance problem
where n is the number of objects in the environment.

We consider several different sensors: compass to
find absolute orientation, ray generator to point to a
specific object, sonar or laser to measure distance to
an object, rotating camera or laser to measure angles
defined by pairs of point objects and the robot. We are
interested in the minimal set of sensors which allow us
to solve the guidance problem. Again, we only allow
the robot to carry a constant number (independent of
the input size of the environment) of various sensors.

This guidance problem can be divided into the fol-
lowing parts:

¯ the model of the map for robot navigation with a set
of sensors for the map construction strategy.

¯ the strategy, for robot navigation from one location
to another, which directs its manuevering between
the obstacles.

¯ the observations its sensors should make to keep it
on the planned track.

We want to solve the guidance problem while min-
imizing mechanical movement cost and measurement
cost. In many cases, we make much more measure-
ments than movements.

In Section 2, we discuss the world model and our
approach in more detail. To illustrate our approach,
we consider the physical enviroment to he a two di-
mensional plane with point objects. We show how to
solve the guidance problem with several sets of sensors
in Section 3. We also discuss how some of the solutions
can be extended to higher dimensions. In Section 4, we
discuss how to solve the guidance problem assuming
even weaker sensing equipment, which can only deter-
mine the relative order of objects instead of measuring
exact angles. We conclude our work in Section 5 with
a discussion of future directions.

The World Model
Mobile robots may operate with imperfect sensors and
imperfect mechanical control capabilities, as well aa
under imperfect road conditions. A result of these
imperfections is that, for robots operating on a large
scale space, small errors can accumulate to the extent
that robots get lost. This cannot be completely re-
solved by improvements on these factors. Several dif-
ferent approaches are suggested to deal with situations
where errors may occur, including approximate solu-
tions, qualitative maps, and multi-level representation
of the environment. (see, for example, (Brooks 1987;
Kuipers & Byun 1991; Levitt & Lawton 1990; Teller
1992) ).

A principle for resolving this problem, as suggested
in the work of Levitt and Lawton (Levitt & Lawton
1990), Kuipers and Levitt (Kuipers & Levitt 1988), 
to use easily recognizable features of the environment
to define a global qualitative map. This global map
can be built with features that can be precisely mea-
sured locally. We may view the graph world model of
Dudek et al. (Dudek et al. 1991) as an example of this
principle. In this model, nodes represent places in the
environment important to the robot, and edges rep-
resent routes connecting these places. Furthermore,
locally at each node, its incident edges are cyclically
ordered. The robot can observe the cyclic order of the
edges incident to a node only when it arrives at this
node.

For the guidance problem, the first question is how
to build this map; the second question is how a robot
can use the map to navigate in its environment. Dudek
et al. describe a method for building the map using one
portable and recognizable token, which can be dropped
and picked up at nodes of the graph. Once the map is
built, and the position of the robot in the environment
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is labelled in the map together with its orientation (i.e.,
an edge at this node is matched to a road at this place
the robot is located), the token is no longer needed and
the robot can navigate between any two nodes of the
environment with the help of the map. A drawback of
the graph-based model in a real environment is that it
is not always straightforward to define what a node is
in a robust way.

Our general approach is to consider a more realistic
geometric setting where objects are located at arbi-
trary positions in space. We assume that the error for
one sensory datum is a constant independent of the
input size or complexity of the environment and so is
our tolerance for accumulative errors. Therefore, to
deal with the problem of accumulative errors, we allow
mathematical operations only on a constant number
of data items observed by the robot on different loca-
tions. We consider a point robot, though the general
principle discussed in this paper would remain valid
no matter what is the geometric shape of the robot.
In practical problems, one would equip the robot with
whatever sensors would solve the guidance problem as
long as it is economically feasible. Therefore, we don’t
fix the sensor equipment for the robot in our discus-
sion. Instead, we present the problem and ask what
is the best set of sensors which can help us to solve
it. We are interested in a robot which can carry only a
constant number of sensors and would like to minimize
the number of sensors.

We assume two distinguished modes for robots: sta-
tionary and moving, and introduce the following guide-
lines for the measurement a robot can make during
each of these modes.

1. In the stationary mode, the robot can make precise
measurements of the environment using its sensor.

2. In the moving mode, only qualitative changes can be
observed.

This requirement makes explicit the fact that mea-
surements can typically be made much more precise
when the robot is stationary than in motion. More-
over, it takes time to analyze the data collected by
sensors, so the robot may not be able to process the
information quickly enough to respond to changes in
the environment in real time. For example, in the sta-
tionary mode, with a rotating camera, we may measure
angles between two landmarks; and we can measure
distance of the robot from one landmark using laser or
sonar. In the moving mode, however, the robot can do
much less. The rotating camera can only keep track
of the relative order of two landmarks. Laser or sonar
can only tell the robot whether it is moving away from
or toward a given landmark. A rotating camera can

track the landmark it pointed at when it was last in
stationary mode.

Three different types of cost may affect the perfor-
mance of the robot: mechanica/ cost, measurement
cost, and computational cost. They are usually of
different orders of magnitude. Thus, we would like
to obtain algorithms which minimize the vector (me-
chanical cost, measurement cost, computational cost)
lexicographically. There are different metrics for these
costs. For simplicity, we consider counting the num-
ber of stops the robot makes as the mechanical cost,
the number of angle measurements or distance mea-
surements as the measurement cost, and the number
of basic arithemetic/logic operations as the computa-
tional cost.

Two dimensional Space with Point
Objects

We consider an environment of n indistinguishable
point objects in 2-dimensional space and the robot is
located at an arbitrary point initially. Suppose the
robot has a point object tracking sensor, that gives
the robot the following abilities. In stationary mode,
the robot can make precise measurements of angles be-
tween rays starting at the robot and pointing towards
two arbitrary point objects. In moving mode, the robot
can keep the sensor fixated on an point object, and it
can count the number of point objects crossing (from
left/right) the line segment between the robot and the
object, or ensure no point objects cross this line seg-
ment.

First, we notice that the robot can always move to an
object on the convex hull of these point objects. The
idea is as follows 1. From the initial object, there are
n- 1 rays to the remaining n- 1 objects. The robot can
make a circular scan with its object tracking sensor and
measure the angles formed by each pair of consecutive
rays. Since the angle measurement is precise, and all
angles are obtained at the same robot location, we can
find the maximum angle of these n - 1 angles. (This is
a function of n- 1 data items but collected at the same
location. This would not be allowed if the data items
were collected on n- 1 different locations.) Now choose
one object which delimits this maximum angle, point
the object tracking sensor to it and move to this object.
Continue the above operation until the maximum angle
from the current robot position is greater than > 180°.

This implies that an object on the convex hull has been
reached.

Second, once the robot reaches one object on the
convex hull, it can move in a clockwise order to all
the objects on the convex hull by moving each time to
the point delimiting the > 180° angle that was not the
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Figure 1: A robot can move to the convex hull of a
set of points by repeating the following: first mea-
sure the angles between successive rays to points, and
then move to a point that belongs to the largest angle.
Point objects" are denoted by circles. Rays are shown
from the current robot position. The robot itself is
not shown. The largest angle between successive rays
is shown. When it becomes greater than 180 degrees,
the robot is on the convex hull.

previous robot position. Theoretically, the robot can
know when it has come back to the starting object on
the convex hull by adding up the external angles until
the sum is 360°. However, in our model this is not
allowed in order to avoid accumulative errors (these
data items are collected in different locations.)

Finally, we should notice that a single object track-
ing sensor is not enough for the robot to construct a
complete map. As a simple example, suppose we have
aa three objects at the vertices of an equilateral tri-
angle and another object at its center. If we start at
the center, there is no way to unambiguously match
objects we see in the environment with those in the
map. Even if we start at a boundary point and name
objects from the object we start with, we may get lost
if we ever move to the center.

Lemma 0.1 The robot can move to a point object on
the convex hull with a single point object tracking sen-
sor in O(n) moves and O(n2) angle measurements.
However, in the presence of symmetries, there are sit-
uations the robot may get lost when interior objects
exist.

The guidance problem would be easy if we allowed
an unbounded number of point object tracking sensors
on the robot. If the robot has n - 1 sensors, it can
point each sensor to a different object while moving
from one point to another. Two consecutive rays may
switch their positions during the movement and the or-
der of it depends on the movement path. Of course, the
circular permutation of these rays gives the view of the
robot at destination. However, for the robot to carry
a number of sensors proportional to the number of ob-
jects in the environment is not realistic. Therefore, we
look for different approaches to help the robot solve
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Figure 2: In the left part, angle at is associated with
object i. In the right part, angle at is used to identify
object i by counting the objects above the line through
object i at angle ai with respect to north. Object 0 is
the reference object, i.e. the one with the smailestx
coordinate.

the guidance problem with a fixed number of sensors.
In summary, we will use point objects on the con-

vex hull as landmarks for robot navigation. Thus, we
would construct a map which gives a name to each
point object. At each point object on the convex hull,
we have a circular permutation of all the point objects
in the map which corresponds to the clockwise order
they come into view. The circular permutation will be
broken into a permutation in different ways according
to the different sensors or landmarks we use.

The Power of an Extra Compass

Consider a coordinate system where the y axis points
North. With the compass, we can move to the point
with the smallest z-coordinate by testing that the
north direction is tangent to the convex hull at this
point in the clockwise direction. We may name this
object as 0. While stationary at object 0, we may
name other objects in the order they are met during
a clockwise scan from the north direction 2. Each ob-
ject i is associated with an angle at formed by the ray
from 0 to i and the ray towards north (assuming no
accidental alignments of objects). The number of ob-
jects in the unbounded sector between the ray towards
north and the ray from 0 to i is i - 1. Therefore, at
point object i in the environment, we can figure out its
name, as defined above, by drawing the straight line
which forms an angle a~ with the North, and count
that the number of objects bounded toward the North
by this straight line is i - 1. These operations are al-
lowed since we only compare data collected from two
different locations.

The above observation allows the robot to know the
name of each object by making the above measure-
ments once reaching the object. Starting at each object
i, with the use of the compass and the above test, the
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robot can visit other objects and obtain their names
in a clockwise order starting from the North direction.
This results in a permutation of all other objects for
the rays going out of object i. For example, the permu-
tation associated with object 3 in 2 is 12450. Thus, our
map is a complete directed graph such that each node
is associated with a permutation of all other nodes
which correspond to the rays from this object toward
other objects in the clockwise order (starting from the
North). To navigate from one object to another, the
robot can check the permutation of the initial node to
find the position of the other node, and make a clock-
wise scan from the North (using the compass) until the
position of the other node is reached and move toward
it.

The Use of Lighthouses
We comment that a similar map can be constructed by
using two lighthouses with different colours of lights.
Similar to the use of compass, the position of an object
is uniquely determined by the angle between the two
rays from this object to the lighthouses (excluding the
accidental case where an object lies on the circle de-
fined by the two lighthouses and another object). The
robot can position itself on any object on the convex
hull and name other objects by its clockwise scan of
them, starting from one of the lighthouses. Then, it
can measure the angle formed by the two rays toward
the lighthouses from any object, moving to them one
by one. Notice that the robot can always move back
to this initial object by first moving to one of the light-
houses. After that, the algorithm will be the same as
the above except that the robot uses the angle with the
lighthouses instead of the angle with the North when
using a compass.

The use of object-tracking sensors
The above solutions use a set of globally available ref-
erences -- in the former, the compass which always
points to North, in the latter, the lighthouses which
are visible from anywhere. Can we construct the map
and solve the guidance problem without such external
help? One such solution is to use point object tracking
sensors which allow the robot to walk along a straight
line segment from one object to another object and to
know where it comes from when reaching the destina-
tion. This can be achieved as follows, use one sensor
to point to the destination and another to the object
it comes from (the source). One may argue that the
robot would not be able to always walk straight in our
model. However, since the robot can keep track of the
source object and the destination object while moving,
it acts as if it has been moving on a straight line once
it reaches the destination. In practice, this would be

implemented by a local control strategy that keeps the
robot along the line segment between the source and
the destination with good approximation.

Again, the robot first moves to an object on the
convex hull and names it as object 0. We name other
objects based on a clockwise enumeration of the rays
from object 0 toward them, starting at one ray that
forms the > 180° angle and ending at the other. If
the robot uses three sensors, it can always keep one
pointed to object 0 and the other two to maintain the
source object and the destination object. So object i
is uniquely defined as follows: the number of objects
bounded away from the line passing through the ray 0i
in its counterclockwise direction is i - 1. The solution
for constructing the map will be similar to that of usin~
compass. The only difference will be in the rule for
deciding the name of an object once the robot reaches
it. To navigate from one object to another, the robot
will again maintain a sensor pointed to object 0 to
maintain knowledge of its orientation at all times.

Even though there is no extenal fixed reference here,
the extra ray pointed to object 0 effectively creates a
global reference object for the robot.

Extension to Higher Dimensions

The use of lighthouses can be naturally extended to
higher dimensions by introducing one extra lighthouse
for each additional dimension. Similarly, when we have
several sensors, we maintain a reference to a set of fixed
objects. The use of compass is usually restricted to the
earthly two dimensional space. However, we may be
able to obtain a fixed orientation at each point in space
using different physical principles.

Robot with Qualitative Measure of
Angles

In this section, we make an even weaker assumption
that measurements of angles are also qualitative even
when the robot is in the stationary mode. That is, the
robot cannot measure exact angles but only the relative
order of the objects as they are seen in a circular scan
anchored at the robot’s position. However, the robot
can still decide whether an angle is greater than 180°

or not. Exact angle measurement would incur more
cost than simply counting the number of objects in a
circular scan or deciding that an angle is > 180°.

With this capability, we can still decide whether the
object the robot is currently positioned at a convex
hull point or not.

We consider a solution using also three point ob-
ject tracking sensors Rs, Rd and Rr (for tracking the
source, destination and a reference point respectively).
Similar results can be obtained if we use lighthouses
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or a compass to substitute for some of these object
tracking sensors. As noted above, with the two object
tracking sensors R, and Rd, the robot can walk along a
topologically straight line segment between two point
objects and hence remember the source point when
reaching the destination. The following sketches the
major steps to map the environment.

Step 1: Move to a convex hull point and name it
object 0. This first step can no longer be done as before
since we cannot decide which angle is the largest unless
it is > 180°. Instead, we find a line passing through
the current object which minimizes the total number of
objects on one side. Move to one object in the side with
the fewer objects and continue until reaching an object
on the convex hull which can be tested by finding an
angle > 180°. From now one we always let one of the
three sensors lock on object 0.

Step 2: Order other points clockwise: Vol, v02, ".,
v0,n-l, where the first and the last are the two convex
hull neighbors of object 0 (they make angle > 180°

around object 0). For the sake of simplifying notation,
we will let i denote v0~.

Step 3: For each i, 1 < i < n - 1, compute the map
representation of object i as follows 3. Standing at
object i, let vii, 1 < j <_ n - 1, denote the j-th object
clockwise around i, with vii - 0. To establish the
map, we have to find the value k such that vii - voh.
Starting from object i we move towards j while keeping
the sensor Ro locked on i, Rd locked on j, and /~
locked on 0. From j we start moving towards 0, while
keeping Rs locked on j, Rd locked on 0, and P~ locked
on i. When at 0, using the fact that Rs is still pointing
to j, we can scan and count counterclockwise from the
ray 0"~ until vol. This count is k (i.e., v~j - vok).
Using the sensors, we can come back to object i.
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From the above description we formulate the follow-
ing theorem.

Theorem 0.2 With no precise angle measurements,
robots with the ability (perhaps with the use of some
sensors) to emulate moving on straight lines, measure
180° and circularly order rays from their current po-
sition, can establish the map of n point objects with
O(n2) moves and O(n2) acans as well as O(n2) com-
putations.

Discussion and Remarks
We have shown an approach for the guidance prob-
lem using imprecise data, following the world models

reference

< source
<3 destination

Figure 3: In the top part, the robot R moves from i to
j while fixating on ij, and 0. In the middle part, the
robot moves from j to 0, while fixating on ij, and 0. In
the bottom part, the robot identifies the map represen-
tation for j by enumerating the objects swept clockwise
by a ray starting just before ray ~ and stopping just
before ray b’~. Object 0 is the reference object.
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which provide maps with qualitative/topological in-
formation for the global environment, and quantita-
tive/geometric information for the local environment.
To illustrate our approach, we have considered the
physical enviroment to be a two dimensional plane
with point objects. We show how to solve the guidance
problem with several sets of sensors. We are currentlly
working on extending our approach when the objects
are arbitrary and pairwise disjoint convex sets in the
plane.

References

Blum, M., and Hewitt, C. 1967. Automata on a
two dimensional tape. In Proc. 8th IEEE Con]. on
Switching and Automata Theory, 155-160.

Blum, M., and Kozen, D. 1978. On the power of
compass. In FOGS, 132-142.

Brooks, R. 1987. Visual Map Making for a Mo-
bile Robot, volume 13. Readings in Computer Vision,
edited by M. A. Fischler and O. Firschein, Morgan
Kaufmann Pub., Inc., Los Altos, California.

Budach, L. 1978. Automata and labyrinths. Math.
Nachrichten 86:195-282.

Canny, J., and Reif, J. 1987. New lower bound tech-
niques for robot motion planning problems. In FOGS,
49-60.

Cox, I., and Wilfong, G. 1990. Autonomous Robot
Vehicles. Springer Verlag, New York.

Dens, X., and Mirzalan, A. 1996. Competitive robot
mapping with homogeneous markers. IEEE Trans.
on Robotics and Automation 12:532-542.

Dens, X., and Papadimitriou, C. 1990. Exploring an
unknown graph. In FOGS, 355-361.

Deng, X.; Kameda, T.; and Papadimitriou, C. 1991.
How to learn an unknown environment. In FOGS,
298-303.

Dudek, G.; Jenkin, M.; Milios, E.; and Wilkes, D.
1991. Robotic exploration as graph construction.
IEEE Trans. on Robotics and Automation 7:859-865.

Guibas, L.; Motwani, R.; and Raghavan, P. 1992.
The robot localization problem in two dimensions. In
SODA 92, 259-268.

Kuipers, B., and Byun, Y. 1991. A robot exploration
and mapping strategy based on a semantic hierarchy
of spatial representations. Robotics and Autonomous
Systems 8:47-63.

Kuipers, B., and Levitt, T. S. 1988. Navigation and
mapping in large scale space. AI Magazine 9(2):25-
43.

Levitt, T., and Lawton, D. T. 1990. Qualitative
navigation for mobile robots. Artificial Intelligence
44:305-360.

Rivest, R., and Schapire, R. 1989. Inference of finite
automata using homing sequences. In STOC, 411-
420.

Teller, S. 1992. Visibility computations in densely
occluded polyhedral environments.

21




