
New Strategies in Learning Real Time Heuristic Search

Stefan Edelkamp *, Jiirgen Eckerle *

Abstract

In contrast to off-line search algorithms such as A° and
IDA’, in real-time heuristic search we have to commit
a move within a limited search horizon or time. One
well known algorithm in this class is RTA’.
An algorithm is said to learn if it improves its per-
formance over successive problem trials. In RTA"
the heuristic estimation is in general not admissible.
Thus RTA° has to be modified to a variant LRTA"
that is capable of learning. The aim of the strategies
proposed in this paper is to improve the estimations
found in LRTA’. First, we examine two new schemas
forward updating and backward updating for LRTA*.
Then we propose CRTA" which works similar to RTA*
but terminates with admissible heuristic values. It is
shown that the strategy used in CRTA* can be made
efficiently. Combined with lazy evaluation updating
CRTA* leads to an improved real time learning algo-
rithm called SLRTA’. Experimentally we show that
CRTA* expands significantly less nodes than LRTA"
and thus converges faster to the optimal values.

Introduction and Background

State space search problems are defined by a set of
states Q, a transition function ~ : Q -~ Q, an initial
state s and a set of goal states F C Q. A path from
s to g E F is called a solution path. Usually a weight
w for each state transition is given and the task is to
find the solution path with minimal weight. The state
space can be represented by a weighted graph G =
(V,E,w), in which the shortest path has to be found.
We may assume that G is undirected, i.e., (v,u) E
and w(u, v) = w(v, hold foreach(u, v) E

Heuristic search takes advantage of a estimation
function h for the shortest path h* to a goal state. The
heuristic is admissible or optimistic if the estimate is
a lower bound that is h(u) <_ h*(u) for all u E V. The
heuristic estimation should be inexpensive to compute
and is used to focus the search into the direction of F.

" Institut fiir Informatik, Albert-Ludwigs-Universit~it,
Am Flughafen 17, D-79110 Freiburg eMail:
{edelkamp,eckerle} ~informatik.uni-freiburg.de

There are two different groups of heuristic search
algorithms. Off-line algorithms such as A° (Hart et
al. (1968)) and IDA* (Korf (1985)) examine various
paths to the goal nodes before they follow the best one
whereas on-line or real-time algorithm have to commit
one move even if no goal node has been found. This
move can never be went back on. Thus real-time search
may decide to move to a node that is not on the optimal
solution path. Real time heuristic search can be used
for navigating a robot in a set of rooms. The robot
itself has no memory but he can read and write signs
in each room. His task is to find one of the goal rooms.
The signs may inform the robot about the length of
the solution path providing data like lower and upper
bounds.

The efficiency of the search in successive trials may
be improved since the real-time algorithm can use the
new heuristic information at the nodes in the search
tree. In some learning algorithms such as LRTA° (Korf
(1990)) these values converge eventually to the optimal
ones. The quality of the learning strategy reflects how
fast the optimal values can be achieved and how many
nodes have to be expanded in each trial.

The paper is organized as follows. First we review
backward search, which is a fast off-line algorithm to
find the optimal distances from each node to the set
of goals. Then we describe the algorithm RTA° and
present results found by Korf (1990). After that the
learning variant LRTA* of RTA° is described by a
slight modification to obtain an admissible heuristic
at each node and the new strategies forward updating
and backward updating are introduced. Then we con-
sider two new algorithms CRTA*and SLRTA°, which
are based on signs at each node in each direction. The
signs can be compared to road signs for the robot, pro-
viding the minimal distance he has at least to cover.
The crucial fact is that the minimum of all sign infor-
mation leads to an admissible heuristic. The idea of
CRTA° is to obtain these values in a backward traver-
sal of the solution path correcting wrong estimates. We

3O

From: AAAI Technical Report WS-97-10. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

show that if the problem graph is a tree then this strat-
egy can be done efficiently. Moreover, if the search tree
is balanced we achieve an updating time of O(logn)
with n being the number of generated nodes. In the
variant SLRTA* of CRTA* we postpone the calcula-
tion of the minimum until the time when the node is
revisited. Last but not least we present experimental
results, draw conclusions and outline some questions
for further research.

Backward Search
A state space can be searched from the initial state
to the set of goal states, applying operators forward.
Alternatively, the state space search can be directed
from the goal states to the initial state applying the
operators in reverse. Note that in bidirectional search,
backward and forward search are carried out concur-
rently.

There are simple algorithms to determine the short-
est path from each node to the set of goal nodes in the
explicit representation of the problem graph G. Let
be the number of nodes in the search space. First of
all we can solve the all pair shortest path problem by
reinvoking Dijkstra’s shortest path algorithm (1957)
for every non-goal node. Using Fibonacci heaps we
achieve an amortized time of O(n(e + logn)), wi th e
being the number of edges in G (Cormen, Leiserson and
Rivest (1993)). Note, that a heuristic simply reweights
the problem graph and that a consistent heuristic leads
to a positive weighting. When we assume a small num-
ber g of goal nodes, we can do even better. We simply
use backward search, invoke Dijkstra from the set of
goal nodes and get a time bound of O(g(e + logn)).
The distance of one node to the set of goal nodes F is
the minimum of the shortest path values for all g E F.

The most efficient approach (with amortized time of
O(e + nlogn)) to find all shortest path values to
set F is to put all goal nodes in the priority queue
at once and to calculate the distances f to the set F
dynamically. If u is the expanded node and r(u) the
set of successors in the backward search we apply the
optimality equation f(v) = min{f(u) w(u, v) f(v)
to each v E r(u). After having executed all iterations.
f(v) represents the shortest path from v to F. We
conclude that learning shortest path values in state
space search is simple when no real-time constraints
are given.

Real Time A*
Real time A* or RTA* has been developed by Korf
(1990). When expanding u to generate the set of suc-
cessors F(u), the following two steps are carried out
successively until a goal node has been found:

h=k h=0 h=0 h=k
---@-----@

Figure 1: An example for the ping-pong effect.

1. The heuristic value h(u) is set to the second best
value of h(v) + w(u,v) of all v e F(u). If there
none, h is set to infinity.

2. The algorithm commits the move to v* that has the
best value h(v) + w(u, of all v E r(u)

Korf (1990) has proven that RTA* acts locally op-

timal on trees. In addition, he showed that RTA° is
complete, i.e. it finds a solution path if one exists.
The bad news on RTA* are detected when a goal is
found such that the algorithm terminates. Some ex-
panded nodes u may overestimate the distance to a
goal, h* (u) for short, since their h-value are still set
the second best value of h(v) + w(u, of all v ¯ F(u)
But a reinvocation of the algorithm is only possible if
the improved h-values are admissible such that RTA°

has to be modified.

Learning Real Time A* with Updating
If we invoke an algorithm several times, thereby im-
proving the quality of the solution over time, then we
say the algorithm learns. In our case we want to learn
the heuristic function. One iteration in learning real
time A*- LRTA" - differs only marginally from the
algorithm RTA * :

1. The heuristic value h(u) is set to minver(u){h(v)
w(u,v)}.

2. The algorithm commits the move to v" that has the
best value h(v) + w(u, of all v fi r(u).

Fig.1 illustrates that LRTA* can get arbitrarily
bad compared to RTA*. We consider the uniformly
weighted problem graph G = (V, E) with h(vo) =
h(vl) = h(v2) = 0 and h(v3) = k and with vi ¢
0 < i < 3. Starting at vx or v2 we need O(k) expan-
sions in LRTA* until we are able to explore the rest
of the graph outside the given nodes. We might call
this a ping-pong effect. The algorithm RTA° however
finds the way in O(1) because the second best value
h(v) + w(u,v), {vl, v~} is k + 1.

On the other hand LRTA* is able to learn since it
keeps the heuristic estimates at each node admissible.
Korf (1990) shows that the heuristic values in LRTA*
are converging eventually to the shortest path ones.
But this convergence is not fast since the heuristic es-
timates are often bad. So LRTA* has been extended in
several ways. Barto et al. (1995) investigate a real time

31

dynamic programming approach. Their main focus are
uncertainties and adaptive control strategies. Ishida
and Shimbo (1996) introduce the e and 6 search al-
gorithms which improve LRTA° using cutoff strategies
such as weighting and upper bounds. The following
two strategies called forward updating and backward
updating allow to improve the heuristic by updating
all values involved in an expansion. The invariant kept
at the nodes is that h is admissible.

Lemma 1 (Forward Updating) Let u E Q - F, h(u)
h’(u) and for all v r(u) le t h(v) < h*(v). Af ter
setting h(v) to max{h(v),h(u) - w(u,v)} all v
r(u), h(v) < h*(v) still holds.

Proof: If h(v) > h(u, v) - w(u, we have noth-
ing to prove. Otherwise h(v) is set to h(u) - w(u,v).
Suppose that h(v) > h*(v) and let p be the shortest
path corresponding to the optimal cost h° (v) and ex-
tend p to p’ by adding the edge {u, v}. Then we have
w(p’) = h’(v) + w(u,v) > h(v) + w(u,v) But
this contradicts h(u) < h*(u).

Lemma 2 (Backward Updating) Let u E Q-
h(u) < h’(u) and for all v F(u) le t h(v) < h’ (v).
Setting h(u) to max{h(u), min~ero,){h(v) + w(u, v)}}
implies h(u) < h*(u).

Proof: If h(u) > min~er(u){h(v) w(u, v)} th ere is
nothing to show. Every path p from u to F has to pass
one of u’s successor nodes v E r(u) such that

w(p) = w(p’)+w(u,v) > h*(v)+w(u,v) > h(v)+w(u,v).

This is especially true if p is the shortest path with
length h" (u). Thus we have ° (u) _> minver(u} { h(v) +
w(u, v)} to which h(u) is set. []

Note, that the proof of Lemma 2 establishes the cor-
rectness of LRTA° and that the new idea is to take h(u)
itself into account. We have established the following
theorem.

Theorem 1 In LRTA* with forward and backward up-
dating the heuristic evaluation function h keeps admis-
sible.

Note that h can be interpreted as a lower bound of
the shortest path from a given node to the set of goal
nodes. Defining an upper bound function h~ for the
shortest path to a goal node the dual forward updating

h’(v) min{h’(v), h’ (u) - w(v)}

and/or backward updating

h’(u) +-- min{ h’ (u), max~er(~) { h’ (v) + w(u,

assignments keep h’ as an upper bound. One way to
establish better bounds is to look several steps ahead

Figure 2: Moving from a to b and back to a in SRTA’.

and propagate the results of the horizon back to the
root. This lead to the so-called Minimin scheme intro-
duced by Korf (1990). Another one is described in the
following section.

The Algorithms CRTA* and SLRTA*

Our idea for improvement is based on signs that are
assigned to each edge in the state space. Each sign
is seen as a lower bound for the shortest path passing
this edge. We interpret the signs as a mapping f from
the set of edges in the problem graph to IR+. Since
the shortest path has no cycles the lower bound values
need to hold for all cycle free paths only.

We define the expanding path p as the committed
path from the start to the detected goal node. Every
node on p has been expanded at least once. If we as-
sume that for all states u and for all v E F(u) the value
f(u, v) is set to the initial heuristic estimate h(u) the
following algorithm SRTA* (real-time A* using signs)
is similar to the RTA* procedure

1. If u E F then terminate and return u.

2. For all v E F(u) - F set h(v) to the second best value
f(v, w) of all (v, w) E E. If there is none, h(v) is set
to infinity. Further on, set f(u, v) to h(v) + w(u,

3. Compute v* with f(u,v*) = min~er(u){h(v)
w(u,v)}.

4. return SRTA*(v*)

The initial values f(u, v) do not have to be calcu-
lated in advance. They can be determined when v is
generated for the first time. In Fig.2 a simple example
of the SRTA* procedure is provided. The algorithm is
invoked with the nodes a,b and a and the changes of
the h and f values are shown. The similarity to RTA*
is easily obtained since the calculated h-values are set
with a lookahead of one. Moreover, if one does not
change the h-values of a newly generated node then
the h values in RTA* and SRTA" are the same. The
algorithm uses the h values only in one call and does
not need them further on. The following result proves
the correctness of the f-values in the algorithm SRTA’.

32

Theorem 2 The calculated f values are correct, i.e..
they underestimate the length of the cycle free path to
the goal.

Proof: The proof is done uses induction, i.e. we use
the stated result as an invariant (I).

It is obvious that the result is true after initializ-
ing since h is admissible. After the first invocation of
SRTA* with node u, the invariant (I) is also fulfilled
since h(v) equals the initial heuristic value and the edge
(u, v) has to be traversed on a path from u to a goal
node passing v. Suppose (I) is valid before invoking
SRTA* (u). We distinguish the following two cases.

The successor v of u is not expanded up to now.
Then h(v) is equal to the initial admissible estimate
and the f(u, v) values are correct.

If v has already been expanded then h(v) denotes the
best alternative to the path on which v has been left
the last time. Since f(u, v) is defined as a lower bound
for all cycle free paths from u to a goal node using
the edge (u, v), the values f(u, v) = h(v) + w(u, are
correct since v has already been left at the edge with
the best f value. []

As an immediate consequence for the definition of
signs we have

Theorem 3 Define

h’(u) +-- min {f(u,v)}.
ver(~)

Then h’ (u) is admissible.

See Fig.2 to verify that h’(b) = 4 is optimistic and
h(b) = oo is not. This theorem leads to two new learn-
ing algorithms: CRTA* (RTA* with cleaning up strat-
egy) and SLRTA* (LRTA* using signs).

We describe CRTA* first. The algorithm traverses
the expanding path p = (s = vo , Vk) to a goal node
vk E F in reverse order to clean up over--estimations
of h, i.e. values for which h(vi) > minver(vO{f(vi, v)}.
We simply set h(vl) to min~er(~,){f(vi , v)} for i e {k-
1 ,0} and use Theorem 3.

Observe that the heuristic values of CRTA* can be
slightly improved by updating the f values in the back-
ward traversal. We set f(vi,Vi+l) to the new value

¯ h(vi+x) plus the weight w(vi, vi+l) and determine h(vi)
as the minimum of the new f-values. We gain that
h(vi) is admissible using a simple inductive argument.
In this approach the f-values are not needed to be
stored explicitly. We get the similar heuristic estimates
in applying RTA* with the the dynamic backward up-
dates of h(vi) = min{h(vi), h(v~+l) w(vl, vi +l)}.

The algorithm CRTA* may be criticized since its
clean up phase traverses the whole of the expanding
path. Consider the robot navigation situation. First,

we see that the backward traversal will be faster than
expanding the path since the robot knows where to go.
Further on, it can be modeled that the robot has to
inform the person who had started it. In the following
section we will examine how to handle cycles in the
backward traversal of the expanding path.

Another aproach is to postpone the updating request
until the node is revisited. The algorithm SLRTA"
uses iteration numbers at each node to distinguish the
newly generated nodes in the actual iteration from al-
ready expanded nodes in former iterations. The idea is
simple. Instead of recalculating the heuristic values on
the expanding path after the current search iteration
is terminated we perform the calculation at the time
when the node is generated again. Using the iteration
number we may encounter a node that has been ex-
panded in some former iteration. The request at node
u to reset the h values can now be satisfied setting
h(u) to minver(~,){f(u,v)}. After that we can initial-
ize the f values for node u in the current iteration
by setting all values f(u,v) to h(u). The algorithm
SLRTA" is correct since the outgoing f-values at each
node are modified only if u is expanded. There are
two main drawbacks of SLRTA°. First, the iteration
number cannot be bounded by a constant and second,
SLRTA" cannot be improved by changing the f values
of the expanding path as in CRTA*.

In both algorithms the admissible estimate h’ does
converge to the shortest path values using a similar
argument as in Korf (1990) for proving the convergence
of LRTA’. The algorithms can be modified to learn
upper values for the shortest path.

Balancing the Search Tree with BCRTA*

The algorithm CRTA* allows us to use improved
heuristic values compared to LRTA°. If graph travers-
ing implies robot motion as in the model above the
proposed backward traversal is expensive. Let us see
now how this updating costs can be reduced to a mini-
mum size preserving the possibility for locally optimal
decisions in next iteration.

For the sake of simplicity, let us assume that the
problem graph is acyclic. Let T be the set of generated
nodes. For each x E T the set T can be structured
in a tree-like way rooted at x denoted by Tz. The
tree structure is defined recursively by the predecessor
function pred. The value pred(x) is empty, since x has
no predecessor, and pred(u) is the last node before u
on the unique path from x to u. Let Tz,u be the subtree
of Tz rooted at u.

Let us start RTA* at root node x. If h(u) is set to
the second best value as done in RTA*h(u) is always
the minimum cost value over all frontier nodes below
u in the tree Tv.= where v is the current position (see

33

Figure 3: The exploration and update of T~.

Korf (1990)). But what can we conclude for the tree
Tz rooted at x ¢ v?

Lemma 3 Let RTA* be applied to an acyclic problem
graph G. Let x be the root o/ the current search tree
and let v be the current position. Then/or each u which
is not ancestor o/ v in Tx we have

h(u) = min{w(u,u’) + h(u’)lu’ r(u) - {pred(u)}}.

As a result: For each u which is not predecessor of
the current state v the value h(u) is the minimum of
all values gu(Y) + h(y) where y is a leaf of the subtree
T~,~ C T~ and g~(y) is the weight of the path from u
to y.

Proof: Korf (1990) has shown that h(u) is always
the minimum over all frontier nodes below u in the
tree rooted at v if v is the current position. Let u be
a node which is not a predecessor of the root x. Then
the proof follows immediately from the fact that T~,~,
is equal to T~,u. []

This fact allows to reduce the effort of the last up-
date step. It suffices to traverse the states from the
goal node g to root node x to clean up the heuris-
tic estimates related to x. By traversing back from g
to x for each u on the solution path we set h(u) by
h(u) = min{w(u,u’) + h(u’)[u’ F(u) - pred(u)}},
where pred(u) denotes the predecessor of u in tree Tx.
Then, after the last update step and with termination
of the search Lemma 3 is true for all nodes in tree T~.

Fig.3 illustrates the exploration and updating of the
search tree Ta in the example of Fig.2. If the problem
graph is not acyclic then the update process is more
complicated and can not be done as efficiently as in
the acyclic case. We omit the details.

In the next iteration move decisions can be made
again locally optimal. Let us assume that the next
iteration starts with expansion of x. The first move
decision is locally optimal, since each neighbor of x in
the graph is an immediate successor of x in tree Tz and
the transition is done in direction to the best one. By
going downwards in the tree the heuristic values of the
ancestors of the current node are updated as before.
If a predecessor value is better than the values of the
successors the move decision is made in favor of the
predecessor. Otherwise the next node to visit is one of

the immediate successors. This shows that the update
can be reduced to log([Tx[) in the average case.

How can locally optimal decisions be preserved if the
next iteration will start at a node x’ ¢ x? First. let us
assume that x’ is one of the already generated nodes,
i.e. x’ ¯ T~ for one root node x. Then the update
has to be extended by an additional traversal from x
to x’. This step fulfills the precondition of Lemma 3
with respect to the new tree Tz,. If x’ has not been
generated before, i.e. x’ g Tz for each root x, then the
described step cannot be carried out at the beginning.
First the tree Tz, is build up until a node z E Tz N Tx,
is found. Then the additional step is performed by
traversing back from x to z before the search continues.

The algorithms RTA° and CRTA* do not work
that well if the heuristic function is pathologic (Korf
(1990)). The reason is that a lot of transitions have
be done leading from one side to the other side in the
search tree before the frontier node with minimal cost
can be expanded next. For that reason it makes sense
to take care of the distance between the current posi-
tion and the frontier nodes to expand next. It seems
useful to make it harder to traverse a long path for the
next expansion of a frontier node. The idea is to min-
imize the number of transitions by the use of another
criterion favoring an equally growing search tree. We
assume that a second function value n(u) is stored for
each u counting the number of states behind u with
respect to the current position v, i.e., n(u) = [Tv,u[.
Then BCRTA° (balanced CRTA*) uses the following
steps:

1. If u is a goal node then terminate.

2. If u is not expanded before then expand it.

3. Let u° be the best and u+ be the second best succes-
sor in F(u) (ties are broken in favor of lower n-value).
If n(u*) _< a ~"]~u, er(~) n(u’) then go to u*; otherwise

go to the second best successor u+.

4. Update h(u) as given above w.r.t the choice in 3.
Update n(u) by n(u) = 1 + Y’]~,,er(u)-{u.} n(u’) if

the transition tou* is done; otherwise set n(u)
1 +]~,er(~)-{~+) n(u’).

5. Invoke BCRTA*(u*) resp. BCRTA*(u+)

The value a has to be well chosen via experimental
results. Ping-pong effects as in Fig. 1 are excluded: If
the condition in 3. is not fulfilled the first time it is not
fulfilled until the next frontier node has been reached
and expanded.

Learning real time search can also be based on
BCRTA*. Then the n-values have to be updated with
a step similar to CRTA°¯ This idea of dynamic balanc-
ing is used in a similar way in Eckerle (1996).

34

250

150

IO0

50

0

Figure 4: Comparing LRTA* with CRTA*.

Experimental Results
The problem space is a fixed Maze of size (30 x 30).
A wall at square (i, j), 1 _< i,j < 30, is set with
a probability of 35 percent. We examine the algo-
rithm CRTA* in the improved extension to the RTA*,

¯ i.e., the h(vi) values in the backward traversal of the
expanded path p -- (v0,...,vk) are updated with
h(v~) = min{ h(vi), h(v~+ 1) + w(vi, vi+l) }.

When the heuristic estimates exceed a given thresh-
old of 100 we conclude that no goal can be found and
no solution is returned.

Fig. 4 illustrates that the CRTA* performs better
than LRTA* regarding the number of node expan-
sions as we might have expected. The first values that
have been omitted for the sake of a neat presentation
are (214/166/2094) for CRTA* and (364/260/4848) for
LRTA*. The basic fact to keep in mind is that the ac-
cumulated total number of expanded nodes at the be-
ginning of LRTA" is high (6801 for the first twenty iter-
ations) compared to CRTA* (3339 for the first twenty
iterations). After a while the learning qualities in both
algorithms settle to a fairly good approximation and do
not differ much. The number of iterations is, of course,
not sufficient to evaluate the learning quality. It is be
more realistic to count the total number of expanded
nodes so far.

There is a direct correspondence between the quality
of the heuristic estimate and the number of expanded
nodes. If the heuristic estimates are good the expanded
path will be short and vice versa.

Conclusion and Outlook
A lot of new aspects for improving the efficiency of
learning the heuristic functions have been studied in
this paper. All provided algorithms act locally within
a depth bound of one. The idea of signing the edges at

each node has been proven to be useful in both provid-
ing more information and getting better insight into
the problem structure.

Usually, the problem spaces of state space problems
are assumed to be huge. This implies that not every
node of the whole search tree can be stored in the hash
table. Moreover, memory restrictions are seen to be
more crucial to search algorithm than time restrictions.
This has led to the design of improved heuristics and
many memory bounded search algorithms.

In the algorithm LRTA* and in its presented alter-
natives however, the hash table is extended in every
iteration and thus will exceed the given space within
a short time. This problem has not been tackled yet.
It would also be interesting to compare off-line and
on-line learning schemes. For example the robot may
stroll and explore the environment without the request
to find the goal fast and thus he has the chance to
change the h values even in areas that are far from the
set of goals. Thus we might ask for a good trade off
between short and long time performance.

Acknowledgements S. Edelkamp is supported by a
grant from DFG within the Freiburg University Grad-
uate Program on Human and Artificial Intelligence,
while J. Eckerle’s contribution is supported by a grant
from DFG within the project Ot 64/11-1.

References
Barto, A. G.; Bradtke, S. J.; and Singh. S. P. 1995.
Learning to act using real-time dynamic program-
ming. Artificial Intelligence 72(1):81-138.

Dijkstra, E. W. 1959. A note on two problems in con-
nexion with graphs. Numerische Mathernatik 1:269--
271.

Eckerle, J. 1996. BDBIDA*: A new approach for
space-limited bidirectional heuristic graph search. In
Proc. of ECA1-96, 370-374.

Hart, P. E.; Nilsson, N. J.; and Raphael. B. 1968. A
formal basis for heuristic determination of minimum
path cost. IEEE Trans. on SSC 4:100.

Ishida, T., and Shimbo, M. 1996. Improving the
learning efficiencies of reaitime search. Proc. of
AAAI-96 13(1):305-310.

Korf, R. E. 1985. Depth-first iterative-deepening: An
optimal admissible tree search. Artificial Intelligence
27(1):97-109.

Korf, R. E. 1990. Real-time heuristic search. Artificial
Intelligence 42(2-3):189-211.

35

