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Abstract

In multiagent systems, the potential interactions
between agents is combinatorial. Explicitly coding in
each behavioral strategy is not an option. The agents
can start with a default set of behavioral rules and ad-
apt them on-line to fit in with their experiences. We
investigate perhaps the simplest testbed for multiagent
systems: the pursuit game. Four predator agents try
to capture a prey agent. We show how different as-
sumptions about the domain can drastically alter the
need for learning. In one formulation there is no need
for learning at all, simple greedy agents can effectively
capture the prey (Korf 1992). As we remove layers 
abstraction, we find that learning is necessary for the
predator agents to effectively capture the prey (Haynes
& Sen 1996).

Introduction

The field of multiagent systems (MAS), also tradi-
tionally referred to as distributed artificial intelligence
(DAI), is concerned with the behavior of computational
agents when they must interact. One line of research
is into the dynamics of cooperation of the group or
team (Haynes ~ Sen 1997c; Sandholm ~: Lesser 1995).
Another line of research is into the dynamics of compet-
ition as either individual agents or groups of agents vie
for resources in artificial economies (Mullen &: Well-
man 1995). An individual agent in a group must bal-
ance the pressure of competition versus that of cooper-
ation. It joined the group in order to achieve some
expected utility which it believed it could not reach
working on its own. Either it is incapable of doing the
task, it does not have enough time to do the task, or
it brings to the group some skill for which they do not
have the capability to perform. However, it may have
conflicting goals, prior commitments, hidden agendas,
etc.

Multiagent learning combines machine learning with
multiagent system research (Sen 1996; Weifl ~: Sen
1996). The typical goal is for an agent to learn on-
line how to interact with a group of agents. On-line
learning is utilized because we typically can not spe-
cify a priori the dynamics of group behavior. While
off-line analysis is helpful, an agent may not have the

luxury of disengaging itself from a computational agent
society. It is conceivable that an agent may not have
access to its "source-code"; it may not be able to go
off-line. Also, a task may be mission critical and it may
not be possible for an agent to take time out to analyze
its actions. In order to minimize further conflict, the
agent will have to learn on-line.

While fully deployed industrial multiagent systems
are instrumental in understanding how the models of
’the agent group are effective in the marketplace, such
systems are difficult to study as a controlled experi-
ment. If we wish to study balancing the forces of com-
petition and cooperation, we want to remove all other
external factors. We want to be able to control the
parameters of the experiment such that we can report
with certainty our findings. One such testbed domain
has been the pursuit game (Bends, Jagannathan,
Dodhiawala 1986), also referred to as the predator-
prey game: In its most basic format, four predator
agents chase a prey agent on a toroidal grid world.
Agents are placed randomly in the world and may only
make orthogonal moves. The goal is for the four pred-
ator agents to surround and capture the prey agent by
occupying its four adjacent orthogonal neighbors.

The pursuit domain had been a standard test-
bed (Bends, Jagannathan, & Dodhiawala 1986; Gasser
et al. 1989; Levy &: Rosenschein 1992; Singh 1990;
Stephens & Merx 1989; 1990) until Korf showed that
reactive predator agents employing simple greedy al-
gorithms could effect capture no matter what the start-
ing position of the agents (Korf 1992). This research
effectively killed the pursuit game as a testbed for
MAS/DAI systems; indeed the game has been labeled
as a "toy domain". Haynes and Sen proved that the
assumptions made by Korf in setting up the domain
were instrumental in allowing the greedy algorithms
to effect capture (Haynes & Sen 1996). They showed
that with a slight modification of the "physical laws"
of the domain, a prey which did not move was able to
avoid capture against the greedy algorithms employed
by Korf’s reactive agents. The real surprise of their re-
search is that while the pursuit game is a "toy domain"
in that four children could control the predator agents
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and coordinate their actions without any explicit com-
munication, no hand-coded algorithm has been able to
duplicate such a feat. There are complex interactions,
which are readily solved with explicit communication,
but which are difficult to solve with only implicit com-
munication. The predator agents either need state, in
which case they are no longer reactive, or models of
the other agents, which may have to be adapted as the
agents interact and discover scenarios not considered
by the designer (Haynes & Sen 1997b).

The goal of this paper is to investigate the ramifica-
tions of changing the rules, which govern a simulation
of a world, on on-line learning. We utilize the pursuit
domain to illustrate a changing world. A key charac-
teristic of the domain is that it models the hunt in the
physical world and we all have an intuitive feel for the
physical world. We go from a simplistic set of laws, as
evidenced by the research of Korf, in which learning is
not necessary at all, and scale up the complexity of the
simulation until we reach a scenario in which on-line
is necessary. Along the way we relate each proposed
change in the rules to either a relaxing of the model of
"physical" laws or a tightening of the model to follow
the "physical" laws.

The Pursuit Problem
The original version of the predator-prey pursuit prob-
lem was introduced by Benda, et al. (Benda, Jagan-
nathan, & Dodhiawala 1986) and consisted of four blue
(predator) agents trying to capture a red (prey) agent
by surrounding it from four directions on a grid-world.
The movement of the prey agent was random. No two
agents were allowed to occupy the same location. Agent
movements were limited to either a horizontal or a ver-
tical step per time unit. The goal of this problem was to
show the effectiveness of nine organizational structures,
with varying degrees of agent cooperation and control,
on the efficiency with which the predator agents could
capture the prey.

The approach undertaken by Gasser et al. postu-
lated that the predators could occupy and maintain a
Lieb configuration (each predator occupying a different
quadrant, where a quadrant is defined by diagonals in-
tersecting at the location of the prey) while homing
in on the prey (Gasser et ai. 1989). This study, as
well as the study by Singh on using group intentions
for agent coordination (Singh 1990), lacks any experi-
mental results that allow comparison with other work
on this problem.

Stephens and Merx performed a series of experi-
ments to demonstrate the relative effectiveness of three
different control strategies (Stephens & Merx 1989;
1990). They defined the local control strategy where
a predator broadcasts its position to other predators
when it occupies a neighboring location to the prey.
Other predator agents then concentrate on occupy-
ing the other locations neighboring the prey. In the
distributed control strategy, the predators broadcast

their positions at each step. The predators farther
from the prey have priority in choosing their target
location from the preys neighboring location. In the
centralized-control strategy, a single predator directs
the other predators into subregions of the Lieb config-
uration. Stephens and Merx experimented with thirty
random initial positions of the predators and prey prob-
lem, and discovered that the centralized control mech-
anism resulted in capture in all configurations. The
distributed control mechanism also worked well and
was more robust. They also discovered the perform-
ance of the local control mechanism was considerably
worse. In their research, the predator and prey agents
took turns in making their moves. We believe this is
not very realistic.

The earlier research into the predator-prey domain
involved explicit communication between the predator
agents. Korf claimed that such expensive communica-
tion was unnecessary, as simple greedy algorithms al-
ways lead to capture (Korf 1992). He further claims
that the orthogonal game, a discretization of the con-
tinuous world which allows only horizontal and vertical
movements, is a poor approximation. In a diagonal
version of the game (he also considered a hexagonal
version), Koff developed several greedy solutions to
problems where eight predators are allowed to move
orthogonally as well as diagonally. In Korf’s solutions,
each agent chooses a step that brings it nearest to the
prey. As with the research of Stephens and Merx, the
prey agent moves and then the predator agents move in
increasing order. An agent eliminates from considera-
tion any location already occupied by another agent.

In the paper, Korf considered two distance metrics
to evaluate how close a predator agent was to the prey.
The Manhattan distance (MD) metric is the sum 
the differences of the x and y coordinates between two
agents. The max norm distance metric is the maximum
of x and y distance between the two agents. With both
algorithms, all ties are randomly broken. Korf selected
the max norm metric for the agents to use to chose their
steps. The prey was captured in each of a thousand
random configurations in these games. But the max
norm metric does not produce stable captures in the
orthogonal game; the predators circle the prey, allowing
it to escape.

Korf admits that the MN distance metric, though
suitable for the diagonal and the hexagonal game, is dif-
ficult to justify for the orthogonal game. To improve the
efficiency of capture (steps taken for capture), he adds
a term to the evaluation of moves that enforces predat-
ors to move away from each other (and hence encircle
the prey) before converging on the prey (thus eliminat-
ing escape routes). This measure succeeds admirably
in the diagonal and hexagonal games but makes the or-
thogonal game unsolvable. Korf replaces the previously
used randomly moving prey with a prey that chooses
a move that places it at the maximum distance from
the nearest predator. He claims this addition to the



prey movements makes the problem considerably more
difficult.

Competition versus Cooperation
Central to the study of multiagent systems is the
tradeoff that must be made between competition and
cooperation. When faced with a set of choices C, a
single agent Ai is rational if and only if it selects the one
which yields the highest expected utility Ui,ma= (Rus-
sell &: Norvig 1995)." When an agent is a member of 
group, it can select an option which does not yield the
highest expected utility for it Ui,-,ma= and still be ra-
tional if the selected option yields the highest selected
utility for the group Ua,max. It can put the needs of
the many above the needs of the one.

The agent can still be competitive within the context
of such cooperation. If the group has as a global goal
TG and the agent has a local goal ~, then it will select
actions that allow it to reach its local goal in the context
of the group reaching the global goal. If it has a choice
between multiple actions which both lead to the global
goal, it will select the one which brings it closer to its
local goal. If it has a choice between multiple actions,
none of which lead to its local goal, it may select an
action that leads another agent Aj away from its own
local goal Tj.

Given a set C’ C C in which all the expected utility
of all choices Uc,,j are such that Ue,max - 6 <_ Uc’ <_
UG,,na~ and 6 is some constant denoting the latitude
of an agent to accomplish a task, then the agent may
select the choice Cj E C~ such that it maximizes its
expected utility given the need to cooperate with the
other group members, U[ mar"

Consider a blue-colla~ worker in an assembly line.
In order for the company to stay solvent, the worker
must process W widgets per hour. If a worker does not
average W widgets per hour, then that worker is fired.
The worker gets paid H dollars per hour, regardless
of how many widgets produced in that hour. There is
also a failure rate of e, widgets are inspected during
the next shift, and the worker’s average only includes
widgets that do not fail during inspection. Even though
the company can make more profit if more than W
widgets are produced per hour, and thus help ensure
the company will not go bankrupt, which will cause the
worker to lose the job, the worker has no incentive to
produce more than the minimal widgets required. A
worker may actually process 1.25 * W widgets per hour
at the start of the day to make sure the quota of W + e
will be met, but during the latter part of the day may
only produce 0.75, W widgets per hour.

Finally, consider that such a job is stress free and
the workers are able to chat to their friends as they are
processing widgets. Also, assume that the worker gets
paid by the number of widgets processed, but still has
to process at least W widgets per hour. If a worker can
average 2.0 * W widgets per hour, then he or she will
be promoted to a higher paying job. However, in the

new job, there is much more stress and less opportun-
ity to chat to one’s friends. The rational worker, who
values both money and friends, will manage to aver-
age somewhere close to 2.0 * W - J widgets per hour,
where 6 is a comfort zone to ensure both the failure
rate e for making the most allowable average number
of widgets and that too much is not done if the actual
failure rate is e’ << e. Indeed, such a worker would
meticulously count the widgets and take one’s time on
the last widget to be processed.

Motivation for Learning
The classic tradeoff between cooperation and compet-
ition certainly applies to the greedy predator agents
advocated by Korf. The goal of the individual pred-
ator is to get as close to the prey as possible. The goal
of the group is to capture the prey. There are scen-
arios where these two goals conflict, see for example
Figure 1. At this point the agents need to coordinate
their moves. Korf claims that this coordination is not
necessary. If we examine his basic algorithm, we see
that such coordination is still necessary.

In the laws governing the simulation in Korf’s" re-
search, the prey agent moves first and then the pred-
ators move in order. Consider Figure 2, in which the
prey agent from the initial placements given in Fig-
ure 1 has already moved. In each case, the potential
conflict vanishes. The predator agents are still employ-
ing a greedy heuristic, but they are coordinating their
moves. Consider predator 2’s options in Figure l(b), 
can either stay still or move South, further away from
the prey. With either choice 2 makes, a capture is im-
minent. If it stays still, as it does in Figure 2(b), 
will take predator 3 three moves to get to the capture
position (assuming 3 does not go North). However, if
2 were to instead move South, it would take two moves
for a capture to be effected.

Since the potential for conflict has been removed, the
agents are engaging in communication, see Theorem 1.
If we view the movement of all agents as a round in the
simulation, then during a round the prey informs the
predators where it is going to move before they decide
where they will move. Likewise, each predator agent Pi
informs all other predator agents Pj,j>i where it plans
to move before they move.

Theorem 1 The deterministic ordering of agent
movement is a form of explicit communication.

Also, Theorem 2 states that any prey which moves
slower than the predators can be caught. If the prey
moves at a speed 90% that of the predators, we can say
that every tenth round, the prey does not move~. If the
predators can manage to not loose ground to the prey
when it moves, which the greedy algorithm is geared to
do, then they are guaranteed to be able to move closer

l ln the typical implementation, the availability of the
prey to move is determined randomly each round. On the
average, it moves at 90% of the predator’s speed.
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Figure 1: Possible scenarios in which the individual goal conflicts with the global goal. (a) Predator 2’s best moves
conflict with either that of 1 or 3. (b) Either predators 1 and 3 have a potential conflict with each other or 2 and
4 already occupy desirable positions. (c) Predator 3’s best move is already occupied by 
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Figure 2: From the initial positions in Figure 1, the prey P has taken its move, which was to stay still. (a) Predator
1 has moved and removed the potential conflict with 2. Predator 2 then moves, removing the potential conflict with
3. (b) Predators 1 and 2 have moved and it is 3’s turn to move. Note that even though 4 has not moved, it still
blocks 3 from moving South. At this point, 3 must move away from the prey P (unless it has the option to stay
still). (c) Predators 1 and 2 have moved and it is 3’s turn to move. This time, 4’s placement does not conflict with
that of 3’s desires. Note that even though the move South is better, i.e., there is an open capture position, with
either the MD or MN algorithms 3 is just as likely to move North.

when it is motionless. The algorithm employed by the
prey can delay the inevitable, but because it is not
called when the prey does not move, the predators will
eventually catch it irregardless of the prey’s algorithm.

Theorem 2 Regardless of the behavioral algorithm
employed by the prey, if the prey agent effectively
moves slower than the predator agents and it selects
and takes its move before the predators, then it can be
caught in a finite number of steps.

Korf claims that a prey agent which consistently
moves away from the nearest predator (MAFNP) 
harder to catch than one that moves randomly. If we
consider a prey which moves randomly from the set
{North, South, East, West, Here}, then it is effectively
moving at 72% of the speed of the predators. While

¯ the prey utilizing MAFNP can avoid locality to delay
capture, it will still suffer from not be able to reason
and move when it is forced to stay still.

The final factor which contributes to the number of
steps needed to capture the prey is the initial placement
of the predators with respect to the prey. In Theorem 3,
the minimum number of steps is a factor of the effective
speed of the prey. If the farthest predator is n locations
distant and the prey does not move with a probability
of p, then it will take a minimum number of steps 1_at,
for the farthest predator to get into a capture position.

This number of steps is a minimum because of the po-
tential conflict of two or more predators for a capture
position.

Theorem 3 If the order of agent movement is fixed
and the prey moves slower than the predators, then the
number of steps to capture depends strictly on the ini-
tial placement of the agents and the effective speed of
the prey.

If the predators are placed in different quadrants,
then the likelihood of conflict decreases. If however,
two or more predators are placed in the same quadrant,
then all but one will have to move away from the prey
in order to capture it. For example, in Figure 2(b),
predator 3 is in the same quadrant as 4 and 4 beat
3 to a capture position. To get to the final capture
position, 3 must go around 4.

With the MD algorithm, a capture may not take
place in a situation like Figure 2(b). Predator 3 will
move away from the prey, but since it does not have
any memory, the very next round it will move back
to its previous position. By using the MN algorithm,
4 can eventually move South, as each of North, Here,
and South are equally desirable at a distance of 1 and
a random tie breaking will allow it to go South.
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Removing the Communication

If the agents move in a deterministic order, simple
greedy predator behavioral strategies are effective in
capturing the prey. With the MD algorithm, dead-
lock situations can occurs. With the MN algorithm,
the predators are not guaranteed to stay in a capture
position (Korf 1992). Since we have shown, with 
ordering on movements, the greedy agents are com-
municating, we would like to see if greedy agents are
effective if we do not order the movements. An ar-
gument can be made that the ordering of the moves
is not natural. While lions may prefer that the ante-
lope move first, natural selection will favor any antelope
which can move at the same time as the lions 3. It has
been shown by Haynes and Sen that using this new
rule, there are many deadlock situations for the pred-
ator agents when pitted against simple prey algorithms
of moving in a straight line (Linear) or even not moving
at all (Still) (Haynes & Sen 1997a)!

The MN algorithm, as described by Korf, does not
allow the predators to move to the cell occupied by the
prey. (In his research, the prey moves first, followed
by the predators in order. Thus conflicts are resolved
between predators and prey by serialization.) Figure 
illustrates a problem with this restriction. The cells
to the North and South of predator 4 are as equally
distant from the prey P as the cell currently occupied
by predator 4. Since all ties are non-deterministically
broken, with each movement of the agents, there is a
66% probability that predator 4 will allow the prey P
to escape.

Assuming a Linear prey moving East, Figure 3 also
illustrates the failure of the MN metric algorithms to
capture a Linear prey. It is possible that a predator can
manage to block the prey, but it is not very likely that
it can keep the prey blocked long enough for a capture
to take place. It is also possible that once captured, the
prey may escape the MN metric algorithms. The MD
metric algorithms do not suffer from this inability to
make stable captures. They do however have a draw-
back which both the Linear and Still prey algorithms
expose. Haynes and Sen found that MD metric al-
gorithms stop a Linear prey from advancing. Their
original hypothesis was that the Linear prey moved in
such a manner so as to always keep the predators "be-
hind" it. Thus, the inability to capture it was due to
not stopping its forward motion. They started keeping
track of blocks, i.e., a situation in which a predator
blocks the motion of the prey, and discovered that the
MD metric algorithms were very good at blocking the
Linear prey.

2 Which indicates that on-line learning could be benefi-
cial in this setup.

3This argument must be adapted to the discrete model
we are applying for the game. In a continuous world, mov-
ing first denotes a slower reflex animal and is not a factor
of the relative speeds of the animals.

The MD strategy is more successful than the MN
in capturing a Linear prey (22% vs 0%) (Haynes 
Sen 1997a). Despite the fact that it can often block
the forward motion of the prey, its success is still very
low. The MD metric algorithms are very susceptible to
deadlock situations, such as in Figure 4. If, as in Fig-
ure 4(a), a predator manages to block a Linear prey,
it is typical for the other predators to be strung out
behind the prey. The basic nature of the algorithm en-
sures that positions orthogonal to the prey are closer
than positions off the axis. Thus, as shown in Fig-
ures 4(b) and (c), the remaining predators manage
to close in on the prey, with the exception being any
agents who are blocked from further advancement by
other agents. The greedy nature of this algorithm en-
sures that in situations similar to Figure 4(c), neither
will predator 2 yield to predator 3 nor will predator 3
go around predator 2. While the MN metric algorithms
can perform either of these two actions, predator agents
employing it are not able to keep the Linear prey from
advancing. It is also evident that once the Linear prey
has been blocked by a MD metric algorithm, the prey
algorithm degenerates into the Still algorithm. This ex-
plains the surprising lack of captures for a prey which
does not move.

For the majority of moves in the predator-prey do-
main, either the max norm or MD metric algorithms
suffice in at least keeping the predator agents the same
distance away from the prey. As discussed earlier, the
prey effectively moves 10% slower than the predators,
the grid world is toroidal and the prey must occasion-
ally move towards some predators to move away from
others. Therefore the predators will eventually catch
up with it. Contention for desirable cells begins when
the predators either get close to the prey or are bunched
up on one of the orthogonal axes. What the predators
need to learn is table manners. Under certain condi-
tions, i.e., when two or more predator agents vie for
a cell, the greedy nature of the above algorithms must
be overridden. We could simply order the movements
of the predators, allowing predator 1 to always go first
(in essence regressing to the implementation used by
Korf!). But it might not always be the fastest way
to capture the prey. No ordering is likely to be more
economical than others under all circumstances.

Also, if we consider real world predator-prey situ-
ations, the artificial ordering cannot always be ad-
hered to. Consider for example a combat engagement
between fighter aircraft and a bomber. If there are only
two fighters, the ordering rule suggests that fighter 1 al-
ways moves before fighter 2. If they are in the situation
depicted in Figure 5(a), then fighter 1 cannot fire on the
bomber B, because doing so will hit fighter 2. Clearly,
fighter 2 should first move North or South, allowing
both it and the other fighter to have clear fire lanes.
But under the proposed ordering of the movements, it
cannot move in such a manner. So, the default rules
is that fighter 1 moves before 2, with an exception if
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Figure 3: A possible sequence of movements in which a MN metric based predator tries to block the prey P. (a)
Predator 4 manages to block P. Note that 4 is just as likely to stay still as move North or South. (b) Predators 
and 3 have moved into a capture position, and predator 2 is about to do so. Note that 4 is just as likely to stay
still as move North or South. (c) Predator 4 opts to move to the North, allowing the prey P to escape. Note that 4
is just as likely to stay still as move East or West.
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Figure 4: A possible scenario in which a MD metric based predator tries to block the prey P. (a) Predator 
manages to block P. Predators 1, 2, and 3 move in for the capture. (b) Predator 2 has moved into a capture
position. (c) Predator 1 has moved into a capture position. Predator 2 will not yield to predator 3. They are 
deadlock, and the prey P will never be captured.

fighter 2 is in front of 1. The rule can be modified such
that the agent in front gets to move first. However, if
we add more fighters, then the situation in Figure 5(b)
does not get handled very well. How do fighters 2 and
4 decide who shall go first? What if they both move
to the same cell North of fighter 2? These are the very
problems we have been discussing with the MD metric
algorithm.

Theorem 4 follows from our analysis of prey agent
employing just the Linear and Still behavioral al-
gorithms. It has been shown that if the prey utilizes
more complex behaviors, e.g. maximize its distance
from all predators, then Theorem 4 still holds (Haynes
& Sen 1997a). In order to reduce contention for cells
and to resolve deadlock situations, the predators must
learn to cooperate. Either the designer of the beha-
vioral algorithms has to enumerate each potential ad-
verse situation or the agents can adapt through on-line
learning.

Theorem 4 Even if the prey agent effectively moves
slower than the predator agents, if it selects and takes
its move at the same time as the predators, then there
exist many initial placements of the agents in which
the predators cannot catch the prey if they are reactive

(a) (b)

Figure 5: Conflicts in firing lanes for fighter planes
strafing a bomber B. (a) fighter I is blocked from firing
by 2, and (b) Not only is fighter 1 blocked, but so is 
by 4.
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Figure 6: In both (a) and (b), the cells marked x 
y are equal distant via the MD metric from the prey
P for predator 1. (a) x is chosen because the sum 
the possible moves from it to prey P is less than the
y’s sum of moves, and in (b) y is chosen because while
the look ahead is equal, there is a potential for conflict
with predator 2 at x.

and employ strictly greedy algorithms.

Adding Behavioral Rules

Haynes and Sen have explored adding additional do-
main knowledge to the simple greedy agents (Haynes
&: Sen 1997b). In order to facilitate efficient capture,
i.e., provide the agents with the best set of default rules,
they enhanced the basic MD algorithm. If we consider
human children as the agents playing a predator-prey
game, we would see more sophisticated reasoning than
simple greedy behavioral rules. When faced with two
or more equally attractive actions, a human will spend
extra computational effort to break the tie. Let us in-
troduce some human agents: Alex, Bob, Cathy, and
Debbie. Bob and Debbie have had a fight, and Bob
wants to make up with her. He asks Alex what should
he do. Alex replies that in similar situations he takes
Cathy out to dinner. Bob decides that either Burger
King or Denny’s will do the trick (He is a college stu-
dent, and hence broke most of the time). In trying to
decide which of his two choices is better, he predicts
how Debbie will react to both restaurants. Denny’s
is a step up from Burger King, and she will probably
appreciate the more congenial atmosphere.

In the predator-prey domain, such a situation is
shown in Figure 6(a). Predator 1 has a dilemma: both
of the cells denoted by x and y are 2 cells away from
the prey P, using the MD metric. The sum of the dis-
tances between all the possible moves from x and prey
P is 8 and the sum from y to the prey P is 10. There-
fore using this algorithm, which we call the look ahead
tie--breaker, predator 1 should chose x over y.

A second refinement comes from what happens if the
look ahead tie-breaker yields equal distances for x and
y? Such a scenario is shown in Figure 6(b). Then pred-
ator 1 should determine which of the two cells is less
likely to be in contention with another agent. Predators
do not mind contending for cells with the prey, but they
do not want to waste a move contending with another
predator. By the least conflict tie-breaking algorithm,

predator 1 should pick y over x (y has 0 contentions,
while x has 1).

Suppose that Bob and Debbie have had another fight,
but this time Alex and Cathy also have fought. Fur-
thermore, a new restaurant, the Kettle, has opened up
in town. Since the Kettle is on par with Denny’s,
Bob is again faced with a need to break a tie. As
he knows that Alex and Cathy have fought, he believes
that Alex will be taking her out to make up with her.
Bob does not want to end up at the same restaurant,
as he and Debbie will have to join the other couple,
which is hardly conducive to a romantic atmosphere.
He decides to model Alex’s behavior. Like Bob, Alex
is a student and has never eaten at the Kettle. Since
Cathy is placated by being taken to Denny’s and Alex
does not like changing his routine, then Alex will most
likely take her there. Thus Bob decides to take Debbie
to the Kettle. Notice that if Bob had not accounted for
a change in the environment, then his case would have
caused a conflict with his goal.

A final enhancement is to restructure the order of the
actions such that staying still is always the last action
considered. This has the benefit of when the pred-
ators are in a capture position, they attack the prey
and when all forward moves are blocked, the predators
move away from the prey. By attacking, the predators
are likely to follow the prey as it moves. By moving
away from the prey, predators can avoid certain dead-
lock situations.

With these three enhancements, Haynes and Sen re-
ported a significant improvement in the capture of the
Still prey over the MD algorithm (46 versus 3 in 100
test cases). However, there is still vast room for im-
provement. If we instead use as a base algorithm the
MN distance metric, predator agents enhanced with
these rules will always capture and the prey agent em-
ploying the Still algorithm. Figure 7 illustrates some
scenarios in which the enhancements facilitate capture.
Notice that if the prey agent can move, the enhanced
MN algorithm is still not guaranteed to capture the
prey. Consider Figure 7(a), while the prey agents are
repulsing each other to move into the capture positions,
the prey could conceivably escape. There will be turns
when 3 of the allowable moves will be open. These
predator agents are not even guaranteed to keep the
Linear prey blocked.

Conclusion

We have shown in the simple predator-prey domain
that even greedy agents must communicate in order to
capture the prey. If we remove communication, then
predators need to learn to interact. We can improve
the greedy algorithms employed by the predators, but
without explicit communication, history, and/or full
models of the other agents, situations will arise in which
the agents will need to learn. Unless we can provide the
full model of the other agents, which might be feasible
in this domain, but certainly not in more "realistic"
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Figure 7: Possible scenarios for which the enhancements facilitate capture: (a) Predators 1 and 4 are "repulsed"
from 3’s location. Eventually non-determinism ensures that cycle of moving away from 3 and then back is broken
and a capture ensues. (b) Predator 2 will move South has it has the least conflict. Predator 3 will move East as it
is the closest to the prey P. In the next time step, 2 will move into the final capture position. (c) No predator will
move to a diagonal cell as these cells are under contention. Hence the MN algorithm with the enhancements will
hold a capture.

domains, the agents must adapt to each other by en-
gaging in on-line learning. We can also make the laws
governing the simulation more realistic. However, we
find that previous models which did not employ learn-
ing now fail, and once again we go back to the need of
on-line learning.
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