
A Polynomial Time Algorithm for Exploring Unknown Graphs with
Deficiency d

Stephen Kwek*
Department. of Computer Science

Washington University
St. Louis, MO 63130
kwekQcs.wustl.edu

Abstract

We present an O(dn~ +m)-time algorithm for ex-
ploring (constructing) an unknown strongly con-
nected graph G with m edges and n vertices by
traversing at most dn~ -t- m edges. Here, d is the
minimum number of edges needed to add to G
to make it Eulerian. This parameter d was in-
troduced by Deng and Papadimitriou in (Deng
& Papadimitriou 1990) and is known as the de-
ficiency of a graph. They showed that in the
worst case, f] (d~m) edge traversals are required
and gave an algorithm that achieves an upper
bound of d°(d)m edge traversals. Subsequently,
Albers and Henzinger (Albers & Henzinger 1997)
gave an algorithm that achieves an upper bound
of O (ded21°s din) edge traversals. Our bound is
an improvement over these earlier bounds when
d -~ ~(log n).

Introduction
The Graph Exploration Problem. We look at
the following classic graph ezploration problem: A
robot has to explore (i.e., construct) an unknown
terrain represented by a strongly connected directed
multi-graph G, by repeatingly select an outgoing edge
from its current vertex (position) and traverse it. The
robot knows all the traversed (seen) edges and visited
nodes, and can recognize them when they are encoun-
tered again. In other words, at each stage of the explo-
ration, the robot knows a proper subgraph G’, consist-
ing of the traversed edges, of G. However, the robot
does not know:

¯ how many nodes or edges are there in the graph G,

¯ where each unseen edge leads to, and

¯ the origin of any unseen edge of a visited node.

The robot is said to have learned the graph G if all the
edges have been traversed (and thus, the graph ~ i s
the same as G). Since the graph is strongly connected,

"The author is supported by NSF NYI Grant CCR-
9357707 (of Sally Goldman) with matching funds provided
by Xerox PARC and WUTA.

it is trivial that the robot can learn any graph and
knows that its exploration task is complete when all
of the edges in G’ have been traversed. The goal is to
learn the graph by traversing as few edges as possible.

It is easy to show that if the graph is Eule-
rian, then the robot only needs to traverse at most
4m edges (Deng & Papadimitriou 1990) where m 
the number of edges. In fact, Deng and Papadim-
itriou (Deng & Papadimitriou 1990) showed that the
number of edge traversals is related to the number of
edges, d, that are needed to make a graph Eulerian
G(V, E). They call this quantity the deficiency of G.
Deng and Papadimitriou showed that in the worst case,
the number of edge traversals required can be ft(d2m)
and gave an algorithm that traverses O(d°(d)rn) edges.
Recently, Albers and Henzinger (Albers & Henzinger
1997) gave a better algorithm that achieves an upper
bound of O (ded21°sdm) edge traversals. Our bound 
better than these earlier bounds when d : ~(log n).

In this paper, we present a simple polynomial-time
algorithm, which employs a depth-first search strat-
egy, that traverses at most O(dn2 + m) edges where n
is the number of vertices. Note that if the unknown
graph is dense say m = f~(n 2) edges then our bound
becomes O(dm). However, it can be shown easily that
any reasonable algorithm traverses at most mn edges.
Thus for sparse graph, say m = O(n), the worst case
bounds on the number of edge traversals for all three
algorithms are ran. Notice that mn could be ~(2dm)
if d -- O(log n).

This problem has also been investigated by Koenig
and Smirnov (Keonig & Smirnov 1996) where they
considered directed graphs obtained from undirected
graphs by replacing each edge with a pair of edges,
one for each direction. Notice that such digraphs are
always Eulerian and hence can be explored by travers-
ing each edge at most four times (Deng & Papadim-
itriou 1990).

Other Related Work. Motivated by robotics, var-
ious related graph exploration (navigation) problems
have been investigated by both theoreticians and AI
practitioners. Frequently, geometric constraints of the

62

From: AAAI Technical Report WS-97-10. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved. 



environment are ignored and the environment is as-
sumed to be represented by a graph. The research
conducted by AI practitioners is mostly empirical in
their approach and we refer the reader to (Korf 1990;
Pemberton & Korf 1992; Stentz 1995; Smirnov et ai.
1996).

Theoretical studies of graph exploration prob-
lems were first initiated by Papadimitriou and Yan-
nakakis (Papadimitriou & Yannakakis 1991) where
they were interested in the problem of finding a short-
est path between a pair of points under various graph
theoretic and geometric settings. Motivated by this
earlier work, Blum et. al. considered the explo-
ration problem in the Euclidean plane with convex
obstacles (Blum, Raghavan, & Schieber 1991) and
other variations (Blum, Raghavan, & Schieber 1991;
Blum & Chalasani 1903).

The exploration problem examined in this paper
is due to Deng and Papadimitriou (Deng & Pa-
padimitriou 1990). Subsequently, they together with
Kameda (Deng, Kameda, & Papadimitriou 1991) stud-
ied a geometric version of this problem where the
robot’s task is to explore a room with polygonal obsta-
cles and the goal is to minimize the total distance trav-
eled. Recently, Berman et. al. (Berman eta/. 1996)
investigated the case where the obstacles are orieated
rectangles. Other work relating to exploring geometric
domain are be found in (Lumelsky & Stepanov 1986;
1987; E. Bar-Eli & Yah 1992; Lumelsky & Tiwari 1994;
Taylor & Kriegman 1994; Angluin, Westbrook, & Zhu
1998).

Betke et. a/. (Betke, Rivest, & Singh 1995) and
Awerbuch et. al. (Awerbuch el al. 1995) investigated
the problem with the additional constraints that the
robot is required to return to its starting point for ’re-
fueling’ periodically. Bender and Slonim (Bender 
Slonim 1994) illustrated how two robots can collabo-
rate in exploring directed graph with regular degree
and indistinguishable vertices.

Preliminary. Let in(v) and out(v) denote the inde-
gree and outdegree of the vertex v. We say a vertex
is deficient if its indegree is greater than its outdegree.
The deficiency of a vertex v, d(v), is

in(v) - out(v) if v is deficientd(v) = 0
if v is not deficient

The minimum number of edges needed to add to a
graph G to make it Eulerian is called the deficiency of
G and is denoted here by d. Clearly,

d = d(v).
vfiV

We say that a vertex is exhausted if the robot has
traversed all its outgoing edges. If the robot reaches
an exhausted vertex v then we say the robot is stuck
at v.

EXPLORE(s)
1 stack := 0
2 v(a’) = (s}
a E(a’) = 
4 u:ms
5 do
6 do
7 if u is not exhausted then
8 traverse an unexplored edge (u, v)
9 V(G’) :---- V(G’) {v}
10 E(G’) --- E(G’) O {(u, v)}
11 push(v)
12 u :---- v
13 until stack at u (i.e., u is exhausted)
14 do
15 y := pop(stack)
16 until stack = ¢ or y is not exhausted
17 if (stack ~ 0) then
18 find a shortest path from u to y in Go

19 traverse the path so that the robot is at y
20 u := y
21 until stack = 0
22 return G’

Figure h An algorithm for exploring an unknown
graph that traverses at most O(dn~ + m) edges.

A Simple Depth First Search Strategy
Suppose a is the vertex where the robot begins its ex-

ploration. To simplify our discussion, we assume the
graph the robot is exploring is a ’modified’ graph ob-
tained by adding a new vertex s with an edge (s, a) and
the robot begins at s. Note that although the modified
graph is no longer strongly connected, it is still possi-
ble for the robot to traverse all the edges. With this
assumption, the vertices along any path that begins
with s have even degree except the last vertex and s.

Our strategy EXPLORE is shown Figure 1. It simply
traverses an. unexplored edge when there is one (Step 
to 13) until the robot is stuck. As the robot traverses
the edges in this greedily manner, we push the current
vertex into a stack (Step 11).

When the robot is stuck, we simply pop the stack
until either the stack is empty or the poped vertex
y is not exhausted. In the latter case, we claim (see
Claim 2) that there is a path from u that leads to y in
the graph G* obtained by the robot’s exploration so far.
The robot then traverses this path to y and repeat the
greedy traversal of the unexplored edges (by letting 
be y and repeat Steps 6 to 13). In the former case, we
show below that the robot has traversed all the edges
of G.

Since we pop a vertex out of the stack only if it is
exhausted, we have the following observation about the
vertices in G’ that have not been exhausted.

Observation 1 The vertices in G’ that are not ex-

63



Figure 2: The graph Gp induced by P

hausted are in the stack.

Thus, if we can show that (see Claim 2) there is 
path connecting u to the unexhausted vertex y in GI at
Step 18, then we are sure that the robot is able to tra-
verse an unseen edge whenever there is an unexhausted
vertex in GI. Thus, by Observation 1, when the stack
is empty, all the vertices in G~ are exhausted. Since G
is strongly connected, the latter implies that the robot
has completed it’s exploration of G.

Claim2 In Step 18, there is a path from u toy in
Gt.

Proof: The stack obtained just after the execution
of the loop in Steps 6 to 13, induces a path P from
s to u which passes through y (maybe several times).
Observe that the vertices from the last occurrence (on
P) of y to u in the path P are all exhausted except y.
Consider the graph Gp induced by P. It is clear that
(see Figure 2) Gp is a graph with strongly connected
components C1, ..., Ct such that there is exactly one
edge going from Ci to C~+1 and u is in Ct. If y is also
in Ck as u then there is a path from u to y.

Thus, suppose y is in Cl such that i ~: k. Con-
sider the graph G~. If there is no path in G~ from
u to any vertex in Cj,j < i, then the vertices in G~
reachable by u cannot reach the vertices in C1,..., Ci.
By Observation 1, only the vertices in Cx,..., C/can
be unexhausted, thus, there is no path from u to y in
the unknown graph G. This contradicts the strongly
connectedness of G. []

In the following, we derived an upper bound on the
number of edge traversals by EXPLORE. The proof in-
volves assignment of labels to the edges as we traverse
them. This label assignment is to facilitate the anal-
ysis of the algorithm and has nothing to do with the
correctness of the algorithm.

Clearly, the first vertex u where the robot is stuck in
Step 13 has to be a deficient vertex. The sequence of
vertices which we poped from the stack in Steps 14 to
16 induces a path P’ in G from u to y. Give the edges
in P’ excluding those lying on a cycle a label ’1’ and
set a counter D to 2. Subsequently, each execution of
Step 14 to 16 induces a path P’ from u to y. We label
the edges in P’ according to the following rules:

Rule I: Suppose the robot is stuck at a vertex u
where there is a label i such that there are more1

1 In fact, it is easy to see that in this case, there is exactly

one more outgoing edge than incoming edges with label i.

outgoing edges with label i than incoming edges with
label i. Then we add to each edge in P~ excluding
those lying on a cycle (in P~) a label i. If there are
more than one such i, EXPLORE arbitrarily selects
one such i.

Rule 2: Suppose the condition in Rule 1 does not
hold. It is clear that for the vertex u, the num-
ber of incoming traversed edges exceeds the number
of traversed outgoing edges (and all outgoing edges
have been traversed). That is, u must be a deficient
vertex. In this case, we label the edges in P’ exclud-
ing those lying on a cycle (in PI) the value of D and
increment D by 1.

Notice that a new label is created only when Rule
2 is applied. This implies that u is deficient and we
can ’blame’ the activation of Rule 2 on 1 unit of G’s
deficiency. Thus, we have the following observation.

Observation 3 There are at most d labels and Rule
2 is invoked at most d times.

Lemma 4 For each vertex u and each label i, Rule I
is applied at most once. In other words, each edge is
assigned at most d (distinct) labels.

Proof: Consider the following two cases when an
outgoing edge of u is labeled i for the first time:

Case 1: u is exhausted. In this case, We assign an
incoming edge of u a label of i and continue popping
the stack. Subsequently, whenever a new outgoing
edge of u is labeled i, an unlabeled incoming edge of
u is labeled i. Thus, for the vertex u, the number of
incoming edges that are labeled i is the same as the
number of outgoing edges. That is, in the future,
Rule 1 will never be applied to u with label i.

Case 2: u is not exhausted. In this case, we apply
Rule 2. We stop popping the stack and unlike Case
1, we do not assign a label of i to any of u’s incoming
edges. The robot then continue to explore an unseen
outgoing edge of u. Notice that for all the other
vertices, the number of incoming edges with label i is
the same as the number of outgoing edges with label
i. Subsequently, no new edge is labeled i until Rule
1 is applied to u with label i. When this happens,
there is exactly one incoming edge and one outgoing
edge of u that are labeled i. Note that u is now
exhausted and we can apply similar argument as in
Case i.

[]
Observation 3 and Lemma 4, imply that the robot

is stuck at most dn times. Each time the robot is
stuck, it traverses at most n traversed edges to reach
an unexhaust vertex in Step 18. The robot traverses
seen edges only in Step 18 when it is stuck.

We can view the popping of a vertex from the stack
in step 14 as poping an edge and each edge can be
shown to poped exactly once. Moreover, by Observa-
tion 3, Step 18 is executed at most dn time and each

64



execution of Step 18 takes O(n). Thus we have the
following theorem.

Theorem 5 The number of edges traversals by EX-
PLORE is at most dn2 + m and the time complexity is
O(dn~ + m).

Future Directions

The algorithm EXPLORE presented in this paper is
based on a simple depth first search strategy. The
analysis is quite straightforward and lax. However, it
indicates a possibility that a variant or tighter analysis
of EXPLORE may give rise to a better bound, possibly
metting the lower bound of Dung and Papadimitriou
(Dung & Papadimitriou 1990) on the number of edge
traversals which warrants further investigation. Al-
though it is unlikely that EXPLORV. outperforms known
algorithms (see (Korf 1990; Pemberton & Korf 1992;
Stentz 1995; Smirnov et al. 1996)) that are used 
practice, we hope that our analysis will provide new
insight to this classical problem which gives us a more
efficient strategy.

Notice that EXPLORE does not assume that the
robot knows how many unseen edges are leading into
or out of the visited vertex. Such information may be
available in practice and may result in more efficient
exploration algorithm.

Another research direction is to consider using mul-
tiple robots to explore the graph. It is interesting to
know if the total number of edge traversals can be made
smaller than using a single robot.

Acknowledgements

The author thanks Sally Goldman, Monika Henzinger,
Subhash Suri and Stephen Scott for helpful conversa-
tions regarding this work.

References
Albers, S., and Henzinger, M. 1997. A sub-
exponential algorithm for exploring an unknown
graph. In Proc. 29th Annu. ACM Sympos. Theory
Comput. To appear.

Angluin, D.; Westbrook, J.; and Zhu, W. 1996. Robot
navigation with range queries. In Proc. 28th Anna.
ACM Sympos. Theory Comput. 469-478.

Awerbuch, B.; Betke, M.; Rivest, R.; and Singh, M.
1995. Piecemeal graph exploration by a mobile robot.
In Proc. 8th Anne. Conf. on Comput. Learning The.
ory, 321-328. ACM Press, New York, NY.

Bender, M. A., and Slonim, D. K. 1994. The power
of team exploration: two robots can learn unlabeled
directed graphs. In Proceedings of the 35rd Annual
Symposium on Foundations of Computer Science, 75-
85. IEEE Computer Society Press, Los Alamitos, CA.

Berman, P.; Blum, A.; Fiat, A.; Karloff, H.; Rosen,
A.; and Saks, M. 1996. Randomized robot navigation
algorithms. In Proceedings SODA 96. to appear.

Betke, M.; Rivest, R. L.; and Singh, M. 1995. Piece-
meal learning of an unknown environment. Machine
Learning 18(2/3):231-254.

Blum, A., and Chalasani, P. 1993. An on-line
algorithm for improving performance in navigation.
In Proc. 3~th Anne. IEEE Sympos. Found. Compet.
Sci., 2-11. IEEE Computer Society Press, Los Alami-
tos, CA.
Blum, A.; Raghavan, P.; and Schieber, B. 1991.
Navigating in unfamiliar geometric terrain. In Pr0c.
~3th Anne. ACM Sympos. Theory Comput., 494-504.
ACM.
Deng, X., and Papadimitriou, C. H. 1990. Explor-
ing an unknown graph. In Proc. 31th Anne. IEEE
Sympos. Found. Comput. Sci., volume I, 355-361.
Deng, X.; Kameda, T.; and Papadimitriou, C. 1991.
How to learn in an unknown environment. In Proc.
of the 3~nd Symposium on the Foundations of Comp.
Sci., 298-303. IEEE Computer Society Press, Los
Alamitos, CA.

E. Bar-Eli, P. Berman, A. F., and Yah, P. 1992. On-
line navigation in a room. In Proc. 3rd SODA, 75-84.
Keonig, S., and Smirnov, Y. 1996. Graph learning
with a nearest neighbor approach. In Proceedings of
the 9th Conference on Computaitonal Learning The-
ory, 19-28.

Korf, R. 1990. Real-time heuristic search. Artificial
Intelligence 42(3):189-211.
Lumelsky, V., and Stepanov, A. 1986. Dynamic path
planning for a mobile automaton with limited infor-
mation on the environment. IEEE Trans. on Auto-
matic Control AC-31:1059-1063.
Lumelsky, V., and Stepanov, A. 1987. Path plan-
ning strategies for a point mobile automaton moving
amidst unknown obstacles of arbitrary shapes. Algo-
rithmica 2:403-430.
Lumelsky, V., and Tiwari, S. 1994. An algorithm for
maze searching with azimuth input. In IEEE Confer-
ence on Robotics and Automation, 111-116.
Papadimitriou, C., and Yannakakis, C. 1991. Shortest
path wothout a map. Theoretical Computer Science
84:127-150.
Pemberton, J., and Korf, R. 1992. Incremental path
planning on graphs with cycles. In Proceedings of the
AI Planning Systems Conference, 179-188.
Smirnov, Y.; Keonig, S.; Veloso, M.; and Simmons,
R. 1996. Efficeint goal-directed exploration. In Pro-
ceedings of the National Conference on AL 292-297.
Stentz. 1995. The focussed d* algorithm for real-time
replanning. In Proceedings of the International Joint
Conf. on AL 1652-1659.
Taylor, C. J., and Kriegman, D. J. 1994. Vision-based
motion planning and exploration algorithms for mo-
bile robots. In Proc. of the Workshop on Algorithmic
Foundation of Robotics.

65




