
Using Abstraction to Interleave Planning and Execution

IHah R. Nourbakhsh
Robotics Institute

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

illah@cs.cmu.edu

Abstract
Abstraction is a technology that enables interleaved
planning and execution, the much sought-after quality
of a robot architecture that can both plan and act (and
plan and act and plan...) in short order. This paper
presents a definition for Abstraction and for an
architecture composed of a collection of abstractions,
or an Abstraction System. We span both the
theoretical extreme of formally defining abstraction
and the empirical extreme of implementing an
Abstraction System on a real-world robot and
collecting compelling experimental results.

I What is Abstraction?
Abstraction is a term that has been used by many to
denote some strategic form of problem simplification.
Particular instances of abstraction can be found in early
planning literature (Sacerdoti 1974), while more recent,
formal discourse in the planning community has led to
crisp definitions of abstraction (Holte et al. 1996).

The most elemental ingredient of abstraction is a
representational transformation. An abstraction can
perform a transformation on the original search space,
yielding a new, less complex search space in which
discrimination between (irrelevant) details has been
removed. More formally:

An Abstraction is a mapping from the original
search space to an abstract search space, such
that every state in the original search space is
mapped to exactly one state in the abstract search
space.

l°O
Pigure 1: A security robot reasoning at two levels of abstraction

This surjective mapping of states, known as State
Abstraction, is fully general. Even in the case of

continuous worlds, volume-based reasoning can reduce
representation requirements to finite degrees, thereby
allowing this definition to function without difficulty
(Erdmann 1990).

Consider Figure 1. For the security robot shown, an
abstract space can completely ignore the position of the
robot, differentiating world state only on the basis of the
security of areas on the robot’s map. This abstraction
will be useful when reasoning strategically about highest-
level goals (keep all areas secure). Note, however, that
the abstract problem space does not obviate the need for
the ground problem space, for the robot must reason
about its own position at some level.

Not surprisingly, the surjective mapping alone does not
suffice for defining useful abstractions. After all,
arbitrary partitioning of a set of states is possible, and not
every partition proves to be useful during planning.
Those partitions that are useful are limited to those that
can be refined, and so we define a sound abstraction:

A Sound Abstraction is an abstraction from the
ground search space G to the abstract search
space A such that, for every arc between two
states in A there is a conditional plan between
corresponding states in G.

This definition, which places constraints on the arcs of
the abstract search space, provably ensures that whenever
there is a path between two states in an abstract space,
there must be an executable conditional plan from the
corresponding initial conditions to the corresponding
goal conditions in the ground problem space.

[zee-preq
[see-profl

go-lab ~ .
go-office ~ tsee-noonej

Figure 2: in perceptual abstraction, the abstract percepts found
and no-prof are implemented via a ground conditional plan.

66

From: AAAI Technical Report WS-97-10. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

This definition also clarifies an additional, crucial point:
the search spaces we discuss can encode conditional
plans, meaning that we are presenting a formalism for
both action and perception.

Perception is formally a guarantee of run-time
information gain. Indeed, this information gain can be
so important to successful plan execution that some
architectures explicitly plan to a perceptual branch, then
execute the partial conditional plan early (Olawski et al.
1993). Abstraction results in new problem spaces that
also contain perceptual branch points, just like a ground
problem space. The difference is that the abstract
perceptual branch is, in fact, implemented via an entire
conditional plan, consisting of action and perception. In
previous literature, this concept has been called
perceptual actions (Etzioni et al. 1992) and is often
wrongly relegated to ground-level planning spaces.
Figure 2 demonstrates such an abstract percept and its
ground-level implementation.

Goto San FranN~ ~Opera

/,
Get on Highway 280 Find parking

Figure 3: The abstract problem space for an opera-attending robot
may contain only states and actions of a coarse-grained nature,
ignored such specifics as the location of the car keys, the amount
ofgns in the car’s tank, etc.

Figure 3 demonstrates a simple example of an abstraction
that can aid in a realistic planning scenario. The abstract
problem space ignores fine-grained motion as well as a
host of temporally short actions. Planning in the abstract
space can be done quickly all the way to the goal, which
is to reach the Opera. Then, the first step of this abstract
conditional plan can be refined, providing a provably
correct subgoal to the ground problem space and thereby
making the ground-level planning problem tractable.

It is important to note that this simple example fits the
formally crisp concept of sound abstraction defined
above. This intuitive approach to using abstraction is
grounded in sufficient formal detail to enable provable
properties for the system as a whole (Nourbakhsh 1997).

2 Abstraction Systems
A single level of abstraction usually does not suffice for
any but the most trivial of problems. A popular
conclusion is to generalize to the Abstraction Hierarchy,
which simply defines abstractions recursively to create a
linearly ordered set of problem spaces ranging from the
most abstract to the ground problem space (Sacerdoti
1974), (Knoblock 1994).

The computational gains of doing abstraction can be
shown to carry over to this recursive case of Abstraction
Hierarchies; however, one important shortcoming has led
us to an alternative.

Abstraction is about strategic simplification. Given a
particular set of initial conditions and goal conditions
(i.e. a context) simplification is often able to eliminate
factors from consideration that are irrelevant to the
problem at hand. But such factors change from problem
to problem, even within one problem domain.

For instance, the location of the robot’s raincoat may be
irrelevant on a sunny day but crucial if rain is in the
forecast and the robot’s tasks take it out of doors.
Therefore, it makes sense for there to be alternative
abstractions of a ground problem space, since each
alternative will be applicable in a limited set of contexts.

[Package pos]

Robot nay, package
[vos~umbrella IIs° botnav’packag ep°s)

[robot batteries, robotpos,’]
[packa~ pos, umbrellapos~

Figure 4: An abstraction system for a delivery robot that operates
in the rain sometimes can have parallel problem spaces in which
rain and umbrellas are either dealt with or not handled. The
position of the umbrella becomes an iaelevant feature--but only
in dry weather.

We formalize this concept by defining an Abstraction
System as a partial order of abstractions:

An Abstraction System is a set of search spaces
that are partially ordered by the abstraction
operator. The partial order must have a unique
minimal element, called the ground problem
space.

Figure 4 depicts an abstraction system for a delivery
robot that is sometimes exposed to rainy weather. In this
and in other cases, it is important to note that it is not
possible to transform this partial order into any desirable
total order--the problem is truly a partial-order one i.

Creating sets of models with partial-order relationships
between them is not new. For example, (Nayak et al.
1992) used partial orders of models in the context of
model-based reasoning and diagnosis. Here, we apply

! There is added complexity that we will not describe here: in partial-order

systems it is important to guarantee that consistent state-mapping occurs
via all paths through the abstract spaces. This self-consistency property
can be formalized and is necessary if soundness and completeness is to he
proven. For details, see ¢qourbakhsh 1997).

67

similar techniques to defining an architecture for
abstraction, which we shall then use to interleave
planning and execution on a robot platform.

partial order may offer more than one possibility? The
short answer is that one approach that certainly succeeds
is to call all qualified problem spaces in parallel,
terminating the ongoing planning processes when one of
them succeeds.

a b

Rgum 5: A mmdaN expomatinl search (a) is tramfom~ by
mbsoQl in Co), denoted by a black oval, into an initial w, atch out
to the subgml, execution of that partial plan, then resumption of
planning to the final goal.

To enable interleaving planning and execution, we must
devise a control algorithm that makes use of
opportunistic execution during the planning process.
Figure 5a depicts a standard search space at the ground
problem space.

Figure 5b depicts the same search space when a higher,
abstract search space provides a subgoal. The subgoal
enables planning and execution at the ground problem
space level to be interleaved with real-world execution.
This interleaving and the subgoaling provided by
abstraction both result in search space savings, denoted
by the white, unsearched area of the ground problem
space.

w,,I
Figure 6: A flowchart desorlptiou of the control algorithm used in
every problem space in the abstraction system,

In order to implement the aforementioned flow of control
between abstraction levels in an abstraction system, each
problem space must opportunistically refine plan steps
when they are sure to be on a path to the goal, given
subgoais from higher-level abstract problem spaces.
Figure 6 is a flowchart that depicts the algorithm that
must be implemented in each problem space. Note that
the concept of opportunistic refinement applies to every
level except the ground problem space; at this level,
refinement equals real-world execution.

An obvious question during the refinement process is:
which lower problem space should be chosen, since a

Figure 7: An example ofa Belmvtmal Trace. P indicates planning
and B indicau~ execution. The lowest row is the ground woblem

which is why it includes execution unit¢ The next two
higher rows me abstract search spaces.

Figure 7 is an example of a Behavioral Trace, a very
useful tool for describing the overall, observable behavior
of the autonomous system (Genesereth 1993). At the
ground level, an observer would see the autonomous
system executing actions in groups, with "hOOp’s" in
between2. As one examines higher levels of abstraction,
a waterfall pattern of execution becomes clear; high-level
planning always results in a series of refinements all the
way to the lowest level, with execution thereafter. Then,
planning continues (to the next subgoal) at a higher level
and the same cycle ensues.

This behavioral trace demonstrates quite clearly that
abstraction is enabling interleaving by providing both
subgoais and a formally crisp relationship between
problem spaces, so that the mapping of that subgoal is
well-defined.

As we discuss in the next section, this is quite literally
how we have implemented abstraction systems: by
formally specifying, in Lisp, the mapping between states
and state sets in neighboring abstraction layers. Then, by
simply attaching planners to each problem space in the
abstraction system, we have demonstrated highly
interleaved solutions to purposefully overcomplicated
problem scenarios.

3 Implementation: Balin of Smith
In recent years, a popular question has been whether
abstraction can, in the final analysis, enable
computational savings, or whether the overhead of using
multiple search spaces simultaneously offsets any
potential search space savings.

2 Noop is the operator our robot executes when planning ensues.
Physically, the robot stands still duflng planning, and this is precisely the
behavioral indication that interleaving is taking place. As it turns out,
Balin is at a standstill for such a short time that it is unnoticeable by human
selltms.

68

We set out to address this in several ways, one of which
was to create a real-world abstraction system that
demonstrated measurable cost savings. To stress the
need for abstraction, we invented a highly complex
scenario in which a robot must satisfy a set of disparate
goals and must reason about a large set of environmental
properties.

Table 1: Tasks and feature il lemented b~Balin
Tasks State Features

navigation position, obstacles, world map
prof singing location of profs, songs
hourly chime temporal indexing
working in rain umbrella position, manip.

Table 1 summarizes the result of this design effort.
Considerations would range from position and obstacle
detection to temporal reasoning in order to achieve the
real-time goal of hourly chiming. The primary task of
the robot would involve Professor happinessnits task
was to sing regularly to a set of professors in order to
keep them in good spirits. Balin’s goal would be to
accomplish overall Professor happiness while meeting its
other constraints, including hourly chimes for the author
and careful reasoning to either stay clear of "rainy"
hallways or retrieve its virtual umbrella3.

Figure 8: Balin of Smith

3
It does not really rain in Smith Hall, where Balin operates. This part of

the scenario is altogether artificial.

Figure 8 is a picture of Balin in its incarnation. Balin is
a Nomad-150 mobile robot that wanders the halls of
Smith Hall at Carnegie Mellon’s Robotics Institute. The
processor is a Macintosh Powerbook 170 Dinosaur
running Macintosh Common Lisp 2.01. This MCL
image implements every problem space of the abstraction
system, from the lowest-level ground problem space to
the highest problem space that is three levels of
abstraction away.

Prof s ft~m~s

/ ~l’ ReR[tive r°~a~solrC~lepos),

ground problem space

Figure 9: Balin’s abstraction system

Figure 9 depicts the abstraction system we chose for
Balin. The ground problem space captures all relevant
details of the scenario. The scenario is quite complex,
resulting in more than 109 possible states at this level, 8
possible low-level actions and 32 possible perceptual
input vectors, or percepts (Nourbakhsh 1997). Clearly,
we succeeded in creating an unwieldy ground problem
space in the hopes that abstraction would mitigate the
complexity of searching this space.

As one travels up the 4-deep abstraction system, the
complexity of the search spaces is diminished rapidly. At
level 1, two alternative search spaces distinguish between
rainy and dry contexts, in the former case reasoning
explicitly about actions and events that involve picking
up the umbrella while dropping all pS.ckup-umbrel la
arcs and ignoring the umbrella’s position in the latter.

At level 2, the problem space distinguishes only between
states sets based on changes in the relative positions of
the robot and the professors (and the author), thereby
ignoring singular information about the position of the
robot. Note that this is a valid form of irrelevance at this
reasoning level, although it is crucial to reason about
one’s own position at lower levels of reasoning in order
to be able to navigate.

69

Finally, level 3 incorporates a representation that
captures only state distinctions involving the happiness
levels of professors and the timeliness of the robot’s
chimes. These, after all, comprise the top-level goals of
the robot, and so this highest-level space acts as a task
scheduler, sequencing and interleaving satisfaction of
these top-level goals. Complete planning to the goal at
this level is trivial since the state set size is merely 16
and the branching factor turns out to be, on average, 4.

The goal was to create a complex environment for a
robot, so that an abstraction system would be not only
feasible but useful. Balin demonstrated both of these
points easily, as the results in the following section
summarize.

4 Three Results
In this section, we present three types of results:
empirical results on Balin demonstrate measurable
performance improvement, as something of an existence
proof that abstraction can indeed help. A brief
computational result demonstrates that abstraction saves
at the expoaent-level. Finally, we summarize formal
results that enable architectural completeness and
soundness to be proven for the model of abstraction
systems.

Empirical Results
Over the course of approximately one week, we exercised
Balin’s abstraction system in Smith Hall (Carnegie
Mellon’s Robotics Institute) and collected planning-cost
data. Execution runs lasted approximately one hour on
these runs.

Table 2: Planning time results forBalin experiments
Planning time Isec) No abstraction

Level 3 0.09 0.09
Level 2 0.19 7.0
Level 1 0.31 >6h
Level 0 2.13 --

Table 2 summarizes the total planning time for Balin at
each level of abstraction. The rightmost column

indicates the total planning time at that level of
abstraction if the abstraction system is not used. Note
that the top-most level suffers no computational setback
in this case, since it receives no subgoal information from
a higher level anyway, even when an abstraction system
is in place.

As is indicated by the table, ground level planning with
no abstraction was impossible. Planning at the first level

of abstraction is tractable, but actually takes longer than
the entire execution-time!

A final note about this table regards the relative sizes of
planning times in each space. Note that the total
planning time in successively higher problem spaces
diminishes quickly. This is the computational overhead
of abstraction, and the fact that the total overhead is
much smaller than the total planning time at the ground
level demonstrates that it is quite possible for the
computational gains of abstraction to handily outweigh
its overhead.

Computational Savings
Planning is traditionally a search performed on the
exponential search space. If there are a actions and p
percepts in this search space, then planning is
exponential in the length of the plan: pka~.

Conventional means of abstraction offer search space
saving because the abstract problem-solving process
informs the ground search space with subgoals, reducing
the depth to which the planning system must blindly
search. If the original solution is of length k and the
abstract suhgoal ’cuts’ at the midpoint of the solution,
then we transform the search space size from p~ak to
p~ av2 + p~ (pV2 a~) = p ~Z a~ (l +p V2).

Now consider interleaving planning and execution.
Suppose that the subgoals provided by the abstraction are
guaranteed to be correct (a sound abstraction). In that
case, ground level planning can stop after a conditional
solution to the next unachieved subgoal is in hand. Once
the system executes that solution, reaching a particular
node at the fringe of the plan, planning resumes.

For our previous formula, this further reduces the search
space to 2p~a~. In the general case, when abstraction
yields l subgoals for a k-step problem, interleaving
abstraction and execution yields the following savings at
the ground level:

(1) pka~ (no abstraction)
(2) bounded byptna~(lpk) (with abstraction)
(3) bounded by lptna~ (interleaving + abstraction)

The intuition behind these savings, which are indeed
occurring in the exponent, is that we make maximal use
of run-time information gain (in the form of sensory
feedback) to reduce perceptual branching in addition to
the well-known reduction in effectory branching.

7O

Formal Properties
A further result stems from the fact that our definition of
abstraction and abstraction systems fits formally within
the mathematical framework of state and property
representations. By leaning on the mathematical and
graph-theoretic foundations of this formal work and
appealing to formal definitions of soundness and
completeness for robot architectures (Nourbakhsh ?),
are able to prove soundness and completeness.

Theorem 1: There exists a search algorithm ABS that
is sound and complete for all consistent, sound
abstraction systems.

In this paper, we have not delved into sufficient detail to
present the ABS algorithm fully; it is, however, a
somewhat complex extension of the fiowehart shown in
Figure 6.

In the context of a robot architecture, soundness indicates
that the system will never demonstrate a false positive on
goal achievement, assuming the ground level problem
space is loyal to the real world. Completeness indicates
that the system will always achieve the goal if there
exists a conditional plan in the ground space from the
initial conditions to the goal conditions 4.

Some readers will find this formal result to be
meaningless, as they care primarily about the utility of
the concepts presented. Another group of readers will
find this to be the most compelling result, for it shows
that a practical, implementable architecture can be
sufficiently formal as to attain well-behaved and
desirable mathematical properties.

5 Related Work
The majority of research in the area of abstraction has
focused on the speedup provided by abstraction, via
subgoaling, in the context of planning only (Holte et al.
1996), (Knoblock 1994). Although analysis of such
speedup is possible using the abstraction system we have
defined here, we have chosen instead to concentrate on
producing a methodology that allows abstraction to be
leveraged into the interleaving of planning and
execution.

Instances of this particular use of abstraction can be
found in both the motion planning and manipulation
literature. (Donald 1989), (Lazanas & Latombe 1995)
serve as two examples of the motion planning
community’s use of TC actions. The TC, or termination
condition action assumes that actions are durative and

4 Assuming (1) the world is static, and (2) you may have to wait a long,
long time.

have associated termination criteria. Upon execution, an
action is engaged and remains in force until the
termination criteria is met.

Lazanas & Latombe effect multistep planning in the TC
action domain using an iterative algorithm,
nondeterministically choosing a landmark or a set of
landmarks as the goal of the next TC action. The
formation of landmarks and their use as subgoals is in
fact a representation of the initial motion planning
problem in a more abstract search space. In this more
abstract search space, the action branching factor, the
perceptual branching factor and the solution length are
all decreased.

In the motion planning community, (Lozano-Perez et al.
1984) demonstrate that a discrete number of directional
backprojections can be used during search instead of the
examination of an infinite set of continuous
backprojections. This is precisely a form of state
abstraction, as formalized by our definition of
abstraction. Indeed, Bruce Donald (Donald 1989) also
demonstrates this form of abstraction through his critical
slice mechanism, which is a method for disoretization
while preserving soundness and completeness.

6 Conclusions
We have presented a general, formal framework for
representing and reasoning about abstraction .systems.
Our approach is of particular interest because it has been
successfully tested on a real-world robot that was placed
in a purposefully "hyper-complex" world. Furthermore,
computational and formal results demonstrate that
abstraction can provide savings at the exponent-level
while preserving the soundness and completeness of the
underlying planner.

The partial order concept at the heart of our definition of
Abstraction Systems offers a method for reasoning about
domain characteristics that are relevant to a particular
problem at hand. As such, the partial order
representation allows the implementation of very
intuitive notions of irrelevance.

Many topics remains to be addressed in this discipline.
The automatic generation of abstraction systems and the
automatic selection of the right abstract search space
during refinement aretwo such open topics.

Acknowledgments
Michael Genesereth, Daphne Koller and Lise Getoor
have all played key roles in the development of the ideas
presented in this paper. The Charles Stark Draper
Laboratory provided funding for this research. Stanford

71

University’s Robotics Laboratory provided the Nomad
150 mobile robot.

References
Donald, B. 1989. Error Detection and Recovery in
Robotics. Lecture Notes in Computer Science, 336.
Springer-Verlag.

Erdmann, M. 1990. On Probabilistic Strategies for Robot
Tasks. Technical Report #1155, Massachusetts Institute
of Technology.

Etzioni, O., Hanks, S., Weld, D., Draper, D., Lesh, N.
And Williamson, M. 1992. An Approach to Planning
with Incomplete Information. In Proceedings of the 3"d

International Conference on Principles of Knowledge
Representation and Reasoning, pp. 115-125.

Genesereth, M. 1993. Discrete Systems. Course notes for
CS 222. Stanford, CA: Stanford University.

Holte, R., Mkadmi, T., Zimmer, R. and MacDonald, A.
1996. Speeding Up Problem Solving by Abstraction: A
Graph Oriented Approach. Artificial Intelligence.

Knoblock, C. 1994. Automatically generating
abstractions for planning. Artificial Intelligence, 68(2).

Lazanas, A. and Latombe, J.-C. 1995. Motion planning
with uncertainty: a landmark approach. Artificial
Intelligence, 76(1-2): 287-317.

Lozano-Perez, T., Mason, M. and Taylor, R. 1984.
Automatic Synthesis of Fine-Motion Strategies for
Robots. International Journal of Robotics Research,
3(1):3-24.

Nayak, P., Joskowicz, L, Addanki, S. 1992. Automated
Model Selection using Context-Dependent Behaviors. In
Proceedings, Tenth National Conference on Artificial
Intelligence. AAAI Press.

Nourbakhsh, I. 1997. Interleaving Planning and
Execution for Autonomous Robots. Kluwer Academic
Publishers, Boston.

Olawsky, D., Krebsbach, K. And Gini, M. 1993. An
Analysis of Sensor-Based Task Planning. Technical
Report #93-94. Minneapolis, Minn.: Academic.

Sacerdoti, E. 1974. Planning in a hierarchy of abstraction
spaces. Artificial Intelligence, 5:115-135.

72

