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Abstract

It has previously been established that for
Markov learning automata games, the game equi-
libria are exactly the optimal strategies (Wit-
ten 1977; Wheeler & Narendra 1986). In this
paper, we extend the game theoretic view of
reinforcement learning to consider the implica-
tions for "group rationality" (Wheeler & Naren-
dra 1986) in the more general situation of learn-
ing when the the Markov property cannot be
assumed. We show that for a general class of
non-Markov decision processes, if actual return
(Monte Carlo) credit assignment is used with
undiscounted returns, we are still guaranteed the
optimal observation-based policies will be game
equilibria when using the standard "direct" rein-
forcement learning approaches, but if either dis-
counted rewards or a temporal differences style
of credit assignment method is used, this is not
the case.

Introduction
Reinforcement learning (RL) is a set of techniques that
have been developed to effect unsupervised learning in
agents interacting with a initially unknown and possi-
bly changing environment. It is classically formulated
in a table lookup form, where the agent can be in one of
a finite number states at any time, and has the choice
of finite number of actions to take from within each
state. For this representation, powerful convergence
and optimality results have been proven for a number
of algorithms designed with the simplifying assump-
tion that the environment is Markov, e,g. 1-step Q-
learning (Watkins 1989). With this assumption, the
problem of learning can be cast into the form of find-
ing an optimal policy for a Markov decision process
(MDP), and methods like 1-step Q-learning (QL) 
be shown to be form of on-line asynchronous dynamic
programming.

A Markov decision process consists of a set of states
and a set of possible actions for the agent to choose
from in each state. After the selection and execution
of an action by the agent, a state transition occurs
and the agent receives an immediate payoff (or re-

ward). By Markov, it is meant that a decision pro-
cess has state transition probabilities and immediate
payoff (or reward) expectations dependent only upon
the action taken within each state, and in particular is
therefore independent of the history prior to arriving
in that state.

In practice, however, RL techniques are routinely ap-
plied to many problem domains for which the Markov
property does not hold. This might be because the en-
vironment is non-stationary, or is only partially observ-
able; often the side-effects of state-space representation
can lead to the domain appearing as non-Markov to a
reinforcement learning agent.

In this paper, we examine various issues arising from
applying standard RL algorithms to non-Markov de-
cision processes (NMDPs). In particular, we are in-
terested in the implications of using a "direct" (Singh,
Jaakkola, & Jordan 1994) or observation-based method
of RL for a non-Markov problem, i.e. where the prob-
lem is known to be non-Markov but partial or noisy
state observations are presented directly to the RL
algorithm without any attempt to identify a "true"
Markov state.

The approach we take is to revisit the classic for-
mulation of RL as as n-player learning automata game
(Witten 1977; Wheeler & Narendra 1986).

Learning Automata Games
Wheeler and Narendra (1986) describe the learning au-
tomata game scenario as one of "myopic" local agents,
unaware of the surrounding world, not even knowing
that other agents exist. Each local agent, in attempt-
ing to maximise its own local payoff, simply chooses.an
action, waits for a response, and then updates its strat-
egy on the basis of information accumulated to date.
In this formulation, there is no explicit synchronisation
of decision makers.

We can conceptually decompose a classic lookup-
table representation RL system into such an automata
game, with one automaton (player) for each system
state, the policy action for state i becoming the local
strategy for the i th learning automaton. Indeed, this
game theoretic view dates back to the earliest work in
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RL, firstly in the motivation for the BOXES algorithm
(Michie & Chambers 1968), and later more explicitly
in Witten’s analysis of his adaptive optimal controller
for discrete-time Markov environments (Witten 1977).

Casting RL into an n-player game, it is convenient at
times to translate the familiar MDP terminology into
equivalent game theoretic terms. Instead of policy 7r we
might refer to group or global strategy a. Instead of a
deterministic policy, we refer to a pure strategy, and the
term mixed strategy replaces stochastic policy. Finally,
the optimality properties of standard RL methods like
Q-learning for Markov systems corresponds to the no-
tion of "group rationality" as described by Wheeler
and Narendra (1986).

Fundamental to a game theoretic analysis is the no-
tion of a game equilibrium. A Nash equilibrium is a
global strategy that has the property that each com-
ponent local strategy for a player is the best available
play for that player assuming the other players play
their local strategies consistent with that global strat-
egy (Fudenberg & Tirole 1991).

In dynamic programming (DP) terms, a Nash equi-
librium corresponds to a policy that is stable under
policy iteration. It is well known (e.g. Puterman 1994)
that for a MDP all suboptimal policies are unstable
under policy iteration i.e. one step of the policy itera-
tion process will result in a different policy. Moreover,
the new policy will be a better policy; and so the pro-
cess of policy iteration can be viewed as a hill-climbing
process through the policy space of stationary policies,
i.e. the result of each step in policy iteration results in
a monotonic improvement in policy until an optimal
policy is reached.

The special properties of a Markov domain ensure
the strategy/policy space to be well-suited to a hill-
climbing strategy; there are no "local maxima" or sub-
optimal equilibrium points to contend with, and all
the global maxima form a single connected "maxima
plateau" that can be reached by starting a hill-climbing
process from any point in the space.

It is also the case that a "partial" policy iteration,
where only a subset of the states that would have
policy changes under a full policy iteration step have
their policy actions changed, will also monotonically
improve the policy, and therefore result in effective hill-
climbing. This is the key property that makes MDPs
susceptible to RL techniques; it has become the con-
vention to characterise RL in Markov domains as an
asynchronous form of dynamic programming (Watkins
1989). If the RL method is a 1-step temporal differ-
ences (TD) method, like Watkins’ 1-step Q-learning,
the method resembles an on-line, asynchronous form
of value iteration. If the RL method is an actual re-
turn or Monte Carlo based method, like P-Trace (Pen-
drith & Ryan 1996) the method resembles an on-line,
asynchronous form of policy iteration.

So, for a Markov learning automata game, the op-
timal group strategies correspond to the equilibria for

Figure 1: An NMDP with two actions available from start-
ing state A, and two actions available from the successor
state B. Both action 0 and action 1 from state A immedi-
ately lead to state B with no immediate reward. Action 0
and action 1 from state B both immediately leads to termi-
nation and a reward; the decision process is non-Markovian
because the reward depends not only on the action selected
form state B, but also on what action was previously se-
lected from state A.

the game (Witten 1977; Wheeler & Narendra 1986).
By way of contrast, for NMDPs and their correspond-
ing learning automata games, it is straightforward to
demonstrate that suboptimal equilibria are possible,
and subsequently that policy iteration methods can
fail by getting "stuck" in local maxima. Consider the
NMDP in Figure 1.

Figure 1 shows an NMDP with two actions available
from starting state A, and two actions available from
the successor state B. Both action 0 and action 1 from
state A immediately lead to state B with no immedi-
ate reward. Action 0 and action 1 from state B both
immediately leads to termination and a reward; the
decision process is non-Markovian because the reward
depends on what action was previously selected from
state A, according to the schedule in Table 1.

A action B action reward
~r0 0 0 1
7rz 0 1 -2
7r2 1 0 0
Ir3 1 1 2

Table 1: Reward schedule for NMDP in Figure 1.

In the policy (strategy) space for this NMDP, the
policy ~r3 is clearly optimal, with a total reward of 2.
Further, it is a game equilibrium: if states (players) 
or B independently change policy (strategy), the total
reward becomes -2 and 0 respectively. Notice that pol-
icy ~r0 although clearly sub-optimal with a total reward
of 1 is also a game equilibrium: if states (players) 
or B independently change policy (strategy), the total
reward becomes 0 and -2 respectively.

Although we have only explicitly considered deter-
ministic policies (pure strategies) in the above discus-
sion, we note that the result generalises straightfor-
wardly to stochastic policies (mixcd strategics).

In the case of the example above the optimal strat-
egy was also a pure strategy. However, it is known that
in general for games corresponding to NMDPs there
may be be no pure strategy among the optimal group
strategies, as will always be the case for MDPs (Singh,
Jaakkola, & Jordan 1994).
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Further, we show in this paper that if a TD method
of credit assignment is used, or the rewards are dis-
counted, the optimal global strategies may not be equi-
librium points in the strategy space, even if an optimal
pure strategy exists. This means that even if the prob-
lems of local maxima are overcome, the optimal poli-
cies may not be attractive under some standard RL
techniques.

It turns out the key property of optimal policies be-
ing stable under RL is only preserved if the additional
restrictions of using undiscounted rewards and using
actual return credit assignment methods are imposed.

Learning Equilibria
For the analysis of standard RL algorithms for
NMDPs, it is useful for us to introduce the notion of a
learning equilibrium, a type of Nash equilibrium which
is relative to a particular learning method.

So just as we can talk about a policy that is stable
under policy-iteration, we might talk about a policy
that is stable under 1-step Q-learning, for example.

A learning equilibrium has the property that if you
replace the current state (or state/action) value esti-
mates with the expected value of the those estimates
given the current policy and the the learning method
being used, then the policy remains unchanged.

For any MDP with a total discounted reward opti-
mality criterion, the only learning equilibria for any of
the RL or DP methods discussed so far will be policy
maxima. A policy that is stable under policy-iteration
is also stable under value-iteration, or under 1-step Q-
learning according to our definition above.

Clearly, having a global maximum in policy space
which is also a learning equilibrium is a necessary con-
dition for convergence to an optimal policy under a
given learning method.

This basic idea provides the motivation for the form
of analysis that follows.

hPOMDPs
The essence of an NMDP is that the history of states
and actions leading to the present state may in some
way influences the expected outcome of taking an ac-
tion within that state. When applying a standard
RL method like 1-step Q-learning to an NMDP, the
history is not used even if available -- this is what
(Singh, Jaakkola, & Jordan 1994) call direct RL for
NMDPs. Therefore, one potentially useful approach to
modelling a general class of NMDPs is by considering
a process that becomes Markov when the full history
of states and actions leading to the present state is
known, but only partially observable if this history is
not available or only partially available, i.e. the history
provides the missing state information. This property
defines a class of partially observable Markov Decision
Process (POMDP) we will call hPOMDPs (with h 
history).

Before we proceed further, a technical change in ter-
minology used up to this point is called for. Although
we have been referring to "states" of a NMDP, here-
after we will generally be referring to the observations
of an hPOMDP. This brings our terminology into line
with the POMDP literature, and thereby avoids a pos-
sible source of confusion.

hPOMDPs capture nicely the sort of non-
Markovianness that is encountered when state aggre-
gation due to state-space representation or other forms
of state-aliasing occur; usually, in cases like these, his-
tory can make the observation less ambiguous to some
extent, and the more history you have the more pre-
cisely you can determine the true state. In control
theory, this coincides with the important notion of an
observable system.

In (Singh, Jaakkola, & Jordan 1994) is discussed 
POMDP class similar to hPOMDPs in several impor-
tant respects. The authors of that paper felt it was
difficult in their approach to give a meaningful defi-
nition of optimality using a discounted reward frame-
work in the context of POMDPs. The stated diffi-
culty was that it is not guaranteed for a POMDP that
there exists an observation-based policy (OBP) that si-
multaneously maximises the value of each observation;
for MDPs, an optimal policy has the property that all
state values are maximal.

In the framework we propose, we avoid this prob-
lem by adopting an alternative "first principles" defi-
nition of optimality for observation-based policies (re-
fer to Equation (3)). Using this definition, the crite-
rion of optimality used in (Singh, Jaakkola, & Jordan
1994) becomes merely a property of optimal policies
for MDPs -- one that just happens not to generalise
to NMDPs.

The other important difference is that Singh et al.
limited their formal analysis and results to ergodic sys-
tems and gain-optimal average reward RL. The frame-
work proposed here extends to non-ergodic as well as to
discounted reward systems, leading to a much more di-
rect understanding of the full implications of applying
standard discounted reward RL methods like 1-step Q-
learning to the sort of non-Markov environments that
are commonly encountered.

A Discounted Reward Framework for
NMDPs

Because we are interested in what happens when ap-
plying standard discounted reward RL methods like
QL to NMDPs, we restrict our attention to the class
of]inite hPOMDPs (i.e., a hPOMDP such that the ob-
servation/action space S x A is finite). 1 This effectively
models the RL table-lookup representation for which

1Note that this does not imply there are only a finite
number of states in the underlying MDP. (Singh, Jaakkola,
& Jordan 1994) considered a class of POMDPs for which
the underlying MDPs had only finite states.
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all the strong convergence results have been proven in
the context of MDPs.

Summing Over Histories
We consider a total path or trace through a finite
hPOMDP which can be written as a sequence of ob-
servation/action pairs

((s0, a0/, Is1, (s,, ad,...)
where (si,ai) is the pair associated with the i th time-
step of this path through the system. For any finite
or infinite horizon total path t there is an associated
expected total discounted reward R(t).

We can express the probability P~ of a particular
observation s being visited under policy Ir as

P~ = ~te p(t, Tr)
T.

where the set Ts is the set of possible traces that in-
cludes s, and p(t, It) as the probability of that trace
occurring under policy ~r. We can also write

~tp( t, lr P~ = (1 - P,~) = eT7

where P~ is the complementary probability of state s
not being visited, T~ being the set of traces that do not
include s.

We note that in general, e.g. if the process is non-
absorbing, a trace may be of infinite length, and there-
fore p(t, ~r) may be infinitesimal and Ts uncountable,
in which case working directly with the above inte-
grals would require the techniques of measure theory
(Billingsley 1986), where p(t, 7r) would actually be a
measure on the space of traces. However, we can avoid
these complications by observing that executing a trace
that involves one or more visits s is logically equivalent
to executing a trace that involves a first visit to s, and
therefore

f, = p(h,.) (1)
ETs hEHs

where H, is the set of finite length first-visit histories’,
which are the possible chains of observation/action
pairs leading to a first visit to observation s, and p(h, 7r)
is associated probability of a first visit occurring by
that history under policy 7r. Because h E H, are of fi-
nite length, p(h, ~r) is finite and H~ is countable,2 and

2Consider that the histories could be arranged int0
classes by length, and could be sorted by some arbitrary
lexicographic ordering within each length class, to enable a
mapping onto the natural numbers. Note that each length
class would have to be finite since we are dealing with fi-
nite observations and finite actions within each observa-
tion; therefore we can start counting in the zero length
class (which contains only the null history 0), moving 
to classes of length 1,2,3 ... in turn.

therefore we can express the value as a straightforward
sum rather than an integral, simplifying matters con-
siderably. The approach we take in the following is to
define the values of these integrals in terms of equiv-
alent sums; whenever an integral of the sort above is
used, it can be treated as a place-holder or shorthand
for a value that will be defined in terms of these sums.

Defining Analogs of Q-value and State
Value for hPOMDPs
We denote the utility of taking action a from observa-
tion s with history h and following 7r thereafter as

U’(s,a,h)

and is well-defined by the definition of an hPOMDP;
it can be considered the "Q-value" of the underlying
(possibly infinite state) MDP where the action a 
taken from "true" state s + h.

If we were to consider a to be a probabilistic action,
which would be the case for stochastic policies, we can
generalise the above definition as follows:

U~ (s, a, h) = Z Pr(bla)U" (s, 
bEA

where A is the set of available primitive actions in ob-
servation s, and Pr(bla) is the probability of primitive
action b E A being executed under probabilistic action
a.

A value that is of interest if we are considering what
can be learned applying standard RL methods directly
to hPOMDPs is the following weighted average of the
above defined utilities

Q’~(s,a) = ~ EheH. ~T U’(s,a, h) if P[ > 0
( undefined if P[ = 0

Q’(s, a) is what might be called the "observation first-
visit Q-value"; we observe it is the value a first-visit
Monte Carlo method will associate with taking action
a from observation s in the hPOMDP. Using this value,
we define the value of an observation to be

v’(s) = Q’(s,..)
where ~rs is the policy action for observation s under
policy ~r.

We note that the values of both Q’~(s, a) and V’(S)
are undefined for s if P, = 0 (i.e., s is unreachable)
under It. This is because, unlike the case for MDPs, it
is difficult to assign a sensible meaning to the notion
of the value of taking an action from an unreachable
observation. For an MDP, even if the state is not reach-
able under policy lr, it is still possible to consider what
the expected reward would be artificially starting the
MDP from that state; but this idea doesn’t work for
hPOMDPs, precisely because the path by which it ar-
rived at the observation potentially affects the value
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(i.e. the Markov assumption does not hold.) In short,
the notion of an "observation first-visit Q-value" is
fairly empty if a first visit simply isn’t possible.

Policy Values for hPOMDPs

A direct analog of the MDP definition for the value of
a policy using a general discounted reward structure is

J(Tr) = E asU’r(s, 7r,, (2)
sES

where a8 is the probability of starting in observation
s, and 0 is the trivial history of no observations or
actions preceding observation s. From the definition
of U above, J(Tr) is well-defined; we define an optimal
observation-based policy 7r* simply by

J0r*) = max J(Tr) (3)
7f

An interesting alternative way to express the value
of a policy rr for an hPOMDP is

f
JOr) = ] R(t) p(t, (4)

JteT

using the above definitions and the idea of integrating
over total paths. We could further decompose the total
expectation into a component that involves observation
s and another that is independent of change to the
policy for observation s in the following expression:

/ R(t)p(t, Tr)+ R(t)p(t,~r) (5)J(r¢)
JtET,

,I t. ,t E Tr

Note that for a general discounted reward structure we
can write

ft~ E P(h’rr)[R(h)+TthU’(s, rrs,h)]
deJR(t) p(t, 

To hEH~

(6)
where 0 _< "), _< 1 is the discount factor, lh is the length
of history h, and R(h) is the expectation of truncated
return associated with history h, and therefore the first
term of the RHS of (5) is well-defined. Since the value
of J(Tr) in equation (2) is also well-defined, we can write

ft~ R(t)p(t,~r) 

xES

Z lh I":p(h, Tr)[R(h)+7 (s, Tr s,h)]
hEH~

(7)
making both parts of the RHS of equation (5) well-
defined.

These definitions provide a framework for analysing
hPOMDPs using a total future discounted reward cri-
terion, applying equally well to both ergodic and non-
ergodic systems.

Analysis of Observation-Based Policy
Learning Methods for hPOMDPs

The first results we present are two lemmas useful in
the proof of the Theorem 1, and in discussion of The-
orem 2.

Lemma 1 If two observation-based policies ~r and ~r
for a hPOMDP differ only in policy for one observation
s, then the difference in values between the policies 7r

and ~r can be expressed as

J(~r)-J(Tr) = E p(h, t~ [UCf(s, ~r,, h)-U~(s, ~r,, h)]
hEHa

(s)
where 7 is the discount factor and lh is the length of
history h.

Proof From equation (5) we can write the difference

in value between policies ~ and r as

J(~) - J(w) = f R(t)p(t,~r) + f R(t)p(t,~) I

JteT, JtE T-g

fteToR(t)p(t,~r) ft~TrR(t)p(t, 

which simplifies to

J(t) - J(r) = fteTo R(t)p(t,t) - fteTo R(t)p(t,r)

considering that ftETrR(t)p(t,$) must be equal to

fteTr R(t)p(t, ~r) thepoli cies are onlydiffe rent in
s, and the traces t E T~ by definition do not involve

s. Similarly we note that P~ = P~, and therefore

P~ = P[. Using equation (1), we can rewrite the
above as

J(~r) - J(Tr) = E p(h,~r)[R(h) + 7thUCr(s,~r,,h)]-
hEHo

E p(h, lr)[R(h) + ~,thU"(s,~r.,h)]
hEHo

Since ~ is only different to ~r in observation s, the distri-
bution of histories leading to the first visit to’s are not
affected. Therefore, p(h,~r) = p(h,r) for all h E Hs,
and we can write

J(~’) - J(rr) 

E p(h, Tr)[R(h) + ~/’hVC’(s,~rs,h)] 
hEH.

E p(h,~r)[R(h) + ~t"U’r(s,~rs,h)]
hEH.

= E P(h’r)Tth[UC~(s’~r"h) - U~r(s’Tr"h)]
hEHo

[]
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$
Lemma 2 I] two observation-based policies 7r and 7r
for an undiscounted hPOMDP differ only in policy for
one observation s, then the difference in values between
the policies ~r and ~r can be expressed as

J(~r) - J(~r) = P:[VCr(s) V"(s)]   (9)

Proof Using equation (8) from Lemma 1 (omitting 
7lh factor since ~. = 1 for an undiscounted hPOMDP),
we can derive the difference in policy values as follows
(note that stepping from the second to the third line

assumes the equivalence of p(h, It) and p(h, ~r), and also

of P~ and P~, as discussed in the proof of Lemma 1):

J(~) - J(Tr) = E p(h, ~r)[U¢r (s, ~r,, h) - "~ (s, 7r,, h)]

hEH,

[]

Lemma 2 has a strong intuitive basis, suggesting its ap-
plicability to a very general class of decision processes
including but not limited to hPOMDPs. Equation (9)
corresponds to the straightforward observation that for
an undiscounted reward process, by changing policy in
exactly one reachable state under policy 7r, the change
in value of the expected total reward for the new policy
is equal to the change in first-visit expected value for
the changed state multiplied by the a priori probability
that state will have a first-visit under policy 7r.

We emphasize the generality of the result because
otherwise it might be misconstrued that the next re-
sult we prove (Theorem 1) is somehow tied strongly 
the hPOMDP formalisation, when in fact the result is
quite general. The proof of Theorem 1 is a simple and
generalisable argument which indicates an analogue of
Theorem 1 is true for any class of decision process for
which Equation (9) holds true.

Theorem 1 If a first-visit Monte Carlo method of
credit assignment is used for a hPOMDP where 7 =

1, then the optimal observation-based policies will be
learning equilibria.

Figure 2: An NMDP with one action available from the
two equiprobable starting states A and B; one action avail-
able and from intermediate state C; and two actions avail-
able from the penultimate state D. An action from state A
leads to state C without reward; actions from states B and
C lead to state D without reward. Both action 0 and ac-
tion 1 from state D immediately lead to termination and a
reward; the decision process is non-Markovian because the
reward depends not only on the action taken from state D,
but also on the starting state.

Proof Suppose an optimal observation-based policy rr
is not a learning equilibrium under a first-visit Monte
Carlo credit assignment method; then there must exist

a observation s such that Vet(s) > V’(s) for some
policy $ that is different to lr only in observation s.
By Lemma 2, the difference in policy values is

J(~r) - g(Tr) = P~[V¢’(s) - 

Since V¢~(s) > V~(s) and Pff > 0 (i.e. observation 

is reachable under r), a then J(~) > J(lr). But 
is not possible since rr is an optimal policy; hence an
optimal policy is a learning equilibrium. []

Theorem 1 is a positive result: it shows that, at
least under certain restricted conditions, an optimal
observation-based policy is also guaranteed to repre-
sent a game equilibrium for a direct RL style learner.

The next question is whether we can generalise the
result. Does the result hold for general 7? Does the
the result hold for TD returns instead of Monte Carlo
style "roll-outs"?

The next result addresses the issue of using dis-
counted returns for general 7:

Theorem 2 Theorem 1 does not generalise to 7 E
[0, 1).

Proof We prove this by providing a counter-example.
We consider the NMDP in Figure 2.

We assume that 7 < 1 for this discounted reward
decision process; suppose the reward schedule is as fol-
lows:

3Note that observation s must be reachable under both
7r and ~" otherwise both V~(s) and VC’(s) would be unde-
fined, which is incompatible with the hypothesis V¢(s) 
v’(s).
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Start state action D reward
A 0 r]
A 1 r2
B 0 r3
B 1 r4

Let 7r0 and ~rl be the group strategies (policies) that
correspond to 0 and 1 being the policy action from D.
We set rl...ra such that Q~(D,O) > Q’(D, 1) for ar-
bitrary ~r (i.e. (rl + r3)/2 > (r2 + r4)/2), but also 
that J(Tro) < J(Trl) (i.e. (Tr] + r3)/2 < (~/r2 + 
For example, let r2 = 0, r3 = 1, ra = 2, and select rl
such that ~rl < 1 < r].

In such a case, D will see action 0 as preferable,
which appears locally optimal even though the choice
results in sub-optimal group strategy r0. Thus the sole
optimal group strategy lrl does not represent a learning
equilibrium for this game. O

The basis of the problems for discounted returns with
7 < 1 can be seen in Lemma 1:the7 th weights are
visible to the total discounted return, but not to the
observation first-visit estimator. This is why "group
rationality" in this instance breaks down; in the spe-
cial case of 7 = 1, however, the individual and the
group interests suddenly become aligned, as shown in
Theorem 1.

Next we examine the case where TD style returns
are used; we used 1-step Q-learning in the example
that follows:

Theorem 3 If a 1-step Q-learning method of credit
assignment is used/or direct RL of a NMDP, then it
is not guaranteed there exists an optimal observation-
based policy representing a learning equilibrium.

Proof We prove this by providing an example of an
NMDP where the optimal policy is not a learning equi-
librium under 1-step Q-learning. In this case we can
consider the NMDP in Figure 1 and associated reward
schedule in Table 1.

The key to our analysis is to note that a TD-
based method like 1-step Q-learning which estimates
Q’(A,O) and Q’(A, 1) for any policy ~r will evaluate
these actions as of equal utility; therefore, a stochastic
action selector will tend to select these actions with
equal probability in the limit.

If (A, 0) and (A, 1) are being selected with approxi-
mately equal probability, then State B will favour ac-
tion 0 with an expected reward value of (1 + 0)/2 
0.5 over action 1 with an expected reward value of
(-2 + 2)/2 = 0. This implies policies rl and Ira are
both unstable in the limit since they both require that
(B, 1) to be the local strategy for state B; but for
the reasons given above (B, 0) will always become in-
evitably more attractive as state A becomes agnostic
about (A, 0) versus (A, 1). Even if 1-step Q-learning 
initially set with the optimal policy, it will eventually
diverge away from it to a situation where it fluctuates
between ~r0 and 7r2 as the learning equilibria.

Figure 3: An NMDP with two equiprobable starting states
A and B. There are two actions available from state A, but
only one action available from B and C. Action 1 from state
A leads to state C without reward, as does action 0 from
state B. Action 0 from both states A and C immediately
leads to termination and a reward; the decision process is
non-Markovian because the reward received by C depends
not only on the immediate action taken, but also on the
starting state.

Finally, we note the above analysis holds true for
arbitrary discount factor "), E [0, 1]. []

In the above analysis, we have represented 1-step Q-
learning as a consensus or distributed learner, behav-
ing more like an economy of selfish agents rather than
a single learning agent. The easy and natural rea-
soning suggests the power of the game theoretic ana-
lytic framework: for example, we note Theorem 3 also
settles an important conjecture in (Singh, Jaakkola,
& Jordan 1994) regarding the optimality of QL for
observation-based policies of POMDPs. The authors
of that paper conjectured that QL in general might not
be able to find the optimal deterministic observation-
based policy for POMDPs; this result follows directly
from the proof of Theorem 3.

Finally, we note that the proof of Theorem 3 can be
extended straightforwardly from 1-step to multi-step
corrected truncated returns (CTRs). For the case 
n-step CTRs, we simply have to add an extra n - 1
states between state A and state B in Figure 1.

Corollary 1 Theorem 3 can be generalised to n-step
corrected truncated return methods ]or general n.

While the proof of Theorem 3 also directly pertains
to TD()~) returns (Sutton 1988) for the special case
where A = 0, to generalise the result for 0 <_ A < 1 we
take a slightly different approach:

Theorem 4 If a TD()~) credit-assignment method 
used for direct RL of a NMDP, then for )~ < 1 it is not
guaranteed there exists an optimal observation-based
policy representing a learning equilibrium.

Proof Consider the NMDP is Figure 3. States A and
B are the equiprobable starting states. We note all the
transitions are deterministic, and that state A has two
actions to select from while states B and C have one.
Action 0 from state C leads directly to termination
with an immediate reward; if the starting state is A,
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the immediate reward is 1, but if the starting state is B,
the immediate reward will be zero. Action 0 from state
A also has a termination and a non-zero immediate
reward associated with it, the exact value of which we
will discuss in a moment. All other transitions have a
zero immediate reward associated with them.

The expected value of (C, 0) for an observation based
policy 7r depends upon the relative frequency of the
transitions A ~ C and B ~ C; this in turn depends
upon how often state A selects action 1 for the sake
of active exploration. We only assume the relative fre-
quencies of action 0 and action 1 selections from state
A are both non-zero; hence Q~ (C, 0) E (0, 0.5).

Assuming 7 E [0,1], from the rules of TD updates
we can derive that Q" (A, 1) = 7(A.1 + (1 - ~ (C,0)).
This interests us, because Q’(A, 1) would equal ~f un-
der a Monte Carlo method of credit assignment, but
for TD(A) returns Q’r(A, 1) < 7 for all A < 1.

Therefore, if the value of the immediate reward for
(A, 0) is such that Q~(A, 1) < Q~(A, 0) < 7, then state
A would prefer action 0 over action 1, even though the
global optimal strategy corresponds to selecting action
1. In such a case, the global strategy for this NMDP
does not represent a learning equilibrium if TD()0 re-
turns are used with )~ < 1. []

Taken together, these results show that the key prop-
erty of optimal observation-based policies being stable
in non-Markov domains for direct RL methods is only
preserved if the additional restrictions of using undis-
counted rewards and using actual return credit assign-
ment methods are imposed.

From Discounted to Undiscounted to
Average Rewards

A move from discounted to undiscounted rewards nat-
urally suggests a closer look at average reward RL
methods for equilibrium properties in non-Markov en-
vironments. Some steps in this direction have already
been made in (Singh, Jaakkola, & Jordan 1994) and
(Jaakkola, Singh, & Jordan 1995); the results pre-
sented above add weight to arguments that this is in-
deed the right direction to be heading.

In moving to average reward criteria for NMDPs,
an interesting set of open questions remain for future
investigation. In particular, Theorem 2 may point to
subtle problems translating "transient reward" sensi-
tive metrics such as Blackwell optimality (Mahadevan
1996), from MDPs to NMDPs. Investigations are con-
tinuing in this direction.

Conclusions

A game theoretic approach has proven to be an aid
to understanding the theoretical implications of ap-
plying standard discounted reward RL methods to
non-Markov environments. Complementary to earlier
work, the framework we present extends to non-ergodic

as well as discounted reward NMDPs, facilitating a
much more direct understanding of the issues involved.

Our analysis starts with the simple observation that
having a global maximum in policy space which is also
a learning equilibrium is a necessary condition for con-
vergence to an optimal policy under a given learning
method. We discover that for an important general
class of non-Markov domains, undiscounted, actual re-
turn methods have significant theoretical advantages
over discounted returns and TD methods of credit-
assignment. This has potentially major implications
for RL as it is currently practiced.
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