
Estimator Variance in Reinforcement Learning: Theoretical Problems
and Practical Solutions

Mark D. Pendrith and Malcolm R.K. Ryan
School of Computer Science and Engineering

The University of New South Wales
Sydney 2052 Australia

{pendrith,malcolmr } @cse.unsw.edu.au

Abstract

In reinforcement learning, as in many on-line
search techniques, a large number of estimation
parameters (e.g. Q-value estimates for 1-step
Q-learning) are maintained and dynamically up-
dated as information comes to hand during the
learning process. Excessive variance of these es-
timators can be problematic, resulting in un-
even or unstable learning, or even making ef-
fective learning impossible. Estimator variance
is usually managed only indirectly, by selecting
global learning algorithm parameters (e.g. A for
TD(A) based methods) that axe a compromise
between an acceptable level of estimator per-
turbation and other desirable system attributes,
such as reduced estimator bias. In this paper, we
argue that this approach may not always be ade-
quate, particularly for noisy and non-Markovian
domains, and present a direct approach to man-
aging estimator variance, the new ccBeta al-
gorithm. Empirical results in an autonomous
robotics domain are also presented showing im-
proved performance using the ccBeta method.

Introduction
Many domains of interest in AI are too large to be
searched exhaustively in reasonable time. One ap-
proach has been to employ on-line search techniques,
such as reinforcement learning (RL). In RL, as in many
on-line search techniques, a large number of estima-
tion parameters (e.g. Q-value estimates for 1-step Q-
learning) are maintained and dynamically updated as
information comes to hand during the learning process.
Excessive variance of these estimators during the learn-
ing process can be problematic, resulting in uneven or
unstable learning, or even making effective learning im-
possible.

Normally, estimator variance is managed only indi-
rectly, by selecting global learning algorithm parame-
ters (e.g. A for TD()~) based methods) that trade-off
the level of estimator perturbation against other sys-
tem attributes, such as estimator bias or rate of adap-
tation. In this paper, we give reasons why this ap-

proach may sometimes run into problems, particularly
for noisy and non-Markovian domains, and present a
direct approach to managing estimator variance, the
ccBeta algorithm.

RL as On-line Dynamic Programming
RL has been characterised as an form of asynchronous,
on-line form of Dynamic Programming (DP) (Watkins
1989; Sutton, Barto, & Williams 1992). This charac-
terisation works well if the domain is well-modelled by
a Markov Decision Process (MDP) (Puterman 1994).

Formally, an MDP can be described as a quintuple
(S, A, a, T, p). S is the set of process states, which
may include a special terminal state. From any non-
terminal state, an action can be selected from the set
of actions A, although not all actions may be available
from all states.

At time-step t = 0 the process starts at random in
one of the states according to a starting probability
distribution function a. At any time-step t > 0 the
process is in exactly one state, and selecting an ac-
tion from within state st results in a transition to a
successor state s¢+1 according to a transition probabil-
ity function T. Also, an immediate scalar payoff (or
reward) rt is received, the expected value of which is
determined by p, a (possibly stochastic) mapping
S × A into the reals. Once started, the process contin-
ues indefinitely or until a terminal state is reached.

By a Markov process, we mean that both the state
transition probability function T and the payoff ex-
pectation p is dependent only upon the action se-
lected and the current state. In particular, the his-
tory of states/actions/rewards of the process lead-
ing to the current state does not influence T or p.
We will also consider non-Markov Decision Processes
(NMDPs) which are formally identical except that the
Markov assumption is relaxed; for a variety of reasons
NMDPs often better model complex real-world RL do-
mains than do MDPs (Pendrith & Ryan 1996).

Generally when faced with a decision process the
problem is to discover a mapping S -~ A (or policy)

81

From: AAAI Technical Report WS-97-10. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

that maximises the expected total future discounted re-
ward R.r = ~’~=o 7trt for some discount factor 3" E
[0,1]. If 3’ = 1, then the total future discounted re-
ward is just the total reward R = ~=o rt where all fu-
ture rewards are weighted equally; otherwise, rewards
received sooner are weighted more heavily than those
received later.

Q-learning as on-line value iteration

If an RL method like 1-step Q-learning (QL) (Watkins
1989) is used to find the optimal policy for an MDP,
the method resembles an asynchronous, on-line form of
the DP value iteration method. QL can be viewed as a
relaxation method that successively approximates the
so-called Q-values of the process, the value Q’(st,at)
being the expected value of the return by taking a ac-
tion at from state st and following a policy 7r from that
point on.

We note that if an RL agent has access to Q-values
for an optimal policy for the system it is controlling,
it is easy to act optimally without planning; simply
selecting the action from each state with the highest
Q-value will suffice. The QL algorithm has been shown
to converge, under suitable conditions1, to just these
Q-values. The algorithm is briefly recounted below.

At each step, QL updates an entry in its table of
Q-value estimates according to the following rule (pre-
sented here in a "delta rule" form):

(1)

where fl is a step-size parameter, and

~t = r~1) - QCst,at) (2)

where r~1) is the 1-step corrected truncated return
(CTR):

rl 1) = r~ + 3"maxQ(st+l,a) (3)

The 1-step CTR is a special case of the n-step CTR.
Using Watkins’ (1989) notation

r~n) = r["] + 7" max Q(st+., a) (4)
(~

where rl n] is the simple uncorrected n-step truncated
return (UTR)

n--I

rlnl Z ’r= 7 t+, (5)
i=0

l Perhaps most fundamentally the Markov assumption
must hold; it is known (Pendrith & Ryan 1996) that the op-
timality properties of QL do not generalise to non-Markov
systems. The original proof of QL convergence and op-
timality properties can be found in an expanded form in
(Watkins & Dayan 1992).

As n -+ c~, both rl n] and rl ") approach the infinite
horizon or actual return

oo

r, = ~ 3"ir~+~ (61
i=O

as a limiting case.
We note that if in (2) l) were replaced with th e ac-

tual return, then this would form the update rule for
a Monte Carlo estimation procedure. However, rather
than waiting for the completed actual return, QL in-
stead employs a "virtual return" that is an estimate of
the actual return. This makes the estimation process
resemble an on-line value iteration method. One view
of the n-step CTR is that it bridges at its two extremes
value iteration and Monte Carlo methods. One could
also make the observation that such a Monte Carlo
method would be an on-line, asynchronous analog of
policy iteration, another important DP technique.

The central conceptual importance of the CTR to
RL techniques is that virtually all RL algorithms es-
timate the value function of the state/action pairs
of the system using either single or multi-step CTRs
directly, as in the case of QL or the C-Trace algo-
rithm (Pendrith & Ryan 1996), or as returns that
are equivalent to weighted sums of varying length n-
step CTRs, such as the TD(A) return (Sutton 1988;
Watkins 1989).

CTR Bias and Variance
For RL in Markovian domains, the choice of length
of CTR is usually viewed as a trade-off between bias
and variance of the sample returns to the estimation
parameters, and hence of the estimation parameters
themselves (e.g. Watkins 1989).

The idea is that shorter CTRs should exhibit less
variance but more bias than longer CTRs. The in-
creased bias will be due to the increased weight in the
return values of estimators that will, in general, be
inaccurate while learning is still taking place. The ex-
pected reduction in estimator variance is due to the
fact that for a UTR the variance of the return will be
strictly non-decreasing as n increases.

Applying this reasoning uncritically to CTRs is
problematic, however. In the case of CTRs, we note
that initial estimator inaccuracies that are responsible
for return bias may also result in high return variance
in the early stages of learning. Thus, in the early stages
of learning, shorter CTRs may actually result in the
worst of both worlds - high bias and high variance.

By way of illustration, consider the simple MDP de-
picted in Figure 1. The expected variance of the sam-
pled returns for action 0 from state A will be arbi-
trarily high depending upon the difference between the
initial estimator values for actions from states B and

82

Figure 1: A 4-state/1 action MDP. State A is the starting
state, states B and C are equiprobable successor states after
taking action 0. Actions from B and C immediately lead
to termination. The immediate reward at each step is zero.
If 1-step CTRs are used, the variance as well as bias of
the estimator returns for State A/action 0 depends on the
difference of the initial estimator values for states B and
C. On the other hand, if CTRs of length 2 or greater are
used, the estimator returns will be unbiased and have zero
variance.

C. In this case, the estimator for {A, 0) would experi-
ence both high bias and high variance if 1-step CTRs
were to be used. On the other hand, using CTRs of
length 2 or greater would result in unbiased estimator
returns with zero variance at all stages of learning for
this MDP.

In general, as estimators globally converge to their
correct values, the variance of an n-step CTR for an
MDP will become dominated by the variance in the
terms comprising the UTR component of the return
value, and so the relation

i < j =~ var[r~’)] <_ var[r~j}] (7)

will be true in the limit. However, the point we wish to
make here is that a bias/variance tradeoff involving n
for CTRs is not as clear cut as may be often assumed,
particularly in the early stages of learning, or at any
stage of learning if the domain is noisy,2 even if the
domain is Markovian.

CTR Bias and Variance in NMDPs
Perhaps more importantly, if the domain is not Marko-
vian, then the relation expressed in (7) is not guaran-
teed to hold for any stage of the learning. To demon-
strate this possibly surprising fact, we consider the sim-
ple 3-state non-Markov Decision Process CNMDP) de-
picted in Figure 2.

For this NMDP, the expected immediate reward
from taking the action 0 in state B depends upon which
action was taken from state A. Suppose the (determin-
istic) reward function p is as follows:

2The argument here is that for noisy domains, estimator
bias is continually being reintroduced, taking the process
"backwards" towards the conditions of early learning.

Figure 2: A 3-state NMDP, with two available actions
from starting state A, and one available from the successor
state B. The action from state B immediately leads to ter-
mination and a reward; the decision process is non-Markov
because the reward depends on what action was previously
selected from state A.

pCA, O) =
pCA, 1) =
p(B, O) =
p(B, O) =

(if the action from state A was 0)
(if the action from state A was 1)

If Monte Carlo returns are used (or, equivalently in this
case, n-step CTRs where n > 1), the estimator returns
for state/action pairs CA, 0) and {A, 1) will exhibit zero
variance at all stages of learning, and the correspond-
ing estimators should rapidly converge to their correct
values of 0 and 1 respectively.

On the other hand, if 1-step CTRs are used, the
variance of the CA, 0) and {A, 1) estimators will be non-
zero while the variance of the estimator for (B, 0)
non-zero. The estimator for CB, 0) will exhibit non-
zero variance as long as both actions continue to be
tried from state A, which would normally be for all
stages of learning for the sake of active exploration.
Finally, note that the variance for {B, 0) will the same
in this case for all n-step CTRs n _> 1. Hence, the
overall estimator variance for this NMDP is strictly
greater at all stages of learning for 1-step CTRs than
for any n-step CTRs n > 1.

In previously published work studying RL in noisy
and non-Markovian domains (Pendrith & Ryan 1996),
excessive estimator variance appeared to be causing
problems for 1-step QL in domains where using Monte
Carlo style returns improved matters. These unex-
pected experimental, results did not Cand st.ill do not)
fit well with the "folk wisdom" concerning estimator
bias and variance in RL. We present these analyses
firstly as a tentative partial explanation for the unex-
pected results in these experiments.

Secondly, the foregoing analysis is intended to pro-
vide some theoretical motivation for an entirely differ-
ent approach to managing estimator variance in RL,
in which attention is shifted away from CTR length
and is instead focused on the step-size parameter /~.
In the next part of this paper, we discuss a new algo-
rithm (perhaps more accurately a family of algorithms)
we call ccBeta, which results from taking such an ap-
proach.

83

/~: Variance versus Adaptability
In RL, finding a good value for the step-size parameter
fl for a particular algorithm for a particular domain
is usually in a trial-and-error process for the experi-
menter, which can be time consuming. The resulting
choice is usually a trade-off between fast adaptation
(large/~) and low estimator variance (small/~). In
and in adaptive parameter estimation systems gener-
ally, there emerges a natural tension between the issues
of convergence and adaptability.

Stochastic convergence theory (Kushner & Clark
1978) suggests that a reducing ;9 series (such as/~
1/i) with the properties

oo oo

E~i=c°’ and Ef~ < co (8)
i=1 i=1

may be used to adjust an estimator’s value for succes-
sive returns; this will guarantee in-limit convergence
under suitable conditions. However, this is in general
not a suitable strategy for use non-stationary environ-
ments i.e. environments in which the schedule of pay-
offs may vary over time. While convergence properties
for stationary environments are good using this tech-
nique, re-adaptation to changing environmental condi-
tions can be far too slow.

In practice, a constant value for the ~ series is usu-
ally chosen. This has the the advantage of being
constantly sensitive to environment changes, but has
poorer convergence propert.ies, particularly in noisy or
stochastic environments. It appears the relatively poor
convergence properties of a constant fl series can lead
to instabilities in learning in some situations, making
an effective trade-off between learning rate and vari-
ance difficult.

A method for automatically varying the step-size fl
parameter by a simple on-line statistical analysis of
the estimate error is presented here. The resulting fl
series will be neither constant nor strictly decreasing,
but will vary as conditions indicate.

The ccBeta Algorithm
At each update step for the parameter estimate, we
assume we are using a "delta-rule" or on-line LMS style
update rule along the lines of

Ai ~- z,-Qi-i

Q~ e- Qi-, + /~A~

where zi is the i th returned value in the series we are
trying to estimate and Bi is the i th value of the step-
size schedule series used. Qi is the i th estimate of this
series, and Ai is the i th value of the error series.

The idea behind ccBeta is quite straightforward. If
the series of estimate errors for a parameter is posi-
tively auto-correlated, this indicates a persistent over-

or under-estimation of the underlying value to be esti-
mated is occurring, and suggests ;3 should be increased
to facilitate rapid adaptation. If, on the other hand,
the estimate errors are serially uncorrelated, then this
may be taken as an indication that there is no system-
atic error occurring, and ;9 can be safely decreased to
minimise variance while these conditions exist.

So, for each parameter we are trying to estimate,
we keep a separate set of autocorrelation statistics for
its error series as follows, where ccl is derived as an
exponentially weighted autocorrelation coefficient:

sum_square_erri +- K.sum_square_erri_l + A/2 (9)

sum_producti +-- K.sum_producti_l + Ai.Ai-1 (10)

sum_producti
cci e- (11)

x/sum-square-err i .sum-square_err i_ l

At the start of learning, the sum_square_err and
sum_product variables are initialised to zero; but this
potentially leads to a divide-by-zero problem on the
RHS of (11). We explicitly check for this situation,
and when detected, cci is set to 1.3

We note that if in (9) and (10) the exponential decay
parameter K E [0, 1] is less than 1, two desirable prop-
erties emerge: firstly, the values of the sum_square_err
and sum_product series are finitely bounded, and sec-
ondly the correlation coefficients are biased with re-
spect to recency. While the first property is conve-
nient for practical implementation considerations with
regards to possible floating point representation over-
flow conditions etc., the second property is essential
for effective adaptive behaviour in non-stationary en-
vironments. Setting K to a value of 0.9 has been found
to be effective in all domains tested so far; experimen-
tally this does not seem to be a particularly sensitive
parameter.

It is also possible to derive an autocorrelation co-
efficient not of the error series directly, but instead
of the sign of the the error series, i.e. replacing the
Ai and Ai-1 terms in (9) and (10) with sgn(Ai) and
sgn(Ai-1). This variant may prove to be generally
more robust in very noisy environments.

In such a situation an error series may be so noisy
that, even if the error signs are consistent, a good linear
regression is not possible, and so/~ will be small even
when there is evidence of persistent over- or under-
estimation. This approach proved to be successful
when applied to the extremely noisy real robot domain
described in the next section. Based on our results to
date, this version could be recommended as a good
"general purpose" version of ccBeta.

aThis may seem arbitrary, but the reasoning is simply
that if you have exactly one sample from a population to
work with, the best estimate you can make for the mean of
that population is the value of that sample.

84

Simulation experiment 1 (noisy zero fn)
T.S.E. Std. Dev.

ccBeta 17.95 0.042
beta = 0.1 10.42 0.032
beta = 0.2 22.30 0.047
beta = 0.3 35.72 0.060
beta = 0.4 50.85 0.071
reducing beta 0.17 0.004

Table 1: Results for simulation experiment 1.

Once an autocorrelation coefficient is derived, /~i is
set as follows:

if (cci > O)
~i ~ ccl* MAX.BETA

else f~i +-- 0

if (/~i < MIN_BETA)
/~i ~- MIN..BETA

First, we note that in the above pseudo-code, neg-
ative and zero auto-correlations are treated the same
for the purposes of weighting/~i. A strongly negative
autocorrelation indicates alternating error signs, sug-
gesting fluctuations around a mean value. Variance
minimisation is also desirable in this situation, moti-
vating a small f~i.

On the other hand, a strongly positive cci results
from a series of estimation errors of the same sign,
indicating a persistent over- or under-estimation, sug-
gesting a large f~i is appropriate to rapidly adapt to
changed conditions.

Setting the scaling parameters MIN_BETA to 0.01
and MAX_BETA to 1.0 has been found to be effective,
and these values are used in the experiments that fol-
low. Although values of 0 and 1 respectively might be
more "natural", as this corresponds to the automatic
scaling of the correlation coefficient, in practice a small
non-zero MIN_BETA value was observed to have the
effect of making an estimate series less discontinuous
(although whether this offers any real advantages has
not been fully determined at this stage.)

Finally, we note that prima]acie it would be reason-
able to use cc~ rather than cci to weight ~t. Arguably,
cc2 is the more natural choice, since from statistical
theory it is the square of the correlation coefficient that
indicates the proportion of the variance that can be at-
tributed to the change in a correlated variable’s value.

Both the cci and cc~ variations have been tried, and
while in simulations marginally better results both in
terms of total square error (TSE) and variance were
obtained by using cc~, a corresponding practical ad-
vantage was not evident when applied to the robot
experiments.

Simulation experiment 2 (noisy step fn)
T.S.E. Steps to Crossing

ccBeta 21.60 10
beta = 0.1 16.19 35
beta = 0.2 25.84 15
beta = 0.3 38.56 9
beta = 0.4 53.35 8
reducing beta 395.73 >9,600

Table 2: Results for simulation experiment 2.

Experimental Results

In all the experiments that follow we use the same vari-
ant of ccBeta; this has a K parameter of 0.9, and uses
sgn(A) normalisation to calculate cci. For weighting

f~i, we use cci rather than cc~, and have MIN.BETA
and MAX_BETA set to 0.01 and 1.0 respectively.

Simulation experiment 1

In this section, we describe some simulation studies
comparing the variance and re-adaptation sensitivity
characteristics of the ccBeta method for generating a

step-size series against standard regimes of fixed f~
and reducingfl, where ~ = 1/i.

The learning system for these experiments was a
single-unit on-line LMS estimator which was set up to
track an input signal for 10,000 time steps. In the first
experiment, the signal was stochastic but with station-
ary mean: a zero function perturbed by uniform ran-
dom noise in the range [-0.25, +0.25]. The purpose of
this experiment was to assess asymptotic convergence
properties, in particular estimator error and variance.

As can be seen from Table 1, the reducing beta
schedule of/~i = 1/i was superior to fixed beta and
ccBeta in terms of both total square error (TSE) and
estimator variance for this experiment. As we would
expect, variance (normalised to standard deviation in
the tabled results) increased directly with the magni-
tude of beta for the fixed beta series. In this experi-
ment ccBeta performed at a level between fixed beta
set at 0.1 and 0.2.

Simulation experiment 2

In the second experiment, a non-stationary stochas-
tic signal was used to assess re-adaption performance.
The signal was identical to that used in the first ex-
periment, except that after the first 400 time steps the
mean changed from 0 to 1.0, resulting in a noisy step
function. The adaption response for the various beta
series over 50 time steps around the time of the change
in mean are plotted in figures 3 and 4.

To get an index of responsiveness to the changed
mean using the different beta series, we have mea-
sured the number of time steps from the time the mean

85

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

-0.2 ’ ’
390 400 410

fixed beta ffi 0.4 --
0.3
0.2
0.1

reducing beta = 1/I

,’ / .---"

I I
420 430 440

lime step t

Figure 3: Fixed beta and reducing beta step response
plots.

level was changed to the time the estimator values first
crossed the new mean level, i.e. when the estimator
first reaches a value > 1.

As can be seen from Table 2, the reducing beta
schedule of Bi = 1/i was far worse than than for either
fixed beta or ccBeta in terms of TSE and re-adaptation
performance ("Steps to Crossing", column 2). Indeed,
the extreme sluggishness of the reducing beta series
was such that the estimator level had risen to only
about 0.95 after a further 9,560 time steps past the end
of the time-step window shown in figure 3. The rela-
tively very high TSE for the reducing beta series was
also almost entirely due to this very long re-adaptation
time. The inherent unsuitability of such a regime for
learning in a non-stationary environment is clearly il-
lustrated in this experiment. Despite having "nice"
theoretical properties, it represents an impractical ex-
treme in the choice between good in-limit convergence
properties and adaptability.

In the figure 3 plots, the trade-off of responsive-
ness versus estimator variance for a fixed beta series is
clearly visible. We note however that the re-adaptation
response curve for ccBeta (figure 4) resembles that
the higher values of fixed beta, while its TSE (table 2)
corresponds to lower values, which gives some indica-
tion the algorithm is working as intended.

Experiment 3: Learning to Walk

For the next set of experiments we have scaled up to a
real robot-learning problem: the gait coordination of a
six-legged insectoid walking robot.

The robot (affectionately referred to as "Stumpy" in
the UNSW AI lab) is faced with the problem of learn-
ing to walk with a forward motion, minimising back-
ward and lateral movements. In this domain, ccBeta
was compared to using hand tuned fixed beta step-size
constants for two different versions of the C-Trace RL

1.6

1.4

1.2

I --

0.8

0.6

0.4

0.2

0

¯ 0.2 ’ ~
390 400 410 420

lime step t

ccBela ---

I
430 440

Figure 4: ccBeta step response plot.

algorithm.
Stumpy is, by robotics standards, built to an inex-

pensive design. Each leg has two degrees of freedom,
powered by two hobbyist servo motors (see Figure 5).
A 68HCll Miniboard converts instructions from a 486
PC sent via a RS-232-C serial port connection into the
pulses that fire the servo motors. The primary motion
sensor is a cradle-mounted PC mouse dragged along
behind the robot. This provides for very noisy sensory
input, as might be appreciated. The quality of the sig-
nal has been found to vary quite markedly with the
surface the robot is traversing.

As well as being noisy, this domain was non-
Markovian by virtue of the compact but coarse dis-
cretized state-space representation. This compact
representation4 meant learning was fast, but favoured
an RL algorithm that did not rely heavily on the
Markov assumption; in earlier work (Pendrith & Ryan
1996) C-Trace had been shown to be well-suited for
this domain.

The robot was given a set of primitive "reflexes" in
the spirit of Rodney Brooks’ "subsumption" architec-
ture (Brooks 1991). A leg that is triggered will incre-
mentally move to lift up if on the ground and forward
if already lifted. A leg that does not receive activa-
tion will tend to drop down if lifted and backwards if
already on the ground. In this way a basic stepping
motion was encoded in the robots "reflexes".

The legs were grouped to move in two groups of three
to form two tripods (Figure 6). The learning problem
was to discover an efficient walking policy by trigger-
ing or not triggering each of the tripod groups from
each state. Thus the action set to choose from in each

41024 "boxes" in 6 dimensions: alpha and beta motor
positions for each leg group (4 continuous variables each
discretized into 4 ranges), plus 2 boolean variables indicat-
ing the triggered or untriggered state of each leg group at
the last control action.

86

Figure 5: The robot learning to walk.

discretized state consisted of four possibilities:

¯ Trigger both groups of legs
¯ Trigger group A only
¯ Trigger group B only
¯ Do not trigger either group

The robot received positive reinforcement for for-
ward motion as detected by the PC mouse, and neg-
ative reinforcement for backward and lateral move-
ments.

Although quite a restricted learning problem, inter-
esting non-trivial behaviours and strategies have been
seen to emerge.

The RL algorithms

As mentioned earlier, C-Trace is an RL algorithm
that uses multi-step CTRs to estimate the state/action
value function. While one C-Trace variant, multiple-
visit C-Trace, has been described in earlier work in ap-
plication to this domain, the other, first-visit C-Trace.
is a variant that has not been previously described.

It is easiest understand the difference between
multiple-visit and first-visit C-Trace, in terms of the
difference between a multiple-visit and a first-visit
Monte Carlo algorithm. Briefly, a first-visit Monte
Carlo algorithm will selectively ignore some returns for
the purposes of learning in order to get a more truly
independent sample set. In Singh & Sutton (1996),
first-visit versus multiple-visit returns are discussed in
conjunction with with a new "first-visit" version of
the TD(A) algorithm, and significant improvements
learning performance are reported for a variety of do-
mains using the new algorithm.

For these reasons, a first-visit version of C-Trace
seemed likely to be particularly well-suited for a ccBeta
implementation, as the "purer" sampling methodology
for the returns should (in theory) enhance the sensi-
tivity of the on-line statistical tests.

leg 5 leg 3 leg 1

Set 0

Set 1

Figure 6: Grouping the legs into two tripods.

Discussion of results

The average forward walking speed over the first hour
of learning for two versions of C-Trace using both cc-
Beta and fixed step-size parameters are presented in
the plots in figures 7 and 8.

In the case of multiple-visit C-Trace (figure 7),
notice immediately that the learning performance is
much more stable using ccBeta than with the fixed
beta series. This shows up as obviously reduced vari-
ance in the average forward speed: significantly, the
overall learning rate doesn’t seem to have been ad-
versely affected, which is encouraging. It would "not be
unreasonable to expect some trade-off between learn-
ing stability and raw learning rate, but such a trade-off
is not apparent in these results.

Interestingly, the effects of estimator variance seem
to manifest themselves in a subtly different way in the
first-visit C-Trace experiments (figure 8). We notice
that first-visit C-Trace even without ccBeta seems to
have had a marked effect on reducing the step-to-step
variance in performance as seen in multiple-visit C-
Trace. This is very interesting in itself, and calls for
further theoretical and experimental investigation.5

However, we also notice that at around time-step
8000 in the first-visit fixed-beta plot there is the start
of a sharp decline in performance, where the learning
seems to have become suddenly unstable.

These results were averaged over several (n = 5) runs
for each plot, so this appears to be a real effect. If so,
it is conspicuous by its absence in the first-visit ccBeta

5At this point, we will make the following brief obser-
vations on this effect: a) The reduction in variance theo-
retically makes sense inasmuch as the variance of the sum
of several random variables is equal to the sum of the vari-
ances of the variables if the variables are not correlated,
but will be greater than than this if they are positively cor-
related. In multiple-visit returns, the positive correlation
between returns is what prevents them being statistically
independent, b) This raises the interesting possibility that
the observed improved performance of "replacing traces"
owes as much if not more to a reduction in estimator vari-
ance than to reduced estimator bias, which is the explana-
tion proposed by (Singh ~z Sutton 1996).

87

12OOO

,0ooo
| s0oo

s0oo

’~ 20oo

!0
t -20OO

-4000

-6000
0 2O00

i i i
4000 6000 8000 10000

time steps

Figure 7: The robot experiment using RL algorithm 1
(multiple-visit C-Trace).

plot: ccBeta would appear to have effectively rectified
the problem.

Overall, the combination of first-visit C-Trace and
ccBeta seems to be the winning combination for these
experiments, which is encouragingly in agreement with
prediction.

Conclusions
Excessive estimator variance during on-line learning
can be a problem, resulting in learning instabilities
of the sort we have seen in the experiments described
here.

In RL, estimator variance is traditionally dealt with
only indirectly via the general process of tuning vari-
ous learning parameters, which can be a time consum-
ing trial-and-error process. Additionally, theoretical
results presented here indicate some of the pervasive
ideas regarding the trade-offs involved in the tuning
process need to be critically examined. In particular,
the relationship between CTR length and estimator
variance needs reassessment, particularly in the case
of learning in a non-Markov domain.

The ccBeta algorithm has been presented as a prac-
tical example of an alternative approach to managing
estimator variance in RL. This algorithm has been de-
signed to actively minimise estimator variance while
avoiding the degradation in re-adaptation response
times characteristic of passive methods, ccBeta has
been shown to perform well both in simulation and in
real-world learning domains.

A possible advantage of this algorithm is that since
it is not particularly closely tied in its design or as-
sumptions to RL algorithms, Markov or otherwise, it
may turn out be usable with a fairly broad class of on-
line search methods. Basically, any method that uses
some form of "delta rule" for parameter updates might
potentially benefit from using a ccBeta-style approach

12OOO

100o0

8

I
!
1

8OOO

6OOO

4000

2000

0

-2000

-400O

-8000 i ,
0 2000 4000

i i
6OOO 8O0O 10000

time steps

Figure 8: The robot experiment using RL algorithm 2
(first-visit C-Trace).

to managing on-line estimator variance.

Acknowledgements
The authors are indebted to Paul Wong for his assis-
tance in performing many of the robot experiments.

References
Brooks, R. 1991. Intelligence without reason. In Pro-
ceedings of the 12th International Joint Conference
on Artificial Intelligence, 569-595.

Kushner, H., and Clark, D. 1978. Stochastic approx-
imation methods for constrained and unconstrained
systems. New York: Springer-Verlag.

Pendrith, M., and Ryan, M. 1996. Actual re-
turn reinforcement learning versus Temporal Differ-
ences: Some theoretical and experimental results. In
L.Saitta., ed., Machine Learning: Proc. of the Thir-
teenth Int. Conf. Morgan Kaufmann.

Puterman, M. 1994. Markov decision processes : Dis-
crete stochastic dynamic programming. New York:
John Wiley & Sons.

Singh, S., and Sutton, R. 1996. Reinforcement learn-
ing with replacing eligibility traces. Machine Learning
22:123-158.

Sutton, R.; Barto, A.; and Williams, R. 1992. Rein-
forcement learning is direct adaptive optimal control.
IEEE Control Systems Magazine 12(2):19-22.

Sutton, R. 1988. Learning to predict by the methods
of temporal difference. Machine Learning 3:9-44.

Watkins, C., and Dayan, P. 1992. Technical note:
Q-learning. Machine Learning 8:279-292.

Watkins, C. 1989. Learning from Delayed Rewards.
Ph.D. Thesis, King’s College, Cambridge.

88

