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Abstract

Autonomous agents engaged in a continuous interaction
with an incompletely known environment face the prob-
lem of dual control [Fel’dbaum 1965]. Simply stated, ac-
tions are necessary not only for studying the environment,
but also for making progress on the task. In other words,
actions must bear a "dual" character: They must be in-
vestigators to some degree, but also directors to some de-
gree. Because the number of variables involved in the
solution of the dual control problem increases with the
number of decision stages, the exact solution of the dual
control problem is computationally intractable except for
a few special cases. This paper provides an overview of
dual control theory and proposes a heuristic approach to-
wards obtaining a near-optimal dual control method that
can be implemented. The proposed algorithm selects con-
trol actions taking into account the information contained
in past observations as well as the possible information
that future observations may reveal. In short, the algo-
rithm anticipates the fact that future learning is possible
and selects the control actions accordingly. The algorithm
uses memory-based methods to associate long-term bene-
fit estimates to belief states and actions, and selects the
actions to execute next according to such estimates. The
algorithm uses the outcome of every experience to progres-
sively refine the long-term benefit estimates so that it can
make better, improved decisions as it progresses. The al-
gorithm is tested on a classical simulation problem.

Introduction

Autonomous agents are intelligent systems engaged in an
on-going interaction with the environment in which they
are embedded. They are capable of sensing and influenc-
ing the environment by making decisions sequentially dur-
ing their entire "life". Thus, the problem the agent con-
fronts is that of autonomous sequential decision-making: at
any given situation the agent must decide what to action
to perform next, execute the action, observe the situation

that results, and repeat the whole cycle at the new situa-
tion. Additionally, after executing every action, the agent
should learn from the outcome so that it can make better,
improved decisions as it progresses.

Commonly, autonomous agents are designed so that they
select actions based on their current knowledge level. How-
ever, their decision-making mechanism does not explicitly
consider that their knowledge level may change as they per-
form the task. That is, an agent uses its current level of
knowledge to select and execute actions that are efficient

from the perspective of such imperfect knowledge. Often,
some type of random exploration (e.g., Boltzmann explo-
ration [Watkins 1989]) or exploration bonuses (e.g., [Sutton
1990]) bypasses the standard action-selection mechanism
so that the agent is able to learn the effect of "unseen"
actions. The agent learns to perform better each time be-
cause new incoming information is used to improve the
knowledge level, which leads to better decisions. However,
this is a passive form of learning because the agent does not
explicitly select actions to gain new information or consider
how each action will influence its level of knowledge in the
short- or the long-term. This contrast the more efficient
and robust form of active learning in which the agent se-
lects actions taking into account both their efficiency with
respect to the task and the influence on the current level
of knowledge their execution may produce [Ram & Leake
19951.

The problem of sequential decision making under in-
complete knowledge has been studied by researchers in
the field of optimal control for systems with continu-
ous state and actions ([Bertsekas 1995; Fel’dbaum 1965;
Bar-Shalom 1990; Stengel 1994]) and reinforcement learn-
ing for systems with discrete states and actions ([Parr
& Russell 1995; Cassandra, Kaelbling, & Littman 1994;
Jaakkola, Singh, & Jordan 1995]). When the agent has
incomplete knowledge, actions are necessary not only for
studying the environment, but also for making progress
on the task. Actions must bear a "dual" character: They
must be investigators to a known degree, but also directors
to a known degree. The concept of dual control was first
introduced by Fel’dbaum to denote the control of actions
that bear this dual character [Fel’dbaum 1965]. In dual
control a conflict arises between the two aspects of the
control action mentioned above. In fact, we can control
successfully only when the properties of the environment
are known accurately enough. Meanwhile the study of the
environment requires time. Too "hurried" an agent will
perform unjustified control actions, which will not by sub-
stantiated properly by the information obtained as a result
of the study of the environment. Too "cautious" an agent
will wait for an unnecessarily long time, accumulating in-
formation, and will not be able to accomplish the task to
the required specifications. Thus, an agent must select ac-
tions in such a way that it can achieve a balance in the
dual character of its actions. In other words, the agent
has to devote some effort to exploring the environment and
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Figure 1: Autonomous Sequential Decision-Making. The
framework consists of three main elements shown in boxes:
the agent, the environment, and the task. The arrows in-
dicate the flow of information among the elements.

gather new knowledge, but only to the extent that it can
start exploiting such knowledge to proficiently perform the
task.

The exact optimal solution of the dual control problem
is computationally intractable. However, we propose a new
heuristic solution to the problem that explicitly considers
the dual nature of the control. In other words, a heuris-
tic control algorithm that anticipates the fact that future
learning is possible.

Sequential Decision Tasks
This section presents the formulation and solution of the
optimal control problem for sequential decision tasks in the
context of incomplete knowledge, as well as the difficulties
associated with the optimal solution method. These diffi-
culties motivate the heuristic solution method presented in
the following section.

Definition

The framework for studying autonomous sequential
decision-making consists of three main elements: the agent,
the environment, and the task. The agent attempts to con-
trol the environment by perceiving the environment and
choosing actions in a sequential fashion. The environment
is a dynamic system characterized by a state and its dy-
namics, a function that describes the evolution of the state
given the agent’s actions. A task is a declarative descrip-
tion of the desired behavior the agent should exhibit as it
interacts with the environment. A task is defined by asso-
ciating a scalar value or reward, which is delivered to the
agent every time it executes an action. The ultimate goal
of the agent is to learn a strategy for selecting actions or
policy such that the expected (possibly discounted) sum 
rewards is maximized. Thus, the task defines "what" the
agent should do but it is the agent’s responsibility to find
out "how". Figure 1 shows these three main elements and
their interaction. The next subsections describe in more
detail each component of the framework.

The Environment The environment is a discrete-time
dynamic system described by the dynamics function

Xt+l = F(xt,ut) (1)

where xt E ~" and ut E ~P are the state of the system and
the agent’s controlling action at time t, respectively. The
state consists of a set of variables that completely char-
acterize the current situation of the system and. together
with the agent’s subsequent decisions, fully determines the
evolution of the system. The dynamics is a vectorial func-
tion that maps the current state of the system to the next
state under the influence of the agent’s current action.

The Task The task is characterized by a reward function,
rt+l = R(xt, ut), that associates a scalar to every action the
agent may execute at any given state and a performance
measure given by

V(xt) - E 7t R(xt, ut) (2)

where 7 is the discount factor (0 < "/ < i) and V(xt)
represents the long-term benefit, or value of state xt given
the agent’s actions ut, ut+l,.... The ultimate goal of the
agent is to learn a strategy for selecting actions (i.e., 
policy) in order to maximize the performance measure (i.e.,
discounted sum of rewards) subject to the constraints given
by Equation 1. Thus, the reward function is a declarative
description of the desired behavior of the agent.

The Agent The agent implements the decision-maker in
the framework. It perceives the state of the environment
through the perception function

zt -- H(xt) (3)

where zt E ~m is the sensation associated with state xt.
The agent attempts to control the environment using ad-
missible policy functions of the feedback type

ut = 7r(Zt,Ut-l) (4)
Zt = {z0,...,zt}

Ut-1 ~_
{uo,...,Ut_l}

where Zt and Ut-1 represent all the information the agent
is aware of since the beginning of the task.

The policy functions described by (Equation 4) have two
important characteristics. First, the control actions do not
anticipate the future because any decision at a given time
depends exclusively on current and/or past information.
Second, the control actions at a given time take advantage
of all the information available at that time.

The objective of the agent is to find a policy of the form
given by (Equation 4) that maximizes the performance
measure given by (Equation 2). Such an optimal policy
if found, is able to satisfy the conflict between two appar-
ently opposing tendencies. On one hand, decisions made
with incomplete knowledge tend to decrease the perfor-
mance measure. Thus, in order to reduce the decrease in
the cumulative reward, the agent tends to be "cautious,"
a property known in the decision theory literature as "risk
aversion" [DeGroot 1970]. On the other hand, since this
is a multistage decision process where a new sensation is
collected at each stage, the agent may be able to carry
out what has been called "probing" of the environment
to enhance the incomplete knowledge [Bar-Shalom 1990;
Fel’dbaum 1965].
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Heuristic Solution to Dual Control
This section formulates the optimal control problem for se-
quential decision tasks in the context of incomplete knowl-
edge and describes a novel heuristic approach that attempts
to circumvent the difficulties associated with the exact op-
timal solution. The derived algorithm is suboptimal but
possesses the active learning characteristic because it ex-
plicitly considers the short- and long-term effects each ac-
tion produces on the current state of the environment and
level of knowledge in the agent. This will provide the basis
for an implementation of the approach that is applicable
when the agent knows that the unknown properties of the
environment is one out of a set of N possible values,

The exact optimal solution to the dual control problem
is extensive and involved (see, for example, [Meier 1965]);
therefore we shall only outline the derivation and summa-
rize the results below.

Two important concepts in the derivation of the optimal
policy are the information state and the optimal action-
value function. The information state, /t, can be viewed
as a quantity that is equivalent to all a priori knowledge of
the system, and the observation process Zt and Ut-1 in de-
scribing the future evolution of the system [Stengel 1994].
The information state is important because it captures all
the agent knows about the environment at a given point in
time as well as all the predictions about the evolution of
the environment the agent can infer from that knowledge
base. The optimal action-value function, Q*(h, ut), maps
every information state and action combination to the best
performance measure the agent can receive from such infor-
mation state when it applies the given action and follows
the optimal policy thereafter. The optimal action-value
function is important because it is used to guide the search
for the optimal policy. Specifically, the agent can use an
explicit representation of the optimal action-value function
to perform the following one-stage lookahead search

u~ = arg max E [Q*(h, ut)] (5)u,
The optimal action-value function is defined as

Q (t,ut) ma x E 7kR(zk,uk) litU t-~l ,Ut.].l j’"

= z ut) + U;+l) Ih]
where the recursive definition follows from the principle of
optimality [Bellman 1957], which can be stated as follows:
at any stage, whatever the present information and past
decisions, the remaining decisions must constitute an opti-
mal policy with regard to the current information state.

The main difficulties in implementing the exact optimal
control law for the dual control problem are: (1) the in-
formation state is either infinite dimensional or finite, but
grows with time; (2) the optimal action-value function as-
sociated with the information state is generally not an ex-
plicit function; and (3) the computation required to find
the optimal action-value function is an expensive process
(see [Bar-Shalom 1990]). Thus, a reasonable suboptimal
approach would be to: (1) approximate the information
state such that the dimension of its space stays constant
for all time; (2) approximate the optimal action-value func-
tion with a function approximator; and (3) asymptotically

learn the optimal action-value function using a computa-
tionally inexpensive stochastic approximation procedure.
The following subsections described in more detail each of
these issues as well as the proposed dual control algorithm.

Belief State
The information state It = {ZTM, Ut} is a quantity that
completely characterize all the knowledge the agent has at
a particular time. Since the information state captures all
the information the agent is aware of since the beginning
of the task, the quantity is either infinite dimensional or fi-
nite, but grows with time. A reasonable approximation of
the information state should consist of a finite dimensional
quantity that can, at the best of abilities, summarize the
past and characterize the future evolution of the system.
We shall call this quantity the belief state of the agent. The
belief state exists inside the agent and explicitly represents
the current state of the environment (or its best estimate
based on past sensations) and the uncertainty or knowl-
edge level of the unknown properties of the system. Addi-
tionally, the belief state drives the agent’s action-selection
mechanism. Thus, when an agent is making a decision it is
considering not only the immediate reward and change in
the state of the environment such decision would produce,
but also the possible change in what it knows about the
partially known properties of system.

To simplify the discussion, we will assume that the belief
state, st, is composed of two separate finite dimensional
quantities: an estimate of the state of the environment, ~t,
and a suitable representation of the knowledge level for the
unknown properties, ~t1. In other words,

st = { ~:~, ~t }
The vector-valued variable, ~t, represents the agent’s

best estimate of the state of the environment at stage t
based on a priori knowledge and previous observations.
The variable, ~t, represents the agent’s partial informa-
tion about the unknown characteristics of the system at
stage t and measures the amount of study of the system.
For example, this variable may contain probability distri-
butions of the unknown characteristics and, as the agent
collects information, the a posteriori probability distribu-
tions gradually close to the actual characteristics of the
system. The distinctive property of dual control is that
the rate of change in ~t depends on the strategy of the
agent.

The belief state plays the same role as the information
state. The agent uses the belief state to select and execute
aa action based on a given policy ut = re(st). Then, it
observes the incoming sensation (Zt+l) and constructs the
new belief state using a recursive estimation equation based
on the Bayes’ rule or any other recursive relation of the type

St-I-1 = {~tq-1, /£t-I- 1 }

: {~(~t,Kt,Ut,Zt-I-1),~(Kt, X,t,Ut, Zt+l)}

= ~(st,ut, zt+l) (6)
IThe commitment of representing the belief state as two sep-

arate quantities is not a requisite of the proposed approach.
However, the discussion is easier to follow when such commit-
ment is made because it can be clearly seen the role each of the
quantities plays.
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where ~=(.) and @~(.) denote the recursive estimation
functions for the state and knowledge level respectively.
The details of the estimation functions depend on the rep-
resentation of the belief state and the a priori knowledge of
the agent. A particular implementation will be described
in detail in the next section.

Additionally, the belief state serves the one-stage looka-
head search by allowing the agent to predict the long-term
benefit associated with different actions. The best action
is the one that maximizes the predicted long-term benefit.

In summary, the belief state is a heuristic representa-
tion of the information state using a finite and constant
number of dimensions. It is a quantity that exists in the
agent and, at the best of abilities, summarize the past and
characterize the future evolution of the system. The agent
gradually updates the belief state based on the actions it
executes and the sensations it perceives using a recursive
estimation procedure. The agent can use the belief state
in conjunction with the optimal action-value function to
select the best action by performing a one-stage lookahead
search. The next subsection discusses the topic of repre-
senting value functions.

Action-Value Function Approximators

The objective of the optimal action-value function is to
map any information state and action combination to the
best expected performance measure the agent can receive
from such information state when it executes the given
action and follows the optimal policy thereafter. An ex-
plicit representation of the optimal value function is im-
portant because it enables the agent to search and select
the best action at any given stage (Equation 5). How-
ever, a closed-form solution of the optimal value function
is rarely available in most problems.2 A reasonable ap-
proach for explicitly representing the optimal action-value
function is to use a function approximator on the belief
state. Function approximators have been used successfully
in the past in other reinforcement learning tasks (e.g.,[San-
tamarla, Sutton, & Ram 1996; Sutton 1996; Atkeson 1993;
Rummery & Niranjan 1994]). They use finite resources to
represent estimates of the long-term value associated with
continuous real-valued variables. Additionally, they have
parameters that the agent can use to adjust the value esti-
mates.

A function approximator for the action-value function is
of the form Qw(s,u), where s is the belief state, u is the
action, and w is a set of adjustable parameters or weights.
The function approximator provides the agent with an ini-
tial estimate of the long-term benefit associated to each
belief state and action combination. Thus, the idea con-
sists of letting the agent decide the best action to execute
next by performing the one-stage lookahead search (Equa-
tion 5) with the function approximator, and then using
the outcome of each action to asymptotically improve the
estimates towards their optimal values. One advantage of

2A notable exception are the Linear dynamics, Quadratic
reward, Gaussian forced (LQG) regulators that have a quadratic
optimal value function of the form V(k) = ~Tp~; _1. c, where P
is a n x n positive definite symmetric matrix and c is a positive
constant (see, for example, [Stengel 1994]).

function approximators is that they can generalize the long-
term benefit estimates associated with belief states and ac-
tion combinations the agent actually experiences to other
regions of the belief state and action spaces. In this way,
the agent can estimate the long-term benefit of belief states
and actions pairs it has never experienced before. Also,
function approximators are able to represent the optimal
action-value function even when the variables in the belief
state are continuous (i.e., real-valued variables).

The one-stage lookahead algorithm selects the best ac-
tion the agent can execute next given current approxima-
tions of the belief state and action-value functions. This
follows because the algorithm adheres to the principle of
optimality’s statement that requires that at every stage,
"the remaining decisions must constitute an optimal policy
with regard to the current information set." Thus, assum-
ing the function approximator matches closely the optimal
value function, the algorithm selects the action that max-
imizes the expected sum of the immediate reward and the
(properly discounted) estimated performance measure 
the belief state that would result given the current belief
state. Given the limitations of the finite dimensional belief
state and function approximator, no other action produces
better performance measure at the given stage.

In summary, function approximators can be used to ex-
plicitly represent the optimal action-value function. They
use finite resources to represent an estimate of the perfor-
mance measure the agent can achieve from any given belief
state. The initial estimates of the function approximator
may not be the optimal ones, but the agent can use the out-
come of each action it executes to asymptotically improve
the estimates toward their optimal values. The agent is
able to accomplish this by adjusting a set of weights asso-
ciated with the function approximator. Additionally, the
agent can use the one-stage lookahead algorithm to select
the best action it can execute next. The next subsection
discusses the topic of improving the estimates of the value
function.

Computation

Finding the optimal action-value function is a computa-
tionally expensive process. A reasonable approach is use
some stochastic approximation procedure (e.g., temporal
difference methods [Sutton 1988]) to asymptotically im-
prove the estimates towards their optimal values. The
main idea consists of using the agent’s experience to pro-
gressively learn the optimal action-value function. More
specifically, the agent can use a function approximator con-
taining an initial estimate of the value function (random es-
timates will suffice) and decide the best action to execute
next by performing the one-stage lookahead search (Equa-
tion 5). Then, after observing the outcome of executing
each action, the agent can use the stochastic approximation
procedure to improve the estimate of the action-value func-
tion by adapting the weights of the function approximator.
Thus, the agent can incrementally learn the optimal action-
value function by continually exercising the current, non-
optimal estimate of the action-value function and improv-
ing such estimate after every experience. This approach
has been extensively and successfully used in reinforcement
learning [Sutton 1996; Santamarfa, Sutton, & Ram 1996;
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Watkins 1989; Rummery & Niranjan 1994].
According to the principle of optimality, the value func-

tion must satisfy the recursive relation (so called the Bell-
man’s Equation, e.g. [Bertsekas 1995])

= t (71
where st and ut are the belief state and action at stage t.
Stochastic approximation procedures exploit this recursive
relation to create an update formula the agent can use to
adapt the weights of the function approximator after every
experience. More specifically, every time the agent selects
action ue and observes the next sensation zt+l and reward
rt+l, it can verify whether Equation 7 holds or not by com-
puting the error between the two consecutive predicted per-
formance values; before executing the action, Q,w(st,~t~),

^ ^.and after executing the action, rt+l + 7Qw(St+l,Ut+l).
When the error is different from zero, the agent uses the
update formula to adapt the weights w and improve the
estimate of the action-value function at st.

The procedure above described can be efficiently imple-
mented using temporal difference methods ([Sutton 1988]).
Sutton defines a whole family of update formulas for tem-
poral difference methods called TD(A), where < A < 1
is a parameter used to measure the relevance of previous
predictions in the current error.

8 ^*An agent improves the current estimate of 0w, ( t, ut ) by
adjusting the weights after every belief state transition us-
ing TD(A) updates. For this purpose, every time the agent
selects and executes action fi; at belief state st, observes
the next sensation zt+l and reward rt+l that results from
executing that action, and constructs the next belief state

^* zt+l) it uses the following TD(A) formulaSt+l = qJ(St, t ,

to update the weights of the function approximator,

t

Awt-----Ot(7"t+l "+" ")’0t+l--Ot) Z()vT)t-kVwkOk (8)
k=O

where Qt+l = O,~,(st+l,fi[+l), Qt = " ^"Qw, (st, t ), Vw, 0,~
is the gradient of Q(’) with respect w and evaluated at the

belief state sk, and a is a learning^rate. The interpreta-
tion of Equation 8 is as follows: Qt and Qt+l represent
the current estimate of the long-term benefit (i.e., perfor-
mance measure) at states st and st+l respectively. The

/

~r,+l + 7Qt+l - Qt_) represents the error incurred by
%

term

Qt in predicting the future according to Qt+l. In other
’words, the value of belief state st should be equal to the
immediate reward rt+l plus the value of the next belief
state st+l properly discounted. In case of error, the weights
are proportionally modified in the direction of the gradient
XT~, in order to maximally reduce error. The discounted
sum of the previous gradients ~’w~ are also credited for the
current error although their influence decays exponentially
with A.

The convergence of TD(A) has been proved under differ-
ent conditions and assumptions. Watkins [Watkins 1989]
shows that estimates asymptotically converge to their op-
timal values in systems having discrete and finite state and
action spaces when TD(0) is used to perform the updates.

1. Initially:
Set the initial estimate of the value function: w0
Construct the initial belief state:
so = {~0,,~0 }
based on the initial sensation z0.

2. Perform:
At each stage t = 0.1,...

(a) Control:
Select and execute the best action at stage t:
fi[, (Equation 5).

(b) Perception:
Observe the resulting reward and sensation
r,+, = R(x,, ~;)
Zt+l = H(xt+l).

(c) Belief State Estimation:
Update the belief state based on the observed outcome:
st+, = ~(st,ut^*, zt+l)

(d) Action-Value Function Estimation:
Update the action-value function using TD($):
wt+1, (Equation 8).

Figure 2: Heuristic Solution Algorithm.

A condition for the convergence is that all states are vis-
ited and all actions are executed infinitely often. Tsitsik-
lis and Van Roy [Tsitsiklis & Van Roy 1996] shows that
the value function associated with a given policy converges
for any linear function approximator and TD($) updates.
There is no proof showing the convergence of TD($) for
more complex function approximators, but this has not
stopped researchers for trying these methods using differ-
ent classes of non-linear function approximators. Success-
ful results have been obtained with multi-layer neural net-
works (e.g., [Lin 1992], [Rummery & Niranjan 1994]) and
sparse coarse coding methods such as Cerebellar Model Ar-
ticulation Controllers (CMA Cs) (e.g., [Santamaria, Sutton,
& Ram 1996]) and memory-based function approximators
(e.g., [Santamarfa, Sutton, & Ram 1996]).

An efficient on-line implementation of the update rule is
possible using "eligibility traces" (for details, see, [Singh
& Sutton 1996]). The idea is to maintain the value of
the rightmost sum in Equation 8 in a variable or eligibility
trace, which can be easily updated at every stage using a re-
cursive relation. The agent performs the update every time
it executes an action. Thus, the method is computationally
efficient since each update is computationally inexpensive.
On the other hand, the data efficiency of the method can
be very low since the agent requires large amounts of data
(i.e., the agent must execute many actions) to make the
value function estimates converge to their optimal values.

Summary
The heuristic solution to the dual control problem inte-
grates the control (Equation5), the estimation (Equation 
and the computation procedures (Equation 8). Figure 
shows the algorithm.

Results
This section describes the results of using the multiple hy-
pothesis implementation of the heuristic dual control ap-

93



proach in the double integrator problem. This problem
consists of a linear dynamics system with quadratic costs
(i.e., negative rewards) that depend on the state and action
values. There is one unknown parameter in the system and
the agent must learn to execute actions that help estimate
the unknown parameter while minimizing the sum of costs.
The function approximator used in the experiments is the
instance-based and the computation method is temporal
difference (Equation 8). A description of the implementa-
tion of this type of function approximator can be found in
[Santamaria, Sutton, & Ram 1996].3

The instance-based function approximator uses cases to
represent the action-value function. Each case represents
a point in the belief state space and holds its associated
long-term benefit estimate. The density threshold and the
smoothing parameters were set to ra = 0.1 and ~ = 0.1
respectively. The similarity metric was the Euclidean dis-
tance and the kernel function was the Gaussian. This pro-
duces cases with spherical receptive fields and blending of
the value function using a small number of cases. The val-
ues of each case were updated using temporal difference
(Equation 8) and implemented using eligibility traces fol-
lowing [Santamar/a, Sutton, & Ram 1996]. The values for
the free constants were 7 = 0.99, A = 0.8, cr = 0.5, and
e = 0. The one-stage lookahead search was performed us-
ing 25 equally spaced values for the acceleration between
the minimum value, amin = --1, and the maximum value,
amax -- +1 (i.e., 25A, -- amax - amin).

Double Integrator

The double integrator is a system with linear dynamics and
two dimensional state. It represents a car of a given mass
moving in a fiat terrain and subject to the application of a
single force (see Figure 3). The state of the system consists
of the current position, p, and velocity v of the car. The
action is the acceleration, a, applied to the system. The
objective is to move the car from a given starting state
to the origin (i.e., Pd = 0, Vd = 0) such that the sum
of the rewards is maximized. The reward function is a
negative quadratic function of the difference between the
current and desired position and the acceleration applied,
rt+l = -(pt2 + ate). The reward function penalizes the agent
more heavily when the distance between the current and
desired states is large and also when the action applied
is large. This type of reward function is widely used in
robotic applications because it specifies policies that drive
the system to the desired state quickly while keeping the
size of the driving control small in magnitude. This formu-
lation is standard in optimal control theory ([Stengel 1994;
Narendra & Annaswamy 1989]), in which the objective is
to minimize costs instead of maximize rewards. However,
both formulations are mathematically equivalent.

ZThe source code used to perform all the experiments is in
a compressed tar file available through anonymous ftp at the
following URL:
ftp://ftp.cc.gatech.edu/pub/&i/students/c~rlos/RLl/active-learnins.tar,gz

The source code is in C++ and follows the standard soft-
ware interface for reinforcement learning problems developed
by Richard S. Sutton and Juan C. Santamaria. The documen-
tation for the standard software interface can be found in URL:
http://envy.¢s.umass.edu/People/sutton/RLintertace/RLinterface.html

acceleration

velocity

Tl-------------i
mgct -- -,

I~,!A]
t

position

Figure 3: Double integrator. A car moving in a flat terrain
subject to a the application of a single force.

The dynamics of the double integrator is very simple and
it is described by the following equation,

dg-p
M-.~=a

where M is the mass of the car, which is unknown to the
agent. The acceleration is bounded to be in the range be-
tween the minimum and maximum acceleration values (i.e.,
a E [amin amax], where amin = -1 and amax = 1).

The simulation used a time step of At = 0.05 seconds and
new control actions were selected every four time steps. A
trial consists of starting the system at position p = 1 with
velocity v = 0 and running the system until either 200
decision steps had elapsed (i.e. 40 simulated seconds) 
the state gets out of bounds (i.e., when IPl > 1 or Ivl 
I), whichever comes first. In the latter case, the agent
receives a negative reward (i.e., a punishment) of 50 units
to discourage it from going out of bounds. An experiment
consists of 36 replications of 50 trials each, measuring the
number of time steps and cumulative cost (i.e., negative
sum of rewards) for each replication after each trial. The
average number of time steps and cumulative cost across
replications are used as measures of performance. At each
trial the agent is given a light car (MI = I) or a heavy car
(M~ = 5) with 50% probabilities respectively. The agent
can perceive the position and velocity of the car but it
cannot perceive the mass.

Multiple Hypotheses Scenario

In this experiment the mass of the car may be either light
or heavy. The agent is able to directly observe the position
and velocity of the car but not its mass; however, it is able
to indirectly determine the value of the mass.by applying
specific actions at specific states. The ultimate goal of the
agent is to maximize the performance measure. Thus, it
must select a sequence of actions that best reveal the value
of the mass while maximizing the sum of rewards: The
belief state consists of the state of the environment, which
the agent can observe perfectly; and the knowledge level,
which is a probability variable representing the belief or
hypothesis that the car is the light one. This experiment
can be expanded easily to the case of N hypotheses by
including N- 1 probability variables representing each one
of the N - I possible hypotheses.

The belief state consists of the state of the car and
the probability the agent is driving the light car, st =

-- ~3 ..lightt,t, t,vt }. A new belief state results at every stage
after the agent executes and action and receives a new sen-
sation. The incoming sensation and Bayes’ rule are used
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Figure 4: Trajectories in state space using the optimal con-
trol policy for the light car on both cars. Left: light car.
Right: heavy car.

to construct the new belief state.

.light 1.
8t+l = I~(st,at, zt+l) -- {Pt+l,Vt+l,./t+l J

where

qlight .light
P( Zt+l = ~ight (Pt, Vt, at) 

t+l --~ ’/t ~"~k=light / heavy P( Zt+l "- Fk(zt, ?it) )qkt

The quantity P( zt+l = Flight / heavy (Pt, Vt, at) represents
the conditional probability of the light / heavy dynam-
ics function in generating the perceived sensation zt+l
when the state of the car is {pt,vt} and the action is

at. Bayes’ rule updates the probability by generating
[ light~ based on the a pri-the a posteriori probabilities ~t+1 ;

ori probabilities (q~ight) and the conditional probabilities
(P(zt+l I k) = P( zt+l = F~(pt, vt, at) (see, for example,
[Ross 1993]).

The optimal control for the light car is different from
the optimal control of the heavy car. The light car re-
sponds quickly to moderate forces; therefore the agent will
not incur into large costs by applying top acceleration at
the beginning of the task. On the other hand, the heavy
car responds slowly to moderate forces, therefore the agent
will not incur into large costs for not moving the car fast
enough at the beginning of the task. Figures 4 and 5 show
the trajectory in state space of both cars under the control
of the optimal policies for the light and the heavy car re-
spectively. The optimal policy for the light car overshoots
when applied to the heavy car. Conversely, the optimal
policy for the heavy car undershoots when applied to the
light car. The optimal control for the case in which the
agent does not know the mass of the car requires a com-
promise between exploration and exploitation.

In this experiment the agent knows that car (M) may
be light (M1) or heavy (M2) but it does not know which
one until it starts applying forces and observe the outcomes
(i.e., a two hypotheses scenario). The agent may decide 
apply a strong force all the way until the car is near the
goal. However at some point it must decide to deaccel-
erate so that the car comes to a complete stop near the
goal. When the agent is controlling with the heavy car,
then it should start deaccelerating earlier than when it is
controlling with the light car. For that purpose, the agent
must try to identify which car it is controlling, but to be

Figure 5: Trajectories in state space using the optimal con-
trol policy for the heavy car on both cars. Left: light car.
Right: heavy car.
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Figure 6: Trajectories in state space using the proposed
dual control algorithm on both cars after 200 trials. Left:
light car. Right: heavy car.

successful it must do so as it approaches the goal. The
results shown below corresponds to the agent learning the
dual control of the car during 200 trials of 200 stages each.

Figure 6 shows the trajectory in state space of both cars
under the control of the proposed dual control algorithm.
In both cases the agent learns to apply actions that collect
new information while making progress on the task.

Figure 7 shows the plots of the agent’s belief of the light
car as a function of the stage after 200 trials for both cars.

Conclusions
This paper describes a heuristic approach for obtaining a
control algorithm that exhibits the dual characteristic of
appropriately distributing the control energy for learning
and control purposes. The approach is an approximation
based on the principle of optimality that uses finite storage
resources to represent the information state and the action-
value function, and finite computational resources to com-
pute the value function. The control algorithm posses the
distinguishing characteristic of regulating its learning as
required by the performance measure and it perform this
by considering the three consequences each action produce:
the immediate reward, the next state in the environment,
and the next knowledge level in the agent. The best action
is the one that maximizes the sum of the immediate reward
and the discounted value of the next state and knowledge
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Figure 7: Hypothesis of light car after 200 trials on both
cars. Left: light car. Right: heavy car.

level taken together. Some actions may change the state
and leave the same knowledge level. The resulting state
may presumably be a good one, but if the resulting knowl-
edge level cannot confirm this hypothesis then their com-
bined value may not be good. Similarly, other actions may
change the knowledge level and leave the same state of the
environment. The agent may now have better knowledge
of the situation but the lack of progress may cause poor
task performance. The optimal decision is the one that
best compromises between the progress on the task and the
gain of knowledge. However, the agent’s only objective is
to maximize the discounted sum of rewards. Thus, knowl-
edge gathering actions are considered only with respect to
this objective. This means that if the agent decides not
to make much progress by collecting information at some
point during the task it is only because such new knowl-
edge will help the agent to make better, improved progress
later in the task. A simple example is used to demonstrate
the computational feasibility of the algorithm and its per-
formance level when applied to a specific problem, and to
provide some insight into the dual control theory.
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